FIR Heterodyne Mapping Missions

Volker Ossenkopf-Okada

Universität zu Köln, I. Physikalisches Institut

FIR heterodyne misssions

Stratospheric Balloons for Astronomy

Boundaries:

- SOFIA with instrument upgrades
- ALMA up to 600GHz, APEX up to 810GHz
- CCAT-p (2021) up to 850GHz (some 1.4THz)
- GUSTO (2021) with 8 pixels at 1.4, 1.9, 4.7 THz
- SAFARI onboard SPICA, up to 230µm, R=300

Advantages:

- Sky coverage by small telescope \rightarrow first significant statistics
 - major fraction of the Milky Way, including diffuse regions
 - 10 times more than any existing/expected survey
- Costs small compared to space and SOFIA
- Data link/data storage compared to space
 - 2.4MB/s
- Atmosphere

• Comparison to SOFIA:

- In spite of average good transmission, coverage with many gaps
- Big challenge: Water: see Paola's talk
- Balloon experiment: limited number of lines for simplicity: FS transitions

V. Ossenkopf-Okada

Stratospheric Balloons for Astronomy

The need for a balloon (or higher)

Large-scale spectroscopic mapping of the diffuse structure in the Milky Way and nearby galaxies

COBE FIRAS 158 μ m C⁺ Line Intensity

Velocity-resolved (3-D) distribution of the different phases of the ISM, their evolution under dynamic and radiative impacts, and the transitions between the phases

V. Ossenkopf-Okada

Unique science from a FIR balloon mission

Global statistics

- Widely distributed gas
 - Not (yet) forming molecular clouds
 - Feeding
 - Galactic disk
 - Molecular clouds
 - Turbulence in the ISM
 - Follow assembly of clouds in the Milky Way
 - Delineate the transition of atomic to molecular clouds
 - Formation, evolution, and disruption of diffuse clouds
- Heated gas around young (massive) stars
 - Global star formation tracer
 - Impact of star-formation on large scales
- Distribution of elements in Milky Way ISM

How to probe the different ISM phases

 Complex configuration HI. CII 🐺 H₂, CO, CI Mixture of phases Ни, Ми, Сп Нп. Сп including HII regions H₂. CII. CI PDR Separated only in H₂, CI, CO Warm velocity space Neutral Medium H₂, CO **Dense Molecular** HII, NII, CH HI, CII Cloud UV Cold Neutral Velusamy et al. (2013) Medium Warm Ionized Region HI. CII Medium [CII] HIFI/GOT C+: G337.826+0.0 HII, NII, CII 2.5 2 LOS Pineda et al. (2014) T_{mb} [K] 1.51 0.5 • [CII] from HII regions, CNM, PDRs, 0 CO-dark gas Mopra/GOT C+: G337.826+0.0 12CO 16 ¹³CO 2 x C ¹⁸O 14 • [NII] from HII regions, little from WIM 12 10 T_{mb} [K] • [OI] for hot dense gas, absorption 8 6 from CNM and CO-dark molecular gas 4 2 0 -120 -60 -40 -20 -180 -160-140-100-80 LSR Velocity [km/sec]

Assembly of Galactic ISM and molecular clouds

Critical component - CO dark gas:

 PDR model for χ=1, n=10³ cm⁻³:

- Large fraction of H₂ not traced by CO
- Visible in [CII], [OI], (HF, CH, CH⁺)
 - [OI] throughout the whole cloud \rightarrow temperature and density tracer

V. Ossenkopf-Okada

Fraction of material

 In Galactic Plane (GOTC+, Pineda, Langer et al. 2010, 2013, 2014)

- 20-75%

- Highest in diffuse clouds
- Not much information yet for b≠0

- Across molecular cloud boundaries:
 - up to 80% (Xu 2016)
- Estimates for global fraction: 25-90%
- We may still miss the majority of the interstellar gas today!

Mass assembly of the Milky Way disk

- Disk ISM fed by infall of high- and intermediate velocity clouds
 - Ejected material?
 - Intergalactic material?
 - Dwarfs?

- 2 Intermediate-velocity clouds mapped by Röhser et al. (2014)
 - p-v-diagrams show interaction with disk material at $\Delta v \sim \text{few km/s}$
 - Dust column vs. HI column shows very different dust content
 - Clouds dense but invisible in CO

V. Ossenkopf-Okada

11/21/18 1

Feeding Milky Way Molecular Clouds

Open questions

- Inflow of material along filaments and spurs
 - Does the magnetic field direct the gas or does the gas assemble the magnetic field?
 - At which column density does the material turn molecular?
 - Relation between chemical transition time scales and infall time scale?
 - What is the infall velocity?
 - Does the infall create shocks?

DR 21 filament

Stratospheric Balloons for Astronomy

11/21/18 11

W75N

Driver of interstellar turbulence

ISM feeding as main driver of interstellar turbulence?

- Colliding flows unavoidably create turbulence
 - Mach-number of infall?
 - Impact relative to Galactic shear?
- Flows always chemically unstable
 - CO-dark material tracers

Size-linewidth relation of clumps in colliding flow

Colliding-flow simulation (column density map)

Klessen & Hennebelle (2010)

V. Ossenkopf-Okada

11/21/18 12

Open questions

Driver of large-scale turbulence in the ISM

- Mass accretion as a feed of turbulent motions
 - Primarily diffuse atomic gas, but too confused in HI emission lines
 - Low density molecular hydrogen:
 - CO-dark molecular gas
- Deconvolve the effect of Galactic shear
- Quantify SN driving

Hierarchy of intermittent scales of turbulence dissipation

- Low velocity shocks as tracers of intermittency
- Line cooling of shocks
- Localized and direct measure of energy losses due to turbulent dissipation observed in post-shock gas

Role of stellar feedback on galactic scales

[CII] and [OI] as cooling lines and star-formation tracers:

• The Herschel view:

G5.89-0.39:

- Spectral resolution is the key!
- Explanation of FIR line deficit needs resolved lines

(Leurini et al. 2015)

14

50

100

V. Ossenkopf-Okada

Stratospheric Balloons for Astronomy

11/21/18

0

Velocity (km/s)

-50

- 85% of [OI] emission obscured by foreground
- Consistent with foreground hydrogen column density 10²² cm⁻²

V. Ossenkopf-Okada

Open questions:

- Role of stellar feedback on the Galactic scale
 - What are good star-formation tracers ?
 - Contributions of different phases to Galactic emission of [OI], [NII], [CII]
 - Role of PDRs in the total line cooling of a galaxy

Dependence on galactic environment

Same measurements for resolved galaxies

30Dor (Okada et al. 2018)

- Quantify the amount of each ISM phase
- Determine how the phase distribution varies
 - for different type of galaxies.
 - as function of environment
- Deduce how these properties affect star formation rates

But: For most nearby galaxies both [OI] lines not observable from SOFIA

V. Ossenkopf-Okada

FIR heterodyne misssions

Stratospheric Balloons for Astronomy

11/21/18

17

Velocity [km s⁻¹]

Long duration scan mapping with heterodyne array

- 1m-class telescope
- Channels to be decided: [CII], [NII] 122µm, 205µm, [OI] 63µm, 145µm
 - Estimates for [CII]
- 60 days of operation
 - Altitude 38km
 - from Antarctica
- 64-pixel heterodyne array
 - Main challenge: 64 pixels would currently require ≈ 2kW (mainly FFTS (B. Klein): 30W/backend) → 8m² solar cells, dissipation (?)
 - Wet dewar (can be closed cycle if backends need less power)
- \rightarrow Experiment, not observatory: 1800 square degrees mapping
 - Most of the Milky Way visible from southern sky (up to $|b| < 15^{\circ}$)
 - Magellanic clouds
 - Other nearby galaxies

Sensitivities

Simulations by Glover et al. (2015,16):

- Narrow lines
- 2nW m⁻² sr⁻¹ ≈ 0.14 K (CII) COBE (Fixsen et al. 1999)
- Full plane above 7nW m⁻² sr⁻¹ GOTC+ (Langer et al. 2010, 13, 14)
- Scratched only the surface

10

 10^{-8}

10⁻⁹

10-10

Conservative estimate

- 1m-class telescope; resolution for [CII]: 40" at 1.9THz
- 64-pixel heterodyne array, T_{sys}=400K
- Spectral resolution: 0.5km/s to resolve inflow and turbulence
- 1800 square degrees coverage
 - \rightarrow Noise level of 50mK
 - Resolves dynamics of all the CO-dark molecular and CNM gas
 - [¹³CII] when averaging over 5 square arcminutes

11/21/18 20

- [NII] 205 µm at a resolution of 52"
 - lower noise of 40mK
 - << COBE level throughout most of the Galactic plane
 - [NII] 122µm undersampled
 - Detection of all extended HII regions, diffuse WIM only on much lower effective resolution
- [OI] 63µm sparsely sampled
 - Emission bright from PDRs, very concentrated,
 - Absorption from CO-dark gas when background available
 - no emission from diffuse gas
 - Optical depth correction challenging

What determines the ISM structure that drives star and planet formation in galaxies?

- Formation, growth, evolution, and dispersal of ISM clouds
 - Accretion of high-latitude material onto the Milky Way
 - Mass assembly of molecular clouds
 - Galactic scale statistics on the CO-dark molecular gas
 - 3-D distribution of the different phases
- Main driver of turbulent flows in the ISM
 - Mass accretion as a feed of turbulent motions
- Role of stellar feedback on the ISM dynamics on Galactic scale
 - [CII] as a star-formation tracer ?
- Large scale chemical and metallicity structure of the Galaxy
 - Including isotopes

All requires spectral resolution better than 1 km/s.

V. Ossenkopf-Okada

11/21/18 22