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The most simple problem

 What is the column density of an interstellar cloud?

 

 What to observe to trace the column density?

 What is the “boundary” of a cloud?

Def.: synonymous here 

Schneider et al. (2015)
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Column densities

 Gravity:

 Run-away density growth:
→  Power-law tail:
 

      

             

 
            Schneider et al. (2013): PDF in Orion B

Masses, turbulent structure, gravitational stability:

 Turbulent clouds: 

 Log-normal PDFs:



 

      

             

                                             

Column-density PDFs from isothermal simulations  
with different sonic Mach numbers (Kowal et al. 2007)
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Example

IRDC G28.37+0.07:

 Analysis of extinction data 
and Herschel column density 
maps:

 

 Schneider et al. (2015):    only power law tail

 Kainulainen & Tan (2013), Lim et al. (2016):  
   purely log-normal

 For same region!
 

      

             

IRAC 8µm             Herschel column density
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Observational artifacts

Possible problems in observations and data handling

 Finite spatial resolution

 Finite map size

 Noise

 Interferometric observations

 Line-of-sight contamination
 

 Simulation of all effects for test cloud:

Ossenkopf et al. (2016)
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Main problem

 
 

 Line-of-sight contamination 

 Contamination does not create 
separate peak

 Lognormal part “compressed”

 Power-law tail is steepened

 Original parameters can be 
recovered if contamination is known

 Reasonable correction already by 
constant screen subtraction 

 Critical input: known contamination

 What material is part of the cloud? 
 What is behind the cloud, 

what is in front of it?

            Ideal test cloud used in the simulations

Effect of contamination subtraction for G28.37 (Lim et al. (2016)
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Application of LOS correction

  Contamination subtracted map

 Lim et al. (2016):

 Contamination correction for G28.37 

 Assumes average Galactic column density profile 

 High contamination: AV > 30
 Possibly over-correction

 Creates negative areas

 Simulation of “over-correction”:

 



 Again interpretation as log-normal distribution with very wide width

 Over-correction creates PDF that 
seems log-normal, but has power-
law tail

 Schneider (2013) analysis assumed 
only A

V
 ≈ 7 contamination

 What is the true LOS 
contamination? 
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LOS confusion

Contamination subtracted map

Hi-GAL image of dust emission in G28 region            13CO 1-0 intensities with dust contours

 Large-scale spatial distribution

 Dust emission shows little extended material, but many individual features

 Distinction needs separation along the line of sight

 Only possible when using velocity information from atomic or molecular lines
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Resolve contamination from line profiles

Pitann et al. (2013)

Example 2: IRDC G48.66

 Observation in molecular lines, [CI], [CII]

 Velocity gradient in [CII] map
interpreted as possible 
colliding flow

 
Beuther et al. (2014)

Hi-GAL image of G48 region  
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Contamination and line profiles

Line profiles in molecular lines, [CI] and [CII]

       Comparison of line profiles going beyond the velocity range analysed in Beuther et al. (2014)

  IRDC G48.66 velocity component only minor contribution in total column!

13CO 1-0
[CI] 492GHz

[CII]
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Contamination and line profiles

A wider view

 Contamination correction requires detailed chemical analysis of all velocity 
components
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High-latitude cloud

Observation: Draco 

 No confusion within the Galactic plane

 Column density from SED fit to Herschel 
SPIRE (250µm-500µm) and PACS (160µm) maps

 Two peaks, separation at AV ≈ 0.3 → assignment to phase transition HI → H2  

 

      

    Total column density                                                           Column-density PDF (Schneider et al. subm.)



Volker Ossenkopf-Okada, KOSMA             EWASS 2017,            Prague           06/28/17                     13

Some closer look

Draco column density

 Low column density peak stems 
from low-flux regions without 
reliable temperature determination

 What do we really see there?



Volker Ossenkopf-Okada, KOSMA             EWASS 2017,            Prague           06/28/17                     14

Some closer look

Emission from “empty” regions

 Contamination by galaxies

 Partially resolved

 Resolved galaxies easy to remove 

 Cosmic Infrared Background (CIB)

Zoom in the 500µm SPIRE map before and after removal of resolved galaxies
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Measure emission from “empty” regions

Zero-level in the maps

 Implemented in HIPE 

 large-scale corrections, from Planck data

 Determine from noise-dominated intensity distribution

 Linear PDF

 Result:

 250µm: 1.7 MJy/sr

 CIB subtracted: 0.9 MJy/sr

 350µm: 1.4 MJy/sr

 CIB subtracted: 0.7 MJy/sr

 500µm: 0.7 MJy/sr

 CIB subtracted: 0.3 MJy/sr

(CIB provides half of the emission.)
Linear PDF of the intensities at 350µm. The 
peak is governed by the large “empty” regions.

Gaussian            Cloud density 
noise                     structure
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Emission from “empty” regions

Corresponding column density

 SED fit to zero level after CIB subtraction:



 Resulting new PDF

 No double peak any more!

 Column densities below 
3 1020 cm-2, i.e. AV = 0.15 
very questionable!

 Origin of zero-level emission?

 Unclear
Draco column-density PDF before/after bright 
galaxy subtraction.
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Contamination correction from line profiles?

Compare spatial distribution with HI and CO

                                                      Average
                                                           HI profile:

 

 Only IVC velocity component shows up in dust: Dust-to gas ratio not constant!
 

      

    Total column density:   Schneider et al. (subm.)

HVC       IVC        LVC
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Contamination correction from line profiles?

Compare spatial distribution with HI and CO

                                                      

 Molecular gas (CO) well correlated with 
dust column density, but total column low.

 Total HI distribution very different

 Not consistent with extended zero offset

→ Every tracers sees a somewhat 
     different column density!

 Even dust does not trace the full column density

 

      

    Total column density:   Schneider et al. (subm.)

Total HI column density map

CO-based 
column density 
(with dust 
contours) 10

19
 cm

-2
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Way out

Combine information from different velocity-resolved tracers

Line observations 
in Cygnus and 
derived column-
density PDFs 
(Schneider et al. 
(2015)

 Every species only traces a narrow 

dynamic range 
 CO isotopes miss high density tail
 High density tracers miss log-normal

 Major uncertainty in the X-factors
 Molecules are not co-spatial due to 

chemical differentiation!
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Chemical differentiation – consequence of varying density + UV field

Photodissociation regions:
 Layering of chemical 

transitions and temperatures

 Molecules dissociated at the 
cloud surfaces.

 Complex molecules only 
in the dense cores.

  

                  Based on Hollenbach & Tielens (1999)

Molecular cloudHII region

 
 PDR structure (Hollenbach & Tielens 1999)

 Abundance of selected species as a 
 function of optical depth from the cloud 
 surface

              
 (KOSMA-τ PDR model with χ = 1, M

tot
 = 100M

O
, 

  n = 500cm−3: Röllig et al. 2006)                   0.1                                      1.0                                 10.0
                                             A

V
 [mag]
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 Compare spatial distribution 
of many differentiated 
species

 Use dependence on UV flux 
as a distance estimate from 
illuminating sources

 Provides 3-D model of the 
source

 Solves contamination 
problem

Exploit chemical differentiation

Multi-line LMC 30Dor observations 
(Chevance et al. 2016)
Red circle = main illuminating source
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 Compare spatial distribution 
of many differentiated 
species

 Use dependence on UV flux 
as a distance estimate from 
illuminating sources

 Provides 3-D model of the 
source

 Solves contamination 
problem

Exploit chemical differentiation

Derived 3-D structure 
(Chevance et al. 2016)
Red circle = main illuminating source
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Combine with analysis of temperature gradients from radiative transfer

 Fit of 3-D structure of density distribution 
around all known heating sources

• So far velocity information not fully exploited yet!

Multi-source analysis

Continuum maps of Sgr B2

Iso-density contours with temperature coloring for 
3-D model of Sgr B2(M) (Schmiedeke et al. 2016)

70µm-350µm-850µm (RGB)
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Different species and fully exploit velocity information

The future

12CO 1-0 13CO 1-0

[CII]

Orion Molecular cloud 
velocity channel maps

Every individual map 
contains more than a 
million spectra!
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The future

Different species and fully exploit velocity information

 5-D problem:

 Extended maps for many species (n > 10)

 Fit individual velocity components

 GAIA provides accurate 3-D locations of 
illuminating sources

  → Calibrate your 3-D models!

12CO 1-0
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Observed data always give you the whole picture
 

 You have to extract the limited view of your source of interest

 No controlled boundary conditions
 LOS confusion is unavoidable

 Abundance and temperature variations along the LOS are normal
 Velocity information helps – exploit the full line profiles

Conclusions
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Observed data never give you the whole picture

 All observations provide a very limited dynamic range only

 Line emission scans only a narrow density range 

 Optical depth + subthermal excitation
 Noise and non-linearities are at best at the level of few percent
 There are (almost) no absolute measurement

 The sky reference is usually “polluted” as well
 Large scale emission is extremely difficult to quantify 

 Log-scales are often misleading!

Conclusions
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