
Star formation

Protostellar Collapse and Pre-Main-Sequence
Evolution



Full simulation of gravitational 
collapse

● Parameters of the presolar nebula:
● Mass > 1M

⊙
 

● T = 10 K (like other sources)
● R = 0.05 pc (=10,000 AU; critical radius of Bonnor-

Ebert sphere)
● <n(H

2
)> = 104 cm-3

● t
ff
 = 1.9 105 yrs

● Proto-Sun:
● Solar radius 0.005 AU – factor 2 107

● Solar density – factor 1020

● Solar temperature – factor 106

→ Problem with dynamic range of numerical codes
→ Full direct simulation still impossible



Computation of full dynamics
● Collapse of initially static cloud of uniform density
● No magnetic field
● No rotation

→ 1-dimensional problem

● Trajectories of particles:

● Parametric solution: 

● → Contraction to point mass at 



Dynamics of a spherical cloud
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Many possible solutions possible following from different 
initial density structures. e.g.
● Larson-Penston relation (last lecture)
● Singular isothermal sphere
● ...



Protostellar collapse: structure

Evolution of global density structure:

● Homologous collapse:

● Ideal case
● Never practically met



Protostellar collapse: structure

Evolution of global density structure:

● Non-homologous collapse:

● General solution for arbitrary initial conditions



Protostellar collapse: structure

Evolution of global density structure:

● Self-similar collapse:

● Simple “shift” in r

● Solution for SIS initial condition
● General solution as soon as singularity has formed
● Density structure can expressed as function of 



Similarity solution

x=
r

cs t
   (dimensionless)                                           
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momentum and density continuity can be written

[ x−v 2−1 ] v '= [ x−v−
2
x ] x−v 

[ x−v 2−1 ]  '

= [− 2

x
 x−v  ] x−v 

Advantage: only one variable, x , not two, r  and t

Inserting into the Mass equations yields                    
m=m'  x−v  ,   m'=x2


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Initial cloud structure

Trivial solutionv=0 :                                                     

=
2

x2

corresponds to static singular isothermal sphere

General solution: initially cloud at rest                  
t0⇒ x∞  and v=0

then the equations become
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Asymptotic solutions

For x∞  (large radii or shortly after start of infall)
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the constant A  has to be 2infall,v0
to start the collapse, but not much larger
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can be used as boundary for numerical integration.



x0t∞:                               ∣v∣≫1     x∣v∣≫1
one then finds 
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which is solved for x0  by
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Asymptotic solutions



cont'd
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Inside-out collapse



Shu-type collapse



Properties of the solution

● A=2 → SIS, stable
● Collapse as soon as A=2 is exceeded
● At large radii, the original r-2 density profile is pre-

served
● At small radii, the density profile is flatter
● In the envelope, the gas is at rest and does not 

know that the center is collapsing
● In the core, the velocities are supersonic and ap-

proach the free-fall velocity
● The accretion rate is time-independent
● At the transition region between free-falling core 

and static envelope, x=1 and r=c
s
t , so it is moving 

outward with the speed of sound



Shu-type collapse

Larson 1969     Shu 1977



Missing items

● Rotation

● Non-isothermality

● Magnetic fields



Energies

Parental cloud:                                            

gravitational Energy E grav=
GM 2

R
≈21042 erg

thermal Energy E therm=
3k T M

2m
=11042 erg

sun as a protostar R=2 R⊙ (T Tauri stars)

gravitational Energy E grav=
GM 2

2 R⊙

≈21048 erg

half of which went into heating: T≈3106 K
the other half was radiated away,
this gives for t=t ff : 〈 L〉≈40 L⊙



Rotational energy

Galaxy rotates differentially, with 
dv
dR0

≈−5 km s−1 kpc−1

which leads to angular momentum for clouds

E rot=
1
2

I 2
≈1037 erg

I=
2
5

M R2 for a sphere of constant density

but the angular momentum I   is conserved

therefore E rot=
1
2
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2

I
∝

1

R2

which would increase the rotational Energy by 1014



Magnetic energy

● The cloud can only collapse if the magnetic Ener-
gy is smaller than the gravitational, i.e.

3GM2

5 R


R3 B2

3
Which implies the existence of a minimum Mass
for instability in the presence of a magnetic field

M mag=
53 /2

482G3 /2

B3

2



Energies



Magnetic energy

E mag=
B2

8
4
3

R3
≈61040 erg for B=10 µG

because of magnetic flux conservation BR2=const  and

Emag∝
BR2


2

R
which would make B≈1013  times stronger in the star

which is not observed 

Is the Field frozen?  
● Generally not, since the ionization fraction is low 

(10-4-10-7) in interstellar clouds
 
                → ambipolar diffusion



Ambipolar diffusion

● Consider ions static (frozen) and the neutrals sub-
ject to the gravitational field, then the force bal-
ance is

GM

R2 nn m=ni nn 〈 u〉mwd  where

nn , ni  are the densities of neutrals and ions
〈 u〉  is the effective cross section

wd  is the drift speed between the two components

Resulting ambipolar diffusion time:                           

t ad=
R
wd

=
ni

nn

3
4G m

〈 u〉≈21013 ni

nn

[yr]



Ambipolar diffusion

● With an ionization rate of 10-7, that corresponds to 
several million years

● Collapse along the field lines is not inhibited 
● this leads to flattened structures perpendicular to 

the magnetic field
● But support due to excited Alfvèn waves

● There is some drag of the neutrals to the ions, so 
the field lines will be pinched

● Magnetic braking is also capable of removing an-
gular momentum



Observations of magnetic fields

● Fig. 1. (A) Sketch of the axis directions: red/blue ar-
rows show the direction of the redshifted/blueshifted 
lobes of the molecular outflow, probably driven by 
IRAS 4B (8); solid lines show the main axis of the 
magnetic field; and dashed lines show the envelope 
axes. The solid triangles show the positions of IRAS 
4A1 and 4A2. The cross shows the center of the mag-
netic field symmetry. (B) Contour map of the 877-µm 
dust emission (Stokes I) superposed with the color im-
age of the polarized flux intensity. Red vectors indicate 
that length is proportional to fractional polarization, and 
the direction is the position angle of linear polarization. 
Contour levels are 1,3,6,9,...30 x 65 mJy per beam. 
The synthesized beam is shown in the bottom left cor-
ner. (C) Contour and image map of the dust emission. 
Red bars show the measured magnetic field vectors. 
Gray bars correspond to the best-fit parabolic magnetic 
field model. The fit parameters are the position angle 
of the magnetic field axis {theta}PA = 61° ± 6°;the cen-
ter of symmetry of the magnetic field {alpha}0(J2000) = 
3h 29 m 10.55 s ± 0.06 s and {delta}0(J2000) = 
31°13'31.8'' ± 0.4''; and C = 0.12 ± 0.06 for the parabol-
ic form y = g + gCx2, where the x is the distance along 
the magnetic field axis of symmetry from the center of 
symmetry.



Shu-type collapse

● Ambipolar diffusion allows the creation of a Singu-
lar Isothermal Sphere, which becomes supercriti-
cal

● Then collapse stars from this quasi-static configu-
ration

● Inside-out collapse
● Accretion rate governed by effective velocity

→
 

● Typical values: 10-6-10-5 M
⊙
/a

● Duration of accretion phase: 105-106 a



Collapse in 2-D or 3-D

● Allows to fully include magnetic field and rotation
● Always creating disk structures

● Still very limited dynamic range

● Centrifugal force creates an accretion disk 

● Magnetic fields and rotation create hierarchy of 
disks



Collapse in 2-D or 3-D
Hydrodynamic 2-D collapse 
simulation by Tscharnuter 
(1987)



Collapse in 2-D or 3-D
Galli & Shu 1993



Collapse in 2-D or 3-D

 Time scales for central collapse only slightly 
changed:

 Replace
 

 New parameter for detailed evolution:
 β - specific angular momentum
 + Normal parameters:

 α – thermal to gravitational energy
 M, T – mass and temperature



Collapse in 3-D

Boss (1986)

α=0.25 
β=0.04 
T=10KM=2M

⊙
 → binary system M=0.5M

⊙
 → binary with bar

M=0.1M
⊙
 → bar system M=0.02M

⊙
 → single object



Collapse in 3-D

● Fragmentation

● Already discussed for stability
● Occurs also during the collapse within the disk

● In isothermal collapse the Jeans mass decreases at 
growing density



Collapse in 3-D Boss (1993)
Time evolution of 
disk

● Large angular 
momentum



Collapse in 3-D Boss (1993)
Time evolution of 
disk

● Intermediate 
angular mo-
mentum



Collapse in 3-D

● Boss parameters
●

●

Boss (1993)
Time evolution of 
disk

● Small angular 
momentum



Collapse in 3-D

● General results

● M ↑  → more fragmentation
● β ↑  → less fragmentation
● α ↑  → less fragmentation

● Fragmentation always proceeds
● Never reduced again

● General configuration stable in timescales of 107 a
● Inner structure of protostellar cores always dominated by 

instabilities/fragments

● Isothermal collapse continues to fragment at always 
smaller scales!



Effects at high densities

● When the dust becomes optically thick, the center 
warms up 

● T is raised,
 

●                   increases,
 

● fragmentation stops, 
● the core can support itself thermally

 

→ Formation of a hydrostatic core



Helmholtz-Kelvin timescale

● Under which conditions does the cloud heat up?

● Time to radiate gravitational energy away:

Helmhotz-Kelvin timescale

●                         Energy is quickly radiated away
→ isothermal collapse

●                         Energy is trapped
→ adiabatic collapse



Minimum fragment size

● Fragmentation stops at

● Luminosity
● f – grey emission factor ~ 0.1 for dust

 → critical Jeans mass

● Dust evaporation at T ~ 1000K
→ M

J,crit
 ~ 0.36 M

⊙



Minimum 
fragment size

● Fragmentation stops at  
     M

J,crit
 ~ 0.36 M

⊙

● Cloud fragment always
larger

● Reflected in IMF



Effects at high densities

● Collapse can proceed isothermally up to densities 
of about 1010 cm-3

● Then the dust becomes optically thick, infrared 
radiation cannot escape any more

● Center warms up, fragmentation stops
● Radiation with f=0.1, T=100-1000K, R=2000AU

● Formation of the first hydrostatic core 

● Slow, adiabatic evolution
● Temperature increases
● Density increase very slow



The hydrostatic core



Effects at high densities

● The supersonically falling gas falls on the hydro-
static core giving rise to a shock which dominates 
the protostellar luminosity

● When the temperature reaches 1000 K, dust 
evaporates and cannot contribute to cooling any 
more
→ “opacity gap”

● When the temperature reaches 2000 K, H
2
 disso-

ciates

L shock=
G M ∗ Ṁ

R∗



The hydrostatic core



Effects at high densities

● Dissociation of H
2
 “consumes” significant amount 

of energy
→ no further heating
→ collapse of inner shells can proceed quasi-
isothermally
                        2nd collapse

● At T>3000K hydrogen is ionized
● Gas turns optically thick again due to free-free 

radiation
→ 2nd hydrostatic core

● Shell structure of evolution combining all effects 
at different radii



The hydrostatic core



The hydrostatic core
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