Star formation

Switching-on fusion

Global picture (for low-mass PMS)

- Start with isothermal collapse \rightarrow Hayashi track
 - Luminosity dominated by accretion
- End of main accretion phase
 - Luminosity dominated by adiabatic contraction
- Fully convective core

 \rightarrow continuation of Hayashi track

- Temperature limited by Hayashi temperature (H⁻ opacity temperature)
- Increase of temperature to allow L_{rad,max} > L
 - Radiative transfer of luminosity
 - Reduced stellar contraction

 \rightarrow Henyey track up to ignition

Spherical symmetry:

- $dP/dr = -\rho(r) G m(r) / r^2$
- dm/dr = $4\pi r^2 \rho$

P ~ ρ^γ

- Energy transport:
 - Radiative: centre of massive PMS
 - Convective: low mass, low T, high κ_R

Hydrostatic equilibrium Mass conservation Equation of state

Equation of state:

- p ~ ρ^γ
- Uniform equation of state through all radii for fully convective star
- ideal ionized gas: $\gamma = 5/3$

• $p = \Re/\mu \rho T$

- \rightarrow Closed equation for mass-size relation:
 - $M \propto R^{\frac{3\gamma-4}{\gamma-2}}$
 - M ~ R⁻³ for γ =5/3
 - Negative mass-size relation!
 - More massive stars are smaller!

Temperature evolution from virialization:

$$L = -\frac{dE_{tot}}{dt} = -\frac{d(U+W)}{dt} \text{ with } 2U+W=0 \text{ (virial) and } W = -f\frac{GM^2}{R}$$

$$L = -\frac{1}{2}\frac{dW}{dt} = -\frac{1}{2}f\frac{GM^2}{R^2}\frac{dR}{dt}$$

$$L > 0 \implies \frac{dR}{dt} < 0 \quad \text{Radiative losses at the photosphere}$$

$$lead \text{ to gravitational contraction}$$

$$\frac{dU}{dt} = L > 0 \quad \text{Radiative losses lead to increase of temperature!}$$

By radiating away energy, the star gets hotter!
 → negative specific heat !

Special case: Fermi gas

- At high densities the Fermi pressure can exceed the thermal pressure
- Equation of state still p ~ ρ^{γ} , $\gamma {=}5/3$ but independent of temperature T
- If $p_{\text{Fermions}} > p_{\text{Ions}}$
 - Fermionic pressure stabilizes star
 - No further temperature increase in contraction
 - Determines fate of star \rightarrow whether ignition temperature is reached

Ignition of the star

- D fusion: $p + d \rightarrow {}^{3}He + \gamma$
 - Critical temperature: 8 x 10⁵ K
 - Energy production: 4.2 10³ J kg⁻¹ s⁻¹ X_D (T/10⁶K)^{11.8}
- Li fusion: $^{7}Li + p \rightarrow {}^{4}He + {}^{4}He$
 - Critical temperature: 2.5 x 10⁶ K
- H fusion: $4p \rightarrow 4He + 4e^+ + 4v_e + 2\gamma$
 - Critical temperature: 10 x 10⁶ K

p-p process:

- $p + p \rightarrow d + e^+ + v_e$
- $d + p \rightarrow {}^{3}He + \gamma$
 - ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p = PP-I$
 - ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$
 - $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + v_{e}^{-} + \gamma = PP-II$
 - $^{7}\text{Li} + p \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$
 - ${}^{7}\text{Be} + p \rightarrow {}^{8}\text{B} + \gamma$
 - ${}^{8}B \rightarrow {}^{8}Be + e^{+} + v_{e}$
 - $^{8}\text{Be} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$

= PP-III

p-p process:

- PP-I, PP-II, PP-III are three independent ways to create ⁴He from p.
- Same energy production, but different number of beta particles and neutrinos
- Temperature efficiency:
 - T < 14 10⁶ K
 - 14 10⁶ K < T < 24 10⁶ K
 - T > 24 10⁶ K

- \rightarrow PP-I dominating
- \rightarrow PP-II dominating
- \rightarrow PP-III dominating

- Energy production:
 - Constrained by slowest reaction: $p+p \rightarrow d + e^+ + v_e$
 - 2.4 10¹⁶ J kg⁻¹ s⁻¹ X_H² exp(-3.4 (T/10⁹K)^{1/3})/(T/10⁹K)^{2/3}
 - Steep function of temperature (~T⁴ at 10 Mio K)

CNO cycle:

- At T > 20 10⁶K
- $p + {}^{12}C \rightarrow {}^{13}N + \gamma$ • ${}^{13}N \rightarrow {}^{13}C + e^+ + v_e$ • ${}^{13}C + p \rightarrow {}^{14}N + \gamma$ • ${}^{14}N + p \rightarrow {}^{15}O + \gamma$ • ${}^{15}O \rightarrow {}^{15}N + e^+ + v_e$ • ${}^{15}N + p \rightarrow {}^{12}C + {}^{4}He = CNO-I$ • ${}^{15}N + p \rightarrow {}^{16}O + \gamma$ • ${}^{16}O + p \rightarrow {}^{17}F + \gamma = CNO-II$

• ${}^{17}\text{F} \rightarrow {}^{17}\text{O} + e^+ + v_{a}$

• ${}^{17}\text{O} + p \rightarrow {}^{14}\text{N} + {}^{4}\text{He}$

CNO cycle:

- ¹²C acts as catalyst
- Energy production:
 - Complex interplay of the multiple reactions
 - Still only approximately known
 - 4.4 10²¹ J kg⁻¹ s⁻¹ X_HZ exp(-15.2 (T/10⁹K)^{1/3})/(T/10⁹K)^{2/3}
 - Extremely steep function of temperature
 - ~T¹⁸ around 20 Mio K
 - Completely dominating at high temperatures

He fusion:

- At T > 100 Mio K
- Only relevant at end of stellar life, not in star-formation.

Brown dwarfs

$\rm M<0.08~M_{\odot}$:

- $p_{\text{Fermions}} > p_{\text{ions}} \text{ at } T < 10^{6} \text{K}$
- Critical temperature for H fusion is never reached.

\rightarrow Brown dwarf

$\rm M$ > 0.08 $\rm M_{\odot}$:

- p_{Fermions} < p_{ions}
- Temparture grows by contraction above 10⁶K
- H fusion starts

\rightarrow Star

Brown dwarfs

Stellar structure

• Determined by equation of state for Fermi gas

• M = M_{BD} R⁻³
• M_{BD} =
$$\frac{92\hbar^6}{G^3 m_e^3 m_p^5} \left(\frac{Z}{A}\right)^5$$

- Z average atomic number
- A average atomic weight
- For a pure Fermi gas, the final stable state is well-defined.

Brown dwarfs

- Brown dwarfs can only radiate their contraction energy
- The follow the Hayashi tracks until the end of their life
 - For M > 13M_J D fusion is still possible (M_J ~ 10^{-3} M_o)
 - Gives only small luminosity enhancement
 - They are still bright when they are young
 - Contraction luminosity allows us to find only young brown dwarfs

PRC95-48 • ST Scl OPO • November 29, 1995 T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Luminosity evolution of stars, brown dwarfs, and planets

Burrows et al. 2001

ASTR 3730: Fall 2003

ASTR 3730: Fall 2003

Li depletion

- Li fusion happens at T ≥ 2.5 10⁶ K
 → it is quickly removed
- Li (671nm) absorption is only seen in the atmospheres of very young stars
- Li absorption can be used to measure stellar ages

Fig. 31. ⁷Li-depletion as function of time for stars in the mass range 0.07 to M_{\odot} . (From Rebolo et al. [63])

Li depletion

 Li absorption can be used to measure stellar ages

Unsolved problem: "post-T-Tau gap"

Fig. 30. The equivalent widths of the LiI 6708 Åabsorption line of low-mass stars as a function of $T_{\rm eff}$. T Tauri stars are shown by the empty triangles and low-mass mass members of various young open clusters by filled symbols. The dashed line represents the locus of minimum equivalent width values for log N(Li)=2.8, and the cutoff for the maximum $T_{\rm eff}$ =5250 K of T Tauri stars. (From Martín [47])

Li depletion

Detailed models:

- Depth of the convection zone determines atmospheric Li depletion
 - M < 0.5M_o: fully convective, Li immediately depleted
 - M < 1.7M_o: Convection down to 2.5Mio K, depletion by factor ~100
 - M > 1.7M_o: depletion only on time scales of 10⁹a
- Critical test for stellar evolution models

Fig. 29. The dependence of ⁷Li-depletion as function of time for a 1 M_{\odot} PMS star. The four panels illustrate the sensitivity on opacity (upper left), metallicity (upper right), prescription for convection (lower left), and a combination of opacity and turbulence. The shaded area in all models represents the standard solar model with Y=0.28, Z=0.017-0.018, and the turbulent spectrum of Canuto et al. (1996). (From D'Antona & Mazzitelli [32])

Deuterium burning

- Critical temperature: 8 x 10⁵ K
- Energy production: 4.2 10³ J kg⁻¹ s⁻¹ X_D (T/10⁶K)^{11.8}
 - Extreme temperature sensitivity
 - Reaction is always self-sustaining
 - As soon as critical temperature is reached all D is burned
- Deuterium burning is limited by supply!
 - Accretion of fresh material provides luminosity

$$L_D = \dot{M} X_D Q_D / m_H$$

•
$$X_D \sim 2 \ 10^{-5}, Q_D = 5.5 \ \text{MeV}$$

 $L_D = 12 L_{\odot} \frac{\dot{M}}{10^{-5} M_{\odot} a^{-1}}$

Deuterium burning

- Energy production: 4.2 10³ J kg⁻¹ s⁻¹ X_D (T/10⁶K)^{11.8}
 - Temperature in interior rises
 - Heating leads to increase of radius

FIG. 7.—Effect of the accretion rate on the mass-radius relation (a) For a fixed [D/H] of 2.5 × 10⁻⁵, the core radius is shown as a function of mass for the indicated values of \dot{M} . The open and filled circles again mark the onset of deuterium burning and of full convection, respectively. (b) For a [D/H] of 0, the radius is plotted against mass for the same values of \dot{M} . In this case, the cores are radiatively stable.

Geometry of deuterium burning

- $M < 3M_{\odot}$: (T Tauri stars)
 - Critical temperature for D burning only in center
 - Core fusion zone
 - M < 0.6 M_o:
 - Star remains fully convective
 - M > 0.6 M_o:
 - Temperature increase triggers radiative stability
 - Switch over to Henyey track
 - Continued hydrostatic evolution to the H fusion

Geometry of deuterium burning

- M > 3M : (Herbig Ae/Be stars)
 - Quick switch over to radiative core
 - Strong increase of radius: factor 2
 - Temperature for D burning already in outer layers

STAHLER, SHU, AND TAAM

FIG. 1.— The structure of the hydrostatic core during the main accretion phase: (a) prior to deuterium burning, and (b) following the off-center ignition of deuterium. The relative size of the settling zone has been exaggerated for clarity.

Evolution to the main sequence

Palla 2000, Aussois school

Zero-ago main sequence differs from main sequence due to residual accretion and embedding in disk and parental cloud