Star formation

Outflows and jets

Observations of outflows and jets

- Optically detected jets:
 - Very collimated streams of gas, moving at supersonic speed (~100 km/s)
 - Mostly bipolar, mostly perpendicular to disk

Jet outflow rate typically 10^{-9} ... 10^{-7} M_{\odot}.

- Molecular outflows:
 - Detected in CO lines
 - Less colimated
 - Often associated with optical jets (i.e. same origin)

Derived mass: $0.1...170 M_{\odot}$: large!

• Most of accelerated mass must have been swept up from the cloud core, rather than originating in mass ejected from the star

Herbig-Haro objects

Most prominent outflow products

- Radiation from excited hydrogen
- Shock interaction of jet with surrounding cloud

HH 1 and 2

Jet powered by the embedded source VLA1

green: $H\alpha$, red: SII

Jets are observable in lines of ionized atoms

HH 30 First direct observation of temporal changes

HH 30

Association with molecular gas in disk and outflow

Figure 2. Background in false color: a montage of the dust disk emission from the HST (from Burrows et al., 1996) and its perpendicular jet. Contours present ¹²CO J = 2 - 1 emission associated to the jet (black and white) corresponding to the extreme velocities and the redshifted and blueshifted integrated emission with respect to the systemic velocity of ¹³CO J = 2 - 1 line coming from the disk (from Pety et al., 2004). Note that the velocity gradient of the ¹³CO J = 2 - 1 emission is along the major disk axis, as expected for rotation.

HH211: a well collimated low mass flow

- Many jets only detected in the Infrared
- Complementary CO observations "fill"
 the outflow pattern

32°01'00"

32°00'40"

3^h44^m00^s

3^h43^m58^s

5000 AU

3^h43^m54^s

3^h43^m56^s

H₂ 2.12 μ m (colors) + CO J=2-1 V<10 km/s (white) + continuum 1.3 mm (red)

HH 212 HH212 central sect (H2 2.122 microns)

Dragon

The BHR71 Bok globule

Bourke et al. (1997)

CO (1-0) outflow, powered by a class 0 protostellar binary (L $_{\rm bol} \sim$ 9 L $_{\odot})$

Mapping of the outflow with APEX

CO(3-2) channel maps

imaging of the second outflow !

Velocity structure traced by CO

Physical diagnostic using methanol

IRAS 19410: how high resolution changes the picture

from 2 to 6 cores; from 2 to 9 flows

Molecular Outflows

Numerous outflows show a relatively wide angle

Jets and Outflows

- Most dramatic phenomenon as evidence of star formation.
- Common phenomenon from proto-brown dwarfs (with 0.03 $\rm M_{\odot})$ up to very massive stars (10 $\rm M_{\odot})$
- For low mass stars, flows of younger stars are
 - faster
 - more highly collimated
- Influence the surrounding material both mechanically and thermally.
- Contrary to the disks, jets and outflows were not predicted by rotating infall theory
- Jets of AGNs are probably similar phenomena

Jets and Outflows

Questions:

- Launching process
- Contribution to angular momentum removal
- Relation between jet and outflows
- Confinement

Basic picture

Jet:

- extremely collimated, high velocity flow • away from center of collapse,
- perpendicular to disk
- evolution complementary to disk evolution

Diagram of HH 30 Circumstellar Disk & Jet

Basic picture

Combination of jet and molecular outflow:

• Multiple velocity components

Observations

Line shape tracing wind:

Abbildung 4.6: Schematisches Modell eines jungen Sterns mit bipolarem Ausfluß. Unten sind die CO-Spektren mit den entsprechenden Linienverschiebungen, bedingt durch die Neigung des Jets zur Sichtlinie, für drei unterschiedliche Bereiche des Objektes angegeben. Die linke und rechte Linie hat die Form eines P-Cygni-Profils.

Geometry and confinement

Dullemond (2010)

Magnetic field winding - confinement

Magnetic field winding - confinement

$$\vec{j} = \frac{c}{4\pi} \nabla \times \vec{B}$$

 $\vec{f} = \frac{1}{c}\vec{j} \times \vec{B}$

• Right-hand rule: force points inwards

Hydrodynamic confinement of jets

- Jets are surrounded by cocoon of pressurized gas
 - Cocoon partly made of old jet material, partly by swept up material from the environment
 - Jet material moves *supersonically*

• Shock only reduces the velocity component perpendicular to shock front. Therefore obliquely shocked gas is deflected toward the shock plane.

Hydrodynamic confinement in jet:

Hydrodynamic confinement of jets

- Head of jet ('hot spot') drills through ISM
- Shocks seen as knots (Herbig-Haro objects)

Observed knot movement (HH30)

Molecular flows: entrainment

Molecular flows: observation

Velocity nesting: gas with higher velocity is more collimated, lower velocity outflow is more extended

The extremely high-velocity molecular outflow in IRAS 20126+4104 (Lebrón et al. 2006)

Jet simulations

Launching processes?

Correlation between mass outflow and accretion:

FIG. 5.—(a) Relationship between the dereddened [O I] $\lambda 6300$ luminosity $L_{10 II}$ and the mid-IR excess luminosity L_{MIR} for the 36 stars in our sample (symbols as in Fig. 4). (b) Relationship between the dereddened H α luminosity $L_{H\alpha}$ and the mid-IR luminosity excess L_{MIR} for the 36 TTS in our sample. In both of these plots, the two quantities are well correlated over two orders of magnitude (the only exception is GM Aur, a star with strong [O I] and H α emission but small mid-IR excess. However, if this is a CTTS with a nearly edge-on disk, it will not violate the correlations). Note that uncertainties in A_V tend to increase the scatter in these plots.

Cabrit et al. 1990

- Jet masses traced by excited lines of ionized gas
- Accretion in protostellar phase measured by total luminosity (up to 10⁻³ M_o/yr)

Launching processes?

Correlation between mass outflow and accretion:

Molecular outflow mass

Outflow rate

- \rightarrow close relation between accretion and outflow generation
- \rightarrow favors some MHD jet launching mechanism

Jet formation

Two competing theories:

 \leftrightarrow

Magnetospheric accretion

Inner disk boundary:

Corotation radius

$$\Omega_{\rm disk} \approx \Omega_{\rm star}$$

$$r_{co} = \left(\frac{GM}{\Omega_{star}^2}\right)^{1/3}$$

- Magnetic coupling between disk and star
- Accretion along the field lines

Königl (1991)

• Gas is loaded onto magnetic field lines (disk is destroyed) where magnetic pressure = dynamic pressure.

"X"-wind

In the X-wind model the magnetic field of a young star interacts with the magnetic field of the circumstellar disk to produce a gap between the star and disk. As gas spirals inward through the disk, it divides at the inner disk edge (the X-region) into two streams. A high angular momentum stream is flung away along the rotating magnetic field lines of the disk (the X-wind); the low angular momentum stream falls onto the star and helps build its mass.

X-wind

Figure 13 Schematic views of the (*a*) meridional plane and (*b*) equatorial plane of the configuration modeled by Shu et al (1994a,b) for the origin of bipolar outflows. The circumstellar disk is truncated at a distance R_X from the star. Both energetic outflows and funnel flows emerge from the disk truncation region. Gas accreting from the disk onto the star in a funnel flow drags the stellar field into a trailing spiral pattern. (From Najita 1995.)

X-wind simulation

Disk wind

Slingshot effect: Blandford & Payne (1982)

C. Fendt

•Gravitational potential:

$$\Phi = -\frac{GM}{\sqrt{r^2 + z^2}}$$

•Effective gravitational potential along field line (incl. sling-shot effect):

$$\Phi = -\frac{GM}{r_0} \left[\frac{1}{2} \left(\frac{r}{r_0} \right)^2 + \frac{r_0}{\sqrt{r^2 + z^2}} \right]$$

Disk wind

Critical angle:

60 degrees with disk plane.

Beyond that: outflow of matter.

Disk wind model

Figure 1 Schematic picture of FU Ori objects. FU Ori outbursts are caused by disk accretion increasing from $\sim 10^{-7} M_{\odot} \text{ yr}^{-1}$ to $\sim 10^{-4} M_{\odot} \text{ yr}^{-1}$, adding $\sim 10^{-2} M_{\odot}$ to the central T Tauri star during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope with an infall rate $\leq 10^{-5} M_{\odot} \text{ yr}^{-1}$; the disk ejects roughly 10% of the accreted material in a high-velocity wind.

Consistent with FU Orionis outbursts

Outflow size vs. distance

Jet FWHM (AU) in [SII]/[OI]

Ray et al. 2006, PPV

X-wind v

versus Disk-wind

The X-wind model, the magnetic field of the star connects to the disk at the X-point. Here the accretion disk and star co-rotate and a wind, later collimated into a jet, is launched outwards along the open field lines.

The disk-wind model, the wind is launched along the open field lines of the disk over a range of radii down to the co-rotation radius.

Collapse and outflow: CO outflow as a "circulation solution"

Alternative model for outflow: - central accretionejection engine for jet + global circulation pattern for CO flow

Predict: CO outflow not due to jet entrainment.
I jet; II circulation region;
III infalling envelope

Lery et al (2002)

Different outflow models

Molecular outflow properties predicted by different models

^a Assuming an underlying density distribution of r⁻¹ to r⁻².

Arce et al. 2006, PPV

Are jets really a way to get rid of angular momentum?

Detection of jet rotation!

Observed Radial Velocity Shift

Bacciotti et al. 2002

Observational constraints

- Foot-print radius: undecided some observations claim very small ones (down to 0.014 AU = 3 R_{\odot} would favor X-wind)
- Angular momentum of jet seems to be small takes care of angular momentum problem of star, but disk has to look after itself
- Radial velocities and proper motions: 100-200 km/s for jets

 \rightarrow Higher angular resolution needed to see deteching radius