
Star formation

Protostellar evolution and Pre-Main-Sequence 
Phase



Protostellar evolution

● Isothermal collapse up to densities of ~1010 cm-3

● Then the dust becomes optically thick
● Center warms up, fragmentation stops

→ 1st hydrostatic core

● Slow, adiabatic evolution
● Temperature increases
● Density increase very slow

● Infalling gas shock dominates luminosity

L shock=
G M ∗ Ṁ

R∗



● When T~1000 K, dust evaporates 
→ “opacity gap”

● When the T~2000 K, H
2
 dissociates 

● Dissociation of H
2
 “consumes” significant 

amount of energy (4.48 eV per H
2
)

● Temperature remains approximately constant
                        2nd collapse

● At T>3000K hydrogen is ionized
● Gas turns optically thick

→ 2nd hydrostatic core

Protostellar evolution



Evolution of the protostellar core

● Evolution of density        -      central temperature



Protostar



Protostar

● Opacity gap separates inner core and outer shell
● Separate physical evolution

● Accretion shock at both “surfaces”

● Evolution of outer shell:
● Determined by accretion rate 
● Radiation from accretion shock
● No contribution to heating

● Evolution of core:
● Stellar problem
● Temperature increase up to fusion
● Chemical evolution



Accretion

● Mass gaining core whose luminosity stems mainly 
from external accretion.

● Typical rates: 10-5 … 10-3 M
⊙
/a 

                       → 102 … 104 L
⊙

● But: Protostars are invisible in the optical

Lacc=
G M ∗ Ṁ

R∗

≈60 L⊙  Ṁ

10−5M ⊙ yr
−1   M ∗

1M ⊙
  R∗

5 R⊙

−1



Accretion
Growth of radius 
follows a fixed 
curve set by hy-
drostatic core 
physics and ac-
cretion rate



Accretion



Surface temperature

● radiates like a blackbody with a temperature given 
by the Stefan-Boltzmann law

4 R∗
2
 BT eff

4
≈Lacc

T eff≈  GM ∗ Ṁ

4B R∗
3 

1/4

T eff≈7300 [K]  Ṁ

10−5M ⊙ yr
−1 

1/4
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 R∗
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Outer temperature

● This radiation (of a stellar-like photosphere) is 
transmitted through the opacity gap, absorbed by 
the dust and re-radiated at the dust photosphere

● like a black body with an approximate tempera-
ture of 300 K

● radius 14 AU



Accretion shock

● Accretion velocity

    = supersonic!

● Creates temperature jump on impact
→ hot relaxation zone

● postshock temperatures in excess of 106 K
● UV and X-ray photons (absorbed in opaque, ion-

ized) radiative precursor

v ff= 2G M ∗

R∗

=280[km s−1 ]  M∗

1M ⊙

1 /2

 R∗

5R⊙

−1 /2



Accretion shock
X-ray image of the 
Pleiades taken by 
ROSAT.

The 7 squares 
show the optically 
visible stars.



Accretion shock



Evolution of the protostellar core



First steps: 

isothermal collapse:

 → Hayashi tracks

● Decreasing radius
● Constant temperature

hydrostatic cores: 

● Adiabatic heating up
● Luminosity driven by
  accretion/collapse
● Supported by D­burning

Hertzsprung-Russell diagram



The Pre-Main-Sequence phase

• The main accretion phase is finished. Accretion is 
not dominant anymore, i.e. almost final mass is 
already achieved.

• The envelope is dispersed, so the star becomes 
visible in the optical.

• The central temperature is not yet high enough to 
start hydrogen burning.

Pre-Main-Sequence Stars are slowly contracting 
objects of fixed mass, for which luminosity stems 
from gravitational contraction.



The birthline
• Point in HR diagram where the youngest stars become visible, at 

the transition between protostellar phase and pre-main sequence 
phase.

             
• During the protostellar phase:

– Luminosity and Teff are set by infall dynamics

 

– For a given mass, the radius is determined by internal structure 
(balance of self-gravity and thermal pressure) [stays true during 
PMS phase]



Palla & Stahler (1990)

The birthline is 
model dependent

depends on the R(M) 
Relation at the end of 

protostellar phase

The birthline



Mass-dependence of collapse



Palla & Stahler (1990)

dM/dt=10-5 MO/yr

tKH=tacc

Zero-age m
ain sequence

Sun
Massive stars 
are born on the 
Main Sequence!



The contraction process 

Bérengère Parise



The contraction process



Basic equations 

Stellar structure equations in spherical symmetry:

 dP/dr = -ρ(r) G m(r) / r2        Hydrostatic equilibrium

 dm/dr = 4πr2ρ                     Mass conservation

 P ~ ργ                                                          Equation of state 
                                              (adiabatic for convective 

star; ideal gas: γ=5/3)



Basic equations 

Stellar structure equations in spherical symmetry:

 Energy transport: 

  if radiative: dT/dr|rad = -3κRρ/(64 πσr2T3) L(r)               
● diffusion equation, 
● κR the mean Rosseland opacity (integrated over 

           frequency range)

  if dT/dr|rad  > dT/dr|adiab then 
• Creation of “hot bubbles”
• Induction of convection





Convection

● Turn-over happens extremely fast: < 1a

● Energy transport is done through convection
● Creates relatively uniform temperature
● Stable configuration with T

eff 
~ 3500-4000K

● → Continuation of isothermal collapse 
(that lead to the formation of the 2nd hydrostatic 
core)



Initial conditions

● Size of 2nd hydrostatic core:
● Determined by end of 2nd collapse

● Determined by energy consumed by dissociation 
and ionization

● X
H
=0.7, X

He
=0.28 

● E
ion

(H)=13.6eV, E
ion

(He)=78.98eV, E
diss

(H
2
)=4.48eV



Initial conditions

● Size of 2nd hydrostatic core:
● Determined by energy consumed by dissociation 

and ionization

● Resolve for R
2. Core

:

● Problem: 
● Cores should be resolvable – not seen so far

→ R must be smaller by factor >5
● Explanations:

● Too deeply embedded (?)
● Quick continued collapse → energy problem



● Temperature:
 

● Assume virial equilibrium

● T
eff

=5000-10000K
● In agreement with accretion temperature

 

● Observed: 3500-4000K
 

● Explains only small fraction of radius discrepancy

Internal energy U=
3
2
k T

M


                           

takes half of gravitational energy W=−
GM
R

T= 
3k
GM
R

=850[K]  M
0.05M ⊙

  R
5 AU 

−1

Temperature



Luminosity
● How does the collapse energy reach the surface?

● Radiative transfer:
● Opacity of ionized medium:

● Free-free transitions H+-e-: n=1, s=3.5
Kramer's opacity – relevant in most of the core

● H- ions (electrons from metals): n=1/2, s=-9
relevant in cool outer layers

● Radiative transport:
                 L(r)=(64 πσr2T3 /3κRρ) (- dT/dr)

● Maximum luminosity for radiative transport



Luminosity

● Maximum luminosity for radiative transport

● Constrained by stability against convection:
  |dT/dr|rad  <  |dT/dr|adiab

● Max radiative luminosity:
            Lrad,max = α μ M(r) T3 / (κR ρ)

● Energy that can be radiatively transferred is in the order of 
1L

⊙

● Actual luminosity: >102L
⊙



Luminosity
● Only small fraction of collapse energy can be 

transferred radiatively
● Max radiative luminosity:

            Lrad,max = α μ M(r) T3 / (κR ρ)

● Convection is favored at low masses, low T 
and/or high opacities

● Radiative zone only
in the centre of 
massive PMS's



Temperature
● End of radiative zone defines temperature of con-

vective zone
            T

eff
 ~ M4/5 L1/5 for Kramer opacity

T
eff

 ~ M7/31 L1/102 for H- opacity
● At the lower edge of the convective zone, deter-

mined by H- opacity, 
the temperature is 
very constant, almost 
independent of 
luminosity 



Convective contraction: 
Hayashi tracks

Contraction at almost constant Teff 

• At T< 3500K, the opacity in the photosphere 
(dominated by H-) drops very quickly with 
decreasing temperature. 

• Fphotosphere = Fconv    opacity should be high 
enough  

•  T cannot be lower than the so-called 
                             Hayashi temperature 



Formation of a radiative core
relevant for upper low-mass PMS stars (0.6M

⊙
≤ M* ≤ 2M

⊙
)

When T increases (Tc~M/R), 
opacity decreases (dominated 
by  free-free for higher temper-
ature range)

Lrad,max  ~ T3/κρ
 Lrad,max increases
becomes radiative

onset of radiative 
                  stability

start of 
hydrogen 
burning



detailed models

K­H Timescale:                                      KH  ∝ M­9/5

Radiative energy transfer



Luminosity

● Feed by collapse

● Contraction time determined by Helmholtz-Kelvin 
timescale

● Resolve for L:



Mass­Luminosity Relation:   L ∝ M3.2

Mass­Radius relation:          R ∝ M0.6



Luminosity

● Luminosity­size relation:  L ~ R­5/2

● Use blackbody radiator: 

 → Teff ~ R­9/8

    →   L ~ Teff
20/9

● = Henyey-track



Transition from 
isothermal 
collapse to 
radiative core:

 → Henyey tracks

HR diagram



Radiative contraction: 
Henyey tracks

• for low- to intermediate- mass 
PMS stars (0.6M⊙≤ M* ≤ 8M⊙)

• Radiative stars have a well-
defined mass-luminosity 
relationship: 



Global picture (for low-mass PMS)

• Start with isothermal collapse → Hayashi track
– Luminosity dominated by accretion

• End of main accretion phase
– Luminosity dominated by adiabatic contraction

• Fully convective core 
                        → continuation of Hayashi track
– Temperature limited by Hayashi temperature (H- opacity 

temperature)

• Increase of temperature to allow Lrad,max > L
– Radiative transfer of luminosity

– Reduced stellar contraction

→ Henyey track up to ignition



Mass-dependence of evolutionary tracks

• Very low-mass PMS stars (M* ≤ 0.6M⊙):
 The star is fully convective throughout the 

contraction process

• Low-mass PMS stars (0.6M⊙≤ M* ≤ 2M⊙):
  Star fully convective at the beginning of 

contraction
  Appearance of a radiative core
  Radiative contraction at the end

• Intermediate-mass PMS stars (2M⊙≤M*≤8M⊙ ):
  Radiative contraction

• High-mass PMS stars (8M⊙≤ M*):
  Do not exist! 

<Lrad,max> and L* 
for birthline conditions



Mass-dependence of evolutionary tracks



Observational use of the HR 
diagrams

Derive the age and mass of the PMS stars from their position on the HR 
diagrams. Especially powerful for star-forming clusters, for which 
relative distance uncertainties are lower.

Goals and (still) open questions:   
              - look into evolution of disks, in the planet formation era 
                              (later T Tauri phase).
                Time decay of disk accretion? 
              - derive history of star formation
                 



Example of Taurus-Auriga

Taurus-Auriga is a low-extinction star-
forming region.

How to determine L and Teff from obser-
vations?
-Teff: spectral type can be determined by 
ratio of stength of photospheric absorp-
tion lines
-L: observed fluxes have to be corrected 
for interstellar extinction, and converted 
into absolute fluxes after the distance 
has been determined

Medium age ~ 106 yrs
Some WTTS closer to the main se-
quence (=older).



Uncertainties

• In the models:
 energy transport at the frontier between radiative and convective 

zones (treatment of convection in the radiation dominated zones 
by the “mixing-length” parametric method)

 opacities: difficult to compute from thousands of spectral lines

• On the observational side:
Correction for interstellar and circumstellar absorption
Distance determination
Contribution of accretion luminosity
 Factors of 2 to 3 on ages and masses…



Conclusions
• PMS evolution depends on the mass:

very low mass stars remain convective during the whole 
evolution

low-mass stars start convective and then develop a radiative 
core

intermediate-mass stars are radiative
high-mass stars don’t have a PMS evolution (they are born 

adults!)

•  HR diagram useful to study stars and PMS
 convective contraction as vertical tracks: Hayashi tracks
 radiative contraction as horizontal tracks: Henyey tracks
 observationally positioning PMS stars in the HR diagram allow 

to determine age and mass (using the modelled tracks)… but 
with uncertainties of a factor of a few.
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