Star formation

Star Formation in the Early Universe: Population III stars

Redshift, Age of the Universe and Lookback time

Dark ages

First stars here!

Epoch of re-ionization: benchmark for cosmic structure formation

S.G. Djorgovski et al. & Digital Media Center, Caltech

The global star formation history

Star Formation Rate versus redshift z:

- •The SFR was much higher at $z \ge 2$.
- •The early universe SF was deeper embedded
 - Larger amount of interstellar gas?

Galaxy Formation

First structures: Dark Matter Halos

- First gravitationally bound objects of the Universe
- First ones with M ~ 10⁴ M_o form at z=20-30 (age: 200-300 Ma) out of primordial density fluctuations
- Formation of proto-galaxies (baryonic matter) in Dark Matter Halos not straightforward
 - Thermal pressure forces resist collapse (unlike for dark matter)
 - Need to lower pressure by *cooling* the gas
 - But HI cooling very inefficient

Galaxy Formation

Simulation of the density evolution of a cube with 500Mpc/h_o size

 h_0 – Hubble constant in units of 100(km/s)/Mpc 10¹⁰ particles starting from z=127

 step: formation of large-scale structure in the dark matter distribution
step: Structure formation in the gaseous component of the universe. Formed stellar material is shown in yellow.

Millenium simulation: Springel et al. (MPA)

Stellar content of our Galaxy: Populations and Metallicity

- Population I
 - Young stars with high metallicity (Z = 1)
 - Constrained to Galactic plane
- Population II
 - Older stars with lower metallicity (*Z*=0.01-0.1)
 - Spherically distributed in halo, bulge and globular clusters
- Population III
 - First Generation stars with Z=0

Why are the first stars special?

- Gas is metal free ($Z = 10^{-11} 10^{-12}$) from Big Bang nucleo-synthesis
 - Compare lowest metallicity pop II stars: Z=10⁻⁴ 10⁻³
- During collapse of pre-stellar cores, the gas needs to be cooled to low temperatures
 - Molecules and dust are needed for efficient cooling
 - Simplest molecule: H₂
 - Cools down to few 100 K
 - In present Universe formed on dust surfaces
 - Heavier molecules/dust
 - Cool down to 10 K

Star formation needs heavy elements Heavy elements are formed in stars

Cooling

- Removing thermal energy by
 - Transferring it to the internal energy of a particle (e.g. electronic excitation of atom, by collision)
 - Removing it from the gas in form of a photon emitted in a radiative transition
- Cooling capability depends on internal structure of cooling agent
 - Cooling by atoms works for T > 10,000 K (electronic transition)
 - Cooling by molecules works down to lower temperatures (vibrational/rotational energy levels)

Problem: how to get molecules

- H₂ formation on dust
 - Dust acts as a catalyst
- Heavy elements needed for formation of CO, H₂O etc.

But: in early universe no heavy elements, no dust

• Alternative: gas-phase reactions:

 $H + e^{-} \rightarrow H^{-} + \gamma$ $H^{-} + H \rightarrow H_{2} + e^{-}$

Problem: how to get molecules

• Alternative: gas-phase reactions:

 $H + e^{-} \rightarrow H^{-} + \gamma$ $H^{-} + H \rightarrow H_{2} + e^{-}$

and (less important) $H + H^{+} \rightarrow H_{2}^{+} + \gamma$ $H_{2}^{+} + H \rightarrow H_{2} + H^{+}$ at very high densities (> 10⁸ cm⁻³) $H + H + H \rightarrow H_{2} + H$

- Requires ionization
- nization $H + H + H_2 \rightarrow H_2 + H_2$
 - residual from epoch of (re)combination
 - Vanishes quickly for very dense gas
 - Finite window of opportunity for H₂ formation
- Role of HD in cooling unclear
 - HD has electric dipole moment
 - Low abundance (10⁻⁵ relative to H₂)

Consequence: Jeans mass

 \rightarrow large cloud masses required + population III stars very massive

How massive were the first stars?

- Fragmentation
 - Jeans mass gets lower for higher density
 - Fragments can form
 - Question: where does it stop?
 - No ambipolar diffusion limit for first stars
- Jeans criterion necessary, but not sufficient for fragmentation:
 - Clouds *can* fragment if their mass exceeds the Jeans mass, but *don't have to*
- New Simulations show that final fragments have a few 100 M_a

Models of First Star Formation

- Formation should be easy to calculate
 - No heavy elements
 - No magnetic field
 - No disturbances (spiral arm waves, outflows, supernova explosions)
 - Just H atoms and gravity
- Still a lot of physics involved (heating, cooling, rotation, turbulence)
 - Very few observational constraints
 - Difficult to decide what is important and what is not
 - Numerical resolution problems
 - Process spans more than 7orders of magnitude in space and 20 in density

Numerical Simulation

Formation of primordial protostar at z=19:

top left: central pc contains 300 $\rm M_{\odot}$ gravitationally unstable gas cooling by $\rm H_{2}$

bottom left (scale of solar system): central patch contains a 0.01 M_{\odot} , dense (3 10^{15} cm^{-3}) seed core that grows into a 100 M_{\odot} star by accretion

Yoshida et al. (2006)

Observational constraints

- Observations favor high masses for first stars too
 - Reionization requires massive stars with many UV photons
 - Even highly redshifted galaxies already have a lot of dust
 - Heavy element production must have been fast
 - No low-mass metal-free stars known today

Direct observations

- Low-mass Pop III stars, if they exist
 - Low Mass Stars with very low iron
 - Single Pop III star too faint to observe
 - Pop III in highly redshifted galaxies, in Ly α , He, cooling gas in H₂ and HD possible
- Pop III SN
 - γ ray bursts by the SWIFT satellite rare
 - Neutrinos from Pop III SN questionable
 - Direct observations by JWST only upper energy range, rare
 - Gravitational waves by collapse
- Black Hole leftovers hard to detect, may have merged into supermassive black holes in galactic nuclei

Summary/Outlook

Can we model the formation of first stars at the right time?

Yes, we can!

- Formation around z=20-30
- M > 100 M_.
- Open questions remain
 - How many stars per core?
 - Feedback?
- Observationally still elusive