VETT Summer School = Warn them about the phal/IR bies 1) Placomenology -> Gubt 2 mapes SN-> 10th cog -> 1W= 10° eg/s 6 -7 1 yr = 7.107 S E · Iccretion: E=mc² $= 1 L = E = mc^2 M$ Convestor => M[-45]=6. Las. Mo.1 * Masi: Eddington: Fap = Fip $\overline{F_G} = \frac{GM_m}{r^2}, \overline{F_{ep}} = \frac{S}{C} f = \frac{SL}{4\pi cr^2}$ = GHim 7 OL VZ 7 ATTCO2 251 mme 5= 57 = 6.6.00 m2 1n = Mp = 1.1021kg M7, 5FL Artacimp Qr M = 8.00° Mg. (104 Eg/s

· gravitational radius = vzc $\frac{GH_{GK}}{\Gamma F} = \frac{160^2}{\Gamma} = 7 R_G = \frac{GH}{C^2}$ $(NB: SSR = 2R_G)$ (-> related enormy E=- [=... = mc2 · empsilon: allume R~ 1000Rg $L = 5_{SB} \cdot 2TR^2 \cdot 74$ =) T = 14. coust. Ra = 1/4. M/2 (7/24) 20 53 /14 => T(1000 Ra) ~ 3.10°K i.e. peak@100mm - ophest -> Mate that this is efformely simplified ! SED (1) AGN mightahlan · variety of emission characteristics · specta

(i) Justy tom · dust local Thermal equilibrium $in: Lin=Q_{12bs}: Ta^2 \cdot \frac{1}{4\pi} dz \approx \frac{1}{4\pi} \frac{\partial^2}{\partial z}$ ~1 out: Lem = 4T 22. Qabo V. TB. (T) SLINdo = LAGN d' SLand = 4172 (Qabs V Br(T) dv) = 4172 Qabs p 9814 mole that SBULT/du = 5T4 <u>SQake Bu(T)dv</u> = Qapi, P <u>(BJCT)dv</u> (Planck wech abs. efficiency) · time radius. Start with PB: $L = \sigma_{SB} \cdot \Delta \cdot T^{4} = \sigma_{SB} \cdot 2\pi \Gamma^{2} \cdot T^{4} \times \mathcal{E}_{S}$ XES $=) = \frac{1/2}{12} \cdot \frac{-2}{12} \cdot \frac{1}{12} \cdot \frac{1/2}{12} \cdot \frac$

* M 241 -half of AGN & coverel => A = 27 R 2 = ME = MHAT. NH 2 2H RT. MH. NH ~ 5.104 MO - R_1(pc) - N#24 -> but: Ethes with L => M6 = 10 M0 · supply : 10° ofto media 6Holyr = truph = 10° years Cosmological context ~ 8 min · MBH reletiers , train weeks · lum finetten , Video

Usells? -> Situfte PL model $\overline{F_{v}}(r) = \varepsilon_{s} \left(\frac{r}{r_{u}}\right)^{\alpha} \cdot T \overline{F_{v}}(T c_{i})$ and T(1) = Tim (Tim) B list for hiers (iii) clumpy The What Kill of ten D Servery J (VI) Suspities (2) are more thing · Votical support and deruptuess : * presequivite: scale height h ~ 5 geour. Hick => 5= VK ~ 100 Km/s $V_{K} = \left(\frac{G'H}{C}\right)^{1/2}$ * hydrostatie aquiliphum. $pV = \frac{1}{2}g\sigma^2 V = m\sigma^2 = KT$ K= 10⁻²³ ym², 5= 10^{m/s}, m=mp=10⁻²⁷Kg =1 T $\approx 10^{\circ}$ K $= 10^{\circ}$ K

· Solution : * Spherical supply * dumps -> equivalent to dyn. pressure the stellas dusts

ACTIVE GALACTIC NUCLEI

I. AN INTRODUCTION

Sebastian F. Hoenig

Lecturer & Marie Curie Fellow

Outline and learning goals

• I. Phenomenology

What are AGN? How are they identified?

• II. Energy output

Where is the energy coming from? In which wavebands does the energy get radiated out?

III. The AGN zoo and unification

How can we make sense of the different AGN types?

IV. The dusty torus

Why is it interesting? Where is the radiation coming from? What is its structure?

• V. AGN in the cosmological context

Why should the universe (and funding agencies) care about black holes?

I. Phenomenology

I. Phenomenology

HST/NASA/ESA — Bill Keel

I. Phenomenology

HST/NASA/ESA — Bill Keel

- Iuminosities of 10⁴² 10⁴⁸ erg/s (about 10⁸ 10¹⁴ L_{sun})
- How much energy is this over a year?
- How does this compare to a SN?

- Iuminosities of 10⁴² 10⁴⁸ erg/s (about 10⁸ 10¹⁴ L_{sun})
- How much energy is this over a year?
- How does this compare to a SN?
- Idea: convert mass into energy

- Iuminosities of 10⁴² 10⁴⁸ erg/s (about 10⁸ 10¹⁴ L_{sun})
- How much energy is this over a year?
- How does this compare to a SN?
- Idea: convert mass into energy

$$\frac{\dot{M}}{\mathrm{M}_{\odot}/\mathrm{yr}} \approx 6 \times \frac{L}{10^{45} \mathrm{erg/s}} \cdot \frac{0.1}{\eta}$$

- Efficiencies:
 - nuclear fission 10⁻⁴
 - nuclear fusion 10⁻³
 - accretion 0.1

→ accretion onto massive compact object

- How massive?
- consider balance of **radiation pressure and gravity** on ionised gas

- How massive?
- consider balance of radiation pressure and gravity on ionised gas

$$M \ge 8 \times 10^6 \,\mathrm{M}_\odot \cdot \frac{L}{10^{45} \,\mathrm{erg/s}}$$

• What spectrum?

 $T \approx 10^4 \,\mathrm{K}$

→ optical + UV emission from accretion onto a supermassive black hole

HST/NASA/ESA

Carilli & Barthel

Bill Keel

Bill Keel

- A Zoo of AGN classes
- Unification scheme putting everything in one picture

- A Zoo of AGN classes
- Unification scheme putting everything in one picture

• Let's simplify a bit

accretion disk

(optical and ultraviolet radiation)

dusty torus (infrared radiation)

- How is the **IR emission** coming together?
- Dust absorbs in the optical/UV

- How is the **IR emission** coming together?
- Local thermal equilibrium = "what goes in has to get out again"

- How is the **IR emission** coming together?
- Local thermal equilibrium = "what goes in has to get out again"

$$\frac{L}{4\pi r^2} = 4\pi Q^*_{\rm abs;P}(T)\sigma_{\rm SB}T^4$$

- How is the **IR emission** coming together?
- Local thermal equilibrium = "what goes in has to get out again"

$$\frac{L}{4\pi r^2} = 4\pi Q^*_{\rm abs;P}(T)\sigma_{\rm SB}T^4$$

• inner radius: take $T = T_{sub} = 1500$ K and (modified) Stefan-Boltzmann law (= rewrite the equation above)

- How is the **IR emission** coming together?
- Local thermal equilibrium = "what goes in has to get out again"

$$\frac{L}{4\pi r^2} = 4\pi Q^*_{\rm abs;P}(T)\sigma_{\rm SB}T^4$$

• inner radius: take $T = T_{sub} = 1500$ K and (modified) Stefan-Boltzmann law (= rewrite the equation above)

$$r_{\rm sub} \approx 0.2 \,\mathrm{pc} \times \left(\frac{L}{10^{45} \,\mathrm{erg/s}}\right)^{1/2} \cdot \left(\frac{T_{\rm sub}}{1500 \,\mathrm{K}}\right)^{-2} \cdot \left(\frac{\epsilon_s}{1.0}\right)^{-1/2}$$

→ the torus is parsec-scaled (=mas in nearby AGN)

- Where does it end? How much mass is in there?
- From X-rays and optical absorption: H column density ~10²⁴ particles/cm²

- Where does it end? How much mass is in there?
- From X-rays and optical absorption: H column density ~10²⁴ particles/cm²

$$M_{\rm torus} \approx 5 \cdot 10^4 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{\mathrm{pc}}\right)^2 \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

$$M_{\rm torus} \approx 10^5 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{10 \,r_{\rm sub}}\right)^2 \cdot \left(\frac{L}{10^{45} \,\mathrm{erg/s}}\right) \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

• **mass supply** to AGN:

- Where does it end? How much **mass** is in there?
- From X-rays and optical absorption: H column density ~10²⁴ particles/cm²

$$M_{\rm torus} \approx 5 \cdot 10^4 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{\mathrm{pc}}\right)^2 \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

$$M_{\rm torus} \approx 10^5 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{10 \,r_{\rm sub}}\right)^2 \cdot \left(\frac{L}{10^{45} \,\mathrm{erg/s}}\right) \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

• **mass supply** to AGN:

$$t_{\text{supply}} \approx 2 \cdot 10^4 \text{ years } \times \left(\frac{R_{\text{torus}}}{10 \, r_{\text{sub}}}\right)^2 \cdot \left(\frac{N_{\text{H}}}{10^{24} \, \text{cm}^{-2}}\right)$$

- Where does it end? How much mass is in there?
- From X-rays and optical absorption: H column density ~10²⁴ particles/cm²

$$M_{\rm torus} \approx 5 \cdot 10^4 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{\mathrm{pc}}\right)^2 \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

$$M_{\rm torus} \approx 10^5 \,\mathrm{M}_{\odot} \times \left(\frac{R_{\rm torus}}{10 \,r_{\rm sub}}\right)^2 \cdot \left(\frac{L}{10^{45} \,\mathrm{erg/s}}\right) \cdot \left(\frac{N_{\rm H}}{10^{24} \,\mathrm{cm}^{-2}}\right)$$

• **mass supply** to AGN:

$$t_{\text{supply}} \approx 2 \cdot 10^4 \text{ years } \times \left(\frac{R_{\text{torus}}}{10 \, r_{\text{sub}}}\right)^2 \cdot \left(\frac{N_{\text{H}}}{10^{24} \, \text{cm}^{-2}}\right)$$

• AGN phase ~ 107-8 years

→ torus must be constantly refilled!!!

supermassive black hole < 1% of mass of galactic bulges

→ AGN and galaxies coevolve

• supply and suppression via star formation

→ very luminous AGN are in starburst galaxies

• luminosities evolve over time

→ highest masses first!?!?

