



# Wavelets to characterize filament spines and shocks

Volker Ossenkopf-Okada

#### **KOSMA**

(Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln



Volker Ossenkopf-Okada, KOSMA

### The starting question

### Is there a universal filament width of ~ 0.1pc? (e.g. André et al. 2010, Arzoumanian et al. 2019, ...)

- Example: Large-scale Orion-A mapping in C<sup>18</sup>O (Kong et al. 2018)
  - DisPerSe + FilChap (Suri et al. 2019)
     → 0.1pc
  - biased by "ruler parameters" (Panopoulou+ 2016)

 Power spectrum/ ∆-variance show no prominent scale

#### → need for an unbiased filament measure





5/13/21

Volker Ossenkopf-Okada, KOSMA

### Ossenkopf-Okada & Stepanov (2018)

### Use anisotropic wavelets for filaments

- Convolution of the maps with a complex anisotropic wavelet: (Similar approach: Robitaille et al. 2014)
  - Characterizes spectrum of scales of isotropic and anisotropic perturbations
  - Measures direction of anisotropy
  - Allows for stability analysis against spherical and cylindrical collapse





But:

wavelets only show variances
 perturbations do not distinguish
 between peaks and valleys

Beirut

### Solution

Switch to real wavelets, consider amplitudes, not variances

- Look for peaks in filtered maps
  - Cosine-term measures filaments
  - Sine-term measures gradients, e.g. shocks



### Orion C<sup>18</sup>O map (Northern subsection)



35

TΔv [km/s]

10

5

0

-5

No obvious dominance of 0.1pc filaments

Volker Ossenkopf-Okada, KOSMA

35

05<sup>h</sup> 36<sup>m</sup>

00

-05<sup>0</sup> 10'

ISM 2021: Structure, characteristic scales, and star formation

34

Beirut

### Filament width

### Expoit sin-wavelets to detect wings

• Peaks in sine-filtered map correspond to wings



Volker Ossenkopf-Okada, KOSMA

ISM 2021: Structure, characteristic scales, and star formation

Beirut

5/13/21

#### Test case

#### Superposition of Gaussian filaments

• Measured wing distance as a funtion of the filter width



Reliable width measurement + good sensitivity at 3..4 times the resolution limit

Volker Ossenkopf-Okada, KOSMA

## Orion C<sup>18</sup>O map



- Peak at 0.11pc confirmed, but two other peaks more dominant:
  - 0.03pc from known artifact in the data, 0.6pc as width of the whole integral-shape filament

Volker Ossenkopf-Okada, KOSMA

### Hydrodynamic simulations

World's largest supersonic turbulence simulation (10048<sup>3</sup> pixels, Federrath 2020)

• Prediction of a characteristic filament width around the sonic scale



- Confirmed, but very broad distribution
  - Scale not really pronounced



5/13/21

Beirut

### Search for shocks

Gradient search by sin-wavelet to look for velocity steps

Apply to velocity map:



Shocks from sin-filtered velocity centroid map

Are filaments produced by shocks?

Compare to filament spines from cos-filtered intensity map

Volker Ossenkopf-Okada, KOSMA

5/13/21

### Are filaments produced by shocks?

### Measure distance between shocks and filaments

**HD** simulations



**Orion data** 

- Filaments in turbulence simulations produced by supersonic shocks
- Filaments in Orion produced by different mechanism

Volker Ossenkopf-Okada, KOSMA

ISM 2021: Structure, characteristic scales, and star formation

Beirut

## Appendices



### Summary

Anisotropic wavelets are an unbiased approach to characterize filaments

- Compare gradients and peaks
  - Measure filament widths
    - Some prominent structure at 0.1pc width detected, but not globally dominant
  - Compare shocks and column density filaments
    - Filaments in supersonic turbulence created by shocks
    - Does not apply to filaments in Orion

5/13/21

#### Test case

#### Superposition of Gaussian filaments

• Measured wing distance as a funtion of the filter width



Reliable width measurement + good sensitivity at 3..4 times the resolution limit

Volker Ossenkopf-Okada, KOSMA

5/13/21

## Orion C<sup>18</sup>O map

Statistics over the whole map



- Peak at 0.11pc confirmed, but two other peaks more dominant:
  - 0.03pc from known artifact in the data, 0.6pc as width of the whole integral-shape filament

Volker Ossenkopf-Okada, KOSMA

### HD simulations

World's largest supersonic turbbulence simulation (10048<sup>3</sup> pixels, Federrath 2020)

• Prediction of a characteristic filament width around the sonic scale



- Confirmed, but very broad distribution
  - Scale not really pronounced

 $\tau [L_{domain}]$ 

0.01

y [L<sub>domain</sub>]

0.010

0.001

0.10

5/13/21

0.8 0.6 2 0.4 0.2 0.0 0.6 0.0 0.2 0.4 0.8 × [L<sub>domain</sub>]

### Anisotropic wavelet spectra

## C<sup>18</sup>O in Orion A:

- No prominent width around 0.1pc
- Peak at 0.009pc given by resolution limit
- isotropic peak at FWHM=
   0.03pc artifact in C<sup>18</sup>O data





- <sup>13</sup>CO data even show a perfectly flat spectrum
- No characteristic filament width at all

5/13/21

### Location of filaments

Traced by maps of wavelet coefficients and degree of anisotropy



ISM 2021: Structure, characteristic scales, and star formation

### Anisotropic wavelet analysis



### Anisotropic wavelet analysis



### Application to High-res simulations

#### Combine:

Measure velocity variation perpendicular and parallel to filament directions identified in column density (scale dependent):

 "Magical" appearance of filaments in velocity structure knowledge





Volker Ossenkopf-Okada, KOSMA

### Application to High-res simulations

#### **Combination:**

- "Magical" appearance of filaments in velocity structure knowledge
  - Filaments are shocks
  - Velocity filaments well correlated with density filaments without using the density information (only angle)
- Perpendicular gradient twice as high as parallel gradient
  - Most filaments must stem from compressive motions

Spectrum of velocity dispersion parallel and perpendicular to the density filament direction



### Application to High-res simulations

Wavelet analysis:

- Small kink at sonic scale also seen in column density structure
- Significant local degree of anisotropy from filaments at all scales
  - Small increase at sonic scale





#### Column density, degrees of anisotropy, and anisotropic wavelet spectrum

23

5/13/21