Information from fine structure lines: How to excite C⁺, O and N⁺?

Volker Ossenkopf,

Kölner Observatorium für SubMm Astronomie, KOSMA I. Physikalisches Institut, Universität zu Köln

Table of contents

• Line frequencies

- Basic atomic physics: The hydrogen atom
- Fine structure
- Hyperfine structure
- Metals

Line intensities

- Excitation: n-level, 2-level, 3-level problems
- LTE
- Collision partners
- Optically thin emission
- Radiative trapping
- Abundances

Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom

- Simple problem: p + e⁻
 - Pure Coulomb problem:
 - With reduced mass

$$m = \frac{1}{2m_r} - \frac{1}{4\pi\epsilon_0} |\vec{r}|$$
$$m_r = \frac{m_e m_p}{m_e + m_p}$$

 \vec{p}^2

2m

Ζ = charge for more general case of multiple protons

- Solution has eigenvalues

$$E = -R\frac{(Z^2)}{n^2}$$

= main quantum nnumber

• With Rydberg constant

$$R = \frac{1}{2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{m_r}{\hbar^2} \approx 13.605 \text{eV}$$

Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom

- Orbits: Solution of the full spatial problem
 - Provides in total 3 quantum numbers:
 n, *I*, *m*,
 - *I* = orbital quantum number *I*=0...*n*-1
 - m_1 = projection of I on z-axis: m_1 =-I...I
 - Energy levels *n* are degenerate with respect to *I* and *m*_{*I*}
 - Corresponding eigenvector: |*n*, *I*, *m*, >

1=1

1=0

1=2

Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom

Possible transitions

- from level *n* to *n*'

Repetition of basic atomic physics:

The H-atom

- Possible transitions
 - from level *n* to *n*'
- Gives series for different *n*'
 - *n'*=1 = Lyman
 - *n*'=2 Balmer
 - n'=3 Paschen
 - *n'*=4 Bracket
 - *n'*=5 Pfund

Fig. 13. Grotrian diagrams for H, He I, He II, C II, C III, C IV, O I, O II, O III, N II, Mg I, Mg II, Ca I, Ca II, Fe I, and Fe II. (After Moore and MERRILL, 1968)

Basics of spectroscopy: Fine structure

The electron spin

- Adds spin system $|s,m_s|$ with s=1/2
- Provides additional coupling term between orbital momentum and spin

$$\hat{H}_{fs} = \frac{e}{2m_e^2 c^2} \left(-\frac{1}{r} \frac{\partial}{\partial r} \frac{(Z)e^2}{4\pi\epsilon_0 |\vec{r}|} \right) \hat{\vec{s}} \, \vec{l}$$

- Solution has eigenvalues

$$E_{FS} = \alpha^2 R \frac{(Z^4)}{n^3} \frac{j(j+1) - l(l+1) - s(s+1)}{l(l+1)(2l+1)}$$

• $j = \text{total angular momentum from } \vec{j} = \vec{l} + \vec{s} \rightarrow j = l - s \dots l + s$ • $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$ Sommerfeld fine structure constant

The electron spin

- Fine structure energies are scaled by α^2 relative to main level energies
- H-atom
 - No split for n=1, l=0 because j=1/2 independent of m_s
 - First split for n=2, l=1 $\rightarrow j=1/2$, 3/2

$$\Delta E_{fs} = 4.53 \, 10^{-5} \text{eV}$$
$$= 10.9 \text{GHz}$$

- Requires *n*=2 excitation: 10.2eV = 120000K
- Not directly observable due to other splits

$$I = 1/2$$

$$\underline{n = 2, \ ^{2}P} \quad if d = 3/2 \qquad \frac{F = 2}{F = 1} \qquad \downarrow \qquad if d = 3/2 \qquad \frac{F = 1}{F = 1} \qquad \downarrow \qquad if d = 3/2 \qquad \frac{F = 1}{F = 0} \qquad \downarrow \qquad if d = 3/2 \qquad \frac{F = 1}{F = 0} \qquad \downarrow \qquad if d = 3/2 \qquad \frac{F = 1}{F = 0} \qquad \downarrow \qquad if d = 3/2 \qquad if d = 3/2 \qquad \downarrow \qquad if d = 3/2 \qquad if d = 3$$

Spectroscopy notation

$$^{2s+1}l_j^{(p)}$$

- I encrypted in letters
 - $-0 = s, 1 = p, 2 = d, 3 = f, 4 = g, 5 = h, \dots$
- p = parity
 - Blank for parity = even, o for parity = odd
 - Characterizes whether wave function changes sign under reflection of all electron positions through the origin.
- Examples:
 - ${}^{2}s_{1/2}$ = ground state
 - ${}^{2}p_{1/2}$, ${}^{2}p_{3/2}$ = first excited state (Balmer level)

The nuclear spin

- Adds nuclear spin system $|i,m_i\rangle$ with i=1/2 for every nucleon
- Treatment equivalent to fine-structure splitting
- New quantum number $\vec{f} = \vec{j} + \vec{i}$
 - f = total angular momentum from $\rightarrow f=j-i...j+i$
- Eigenvalues of hyperfine coupling

$$E_{HF} = g_N \frac{m_e}{m_p} \alpha^2 R \frac{(Z^4)}{n^3} \frac{f(f+1) - j(j+1) - i(i+1)}{j(j+1)(2j+1)}$$

- Hyperfine splitting typically lower than fine-structure splitting by factor $\frac{m_e}{-}$
 - m_p

- g_N Gaunt factor of the core
- Spectroscopic notation: explicite writing of *f*

Hyperfine structure

- H-atom
 - for *n*=1 (ground state, *I*=0): ²s_{1/2}: *f*=1-0
 - Can be observed for "cold hydrogen"

- famous 21cm line = 1.42GHz
- allows for mapping of the Milky Way
- \bullet magnetic dipole transition \rightarrow forbidden
 - A= 2.9 10⁻¹⁵ s⁻¹
 - *t*=10⁷ a

Hyperfine structure

- H-atom
 - for *n*=1 (ground state, *I*=0): ²s_{1/2}: *f*=1-0
 - Can be observed for "cold hydrogen"
- allows for mapping of neutral interstellar gas

1951 Lyman Spitzer: Mapping of the Milky Way

Basics of spectroscopy: Atoms

Multiple electrons

- Arrangement in subshells with increasing energy level
 - = increasing main and orbital quantum numbers n, l
 - Example: $C^+ = 1s^2 2s^2 2p^1$
 - 3 subshells occupied
 - Closed shells: Sum of orbital momenta and spins always = 0
 - No contribution to radiative interaction
 - Can be ignored
 - 3rd subshell is open:
 - can take 6 electrons: m_l = -1,0,1, m_s = - $\frac{1}{2}$, $\frac{1}{2}$
 - dominates radiative interaction as
 - Only electrons in open shell need to be considered

Basics of spectroscopy: Atoms

Multiple electrons

- Coupling between different electrons
 - Provides additional term to Hamiltonian
 - No analytic solution
 - Approximation through Russell-Sounders coupling
 - Inter-electron coupling stronger than spin-orbit coupling
 - Individual orbital momentums and spins add up $\sum \vec{l} = \vec{L} ~{
 m and}~ \sum \vec{s} = \vec{S}$
 - Remember: approximation only $\rightarrow L, S, J$ are no "good" quantum numbers

 $\vec{J} = \vec{L} + \vec{S}$

- Different approximation for heavy elements
- Spectroscopic notation:
 - capital letters for sum over multiple electrons in open shell
 - explicite writing of *F* for sum of total angular momentum including nuclear spin

Astrophysically relevant subterms

- Remember H-atom: $2s+1l_{j}^{(p)}$
- Equivalently for multi-electron atoms

Ground	Terms	
configuration	(in order of increasing energy)	Examples
ns^1	$^{2}S_{1/2}$	HI, He II, C IV, N V, O VI
ns^2	$^{1}S_{0}$	He I, C III, N IV, O V
np^1	$^{2}P_{1/2,3/2}^{o}$	CII, NIII, OIV
np^2	${}^{3}\mathrm{P}_{0,1,2}^{1,2}, {}^{1}\mathrm{D}_{2}, {}^{1}\mathrm{S}_{0}$	CI, NII, OIII, Ne V, SIII
np^3	${}^{4}\mathrm{S}^{\mathrm{o}}_{3/2}$, ${}^{2}\mathrm{D}^{\mathrm{o}}_{3/2,5/2}$, ${}^{2}\mathrm{P}^{\mathrm{o}}_{1/2,3/2}$	N I, O II, Ne IV, S II, Ar IV
np^4	${}^{3}\mathrm{P}_{2,1,0}$, ${}^{1}\mathrm{D}_{2}$, ${}^{1}\mathrm{S}_{0}$	OI, Ne III, Mg V, Ar III
np^5	${}^{2}P_{3/2,1/2}^{o}$	Ne II, Na III, Mg IV, Ar IV
np^{6}	${}^{1}S_{0}$	Ne I, Na II, Mg III, Ar III

 $2S+1L_{T}^{(P)}$

Russel-Sounders coupling

- Solution
 - "Hund rules": 1) higher S → lower energies
 2) higher L → lower energies
 3) lower J and shell ≤ half-full → lower energies shell > half-full → higher energies
 - Example: $C^+ = 1s^2 2s^2 2p^1$

- 2p electron has S =
$$\frac{1}{2}$$
, L = 1
→ gives J = $\frac{1}{2}$ (m_J = - $\frac{1}{2}$, $\frac{1}{2}$)
or J = $\frac{3}{2}$ (m_J = - $\frac{3}{2}$, - $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$) = 2-level system

- Only 3rd Hund rule applies:
- $\Delta E = 7.86 \text{meV} \\ = 1900.536 \text{GHz}$
 - $= 157.7 \mu m$
- Equivalent for N⁺⁺: Δ E=57µm

 $^{2}P_{3/2} g = 4$

 ${}^{2}P_{1/2} \ g = 2$

Hyperfine structure

Superimposed if nuclear spin does not sum up to 0

Atom or molecule		Spin	Transition	Frequency (Hz)	$A_{mn}(\sec^{-1})$	
НІ	neutral hydrogen	1 2	${}^{2}S_{1/2}, F = 0 - 1$	1.420405751.786 × 10 ⁹ ± 0.01	2.85 × 10 ⁻¹⁵	
Ð	deuterium	1	${}^{2}S_{1/2}, F = \frac{1}{2} - \frac{3}{2}$	$3.27384349 \times 10^8 \pm 5$	4.65×10^{-17}	
Hell	singly ionized helium	<u>1</u> 2	${}^{2}S_{1/2}, F = 1 - 0$	$8.66566 \times 10^9 \pm 1.8 \times 10^5$	6.50×10^{-13}	
NVII	ionized nitrogen	1	${}^{2}S_{1/2}, F = \frac{1}{2} - \frac{3}{2}$	5.306×10^{7}	1.49 × 10 ⁻¹⁹	
NI	neutral nitrogen	1	${}^{4}S_{3/2}, F = \frac{3}{2} - \frac{5}{2}$ $F = \frac{1}{2} - \frac{3}{2}$	2.612×10^{7} 1.567 × 10 ⁷	1.78×10^{-20} 3.84×10^{-21}	
H ₂ ⁺	ionized molecular hydrogen	1	$F_{2}, F = \frac{3}{2}, \frac{5}{2} - \frac{1}{2}, \frac{3}{2}$ $F_{2}, F = \frac{3}{2}, \frac{3}{2} - \frac{1}{2}, \frac{3}{2}$	$1.40430 \times 10^9 \pm 10^7$ $1.41224 \times 10^9 \pm 10^7$	2.75×10^{-15} 2.80×10^{-15}	
Na I	neutral sodium	$\frac{3}{2}$	${}^{2}S_{3/2}, F = 1 - 2$	1.77161 × 10 ⁹	5.56 × 10 ⁻¹⁵	

Table 17. A table of hyperfine transitions at radio frequencies¹

¹ From Townes (1957), FIELD, SOMERVILLE, and DRESSLER (1966), and KERR (1968).

Hyperfine structure

- Example: ¹³C⁺
 - $I = \frac{1}{2}$ combines with $J = \frac{1}{2}$ to F=0 ($m_F=0$) or F=1 ($m_F=-1$, 0, 1)

with
$$J = 3/2$$
 to $F=1$ ($m_F=-1$, 0, 1) or $F=2$ ($m_F=-2,-1, 0, 1, 2$)

- C⁺ levels split up

$${}^{2}P_{3/2} F = 2 g = 5$$

 ${}^{2}P_{3/2} F = 1 g = 3$

$${}^{2}P_{1/2} F = 1 g = 3$$

 ${}^{2}P_{1/2} F = 0 g = 1$

- 3 possible transitions, $F = 2 \rightarrow 0$ is forbidden

Basics of spectroscopy: Multiple electrons in one subshell

Combination of states

- Example: $N^+ = 1s^2 2s^2 2p^2$
 - Combination of two electrons with $s = \frac{1}{2}$ ($m_s = -\frac{1}{2}$, $\frac{1}{2}$), l = 1 ($m_l = -1, 0, 1$) \rightarrow gives 6x6=36 possible combinations
 - Pauli exclusion principle:
 - 2 electrons never in same state
 - Electrons indistiguishable, i.e. wave functions antisymmetric with respect of exchange of 2 electrons
 - 15 allowed combinations remaining

•
$$I_1 \uparrow \uparrow I_2$$
, $s_1 \uparrow \downarrow s_2$: L=2, S=0 \rightarrow J=2 (m_J =-2,-1,0,1,2) \rightarrow ¹ D_2 , g=5

- $I_1 \uparrow \downarrow I_2$, $s_1 \uparrow \downarrow s_2$: L=0, S=0 \rightarrow J=0 (m_J =0) $\rightarrow {}^1S_0$, g=1
- $I_1 \perp I_2$, $s_1 \uparrow \uparrow s_2$: L=1, S=1 \rightarrow J=0 (m_J =0) $\rightarrow {}^3P_0$, g=1

$$\rightarrow J=1 \ (m_J=-1,0,1) \qquad \rightarrow {}^3P_1, \ g=3$$

 \rightarrow J=2 $(m_J {=} {-} {2, -} {1, 0, 1, 2}) \qquad \rightarrow {}^3P_2 \,, ~g{=} 5$

$N^+ = 1s^2 2s^2 2p^2$

Basics of spectroscopy: Combination of states

 $O = 1s^2 2s^2 2p^4$

- Similar addition of configurations for all 4 electrons
- Now third Hund rule with "shell > half-full" applies \rightarrow reverse order: ${}^{3}P_{2,1,0}$
- Only S=1 states excited at moderate temperatures (below 20000K)
 - Effectively 3-level system as well
 - Radiative transitions only J = 2 \rightarrow 1 and J = 1 \rightarrow 0

Few cases to distinguish:

- 2-level systems: HI, C⁺, N⁺⁺
- 3-level systems: C, N⁺, O⁺⁺, O
 - ${}^{2}P_{0,1,2}$ (C, N⁺, O⁺⁺): ground-state transition has lower frequency
 - ²P_{2,1,0} (O): ground-state transition has higher frequency
- 4-level systems: ¹³C⁺
- 2p³ systems: N, $O^+ \rightarrow$ "Darkness"

- no fine-structure transitions excited at temperatures << 2000K

Excitation analysis: Introduction of quantities

 $B_{lu}U$

 C_{ul}, C_{lu}

- Consider transitions between 2 levels:
 - Spontaneous emission: A_{ul}
 - Stimulated emission: $B_{ul}U$
 - Absorption:
 - Collisional transitions:

$$U = \iint \frac{I_{\nu}\phi(\nu)}{c} d\nu d\Omega = \frac{4\pi}{c} \langle I_{\text{line}} \rangle$$

- Rate coefficients are mutually dependent:
 - Number conservation:

$$C_{lu} = C_{ul} \frac{g_u}{g_l} \exp\left(-\frac{h\nu}{kT_{\rm kin}}\right)$$
$$B_{lu} = B_{ul} \frac{g_u}{g_l}$$

2/12/14

$$B_{ul} = A_{ul} \, \frac{c^3}{8\pi h \nu^3}$$

SOFIA Winter School 2014, Köln,

Excitation analysis: Balance equation

General case: transitions between multiple levels

 To determine the excitation of the system the matrix of balance equations had to be solved

$$n_i \left(\sum_{j < i} A_{ij} + \sum_{j \neq i} B_{ij} u_{ij} + \sum_{j \neq i} C_{ij} \right)$$
$$= \sum_{j > i} A_{ji} n_j + \sum_{j \neq i} B_{ji} u_{ij} n_j + \sum_{j \neq i} C_{ij} n_j$$

• n_i - level population of level *i*

n

• A_{ij}, B_{ij} - spontaneous, induced radiative rate coefficients u_{ij} - radiative energy density at transition frequency

•
$$C_{ij} = \sum_{i_{coll}}^{n_{coll}} n_{i_{coll}} \gamma_{ij,i_{coll}}$$
 - collisional rate coefficients for different collision partners i_{coll} :
 H_2 , H, H⁺, He, electrons, ...

Description of level populations by excitation temperature T_{ex}

$$\frac{n_j}{n_i} = \frac{g_j}{g_i} \exp\left(-\frac{h\nu_{ij}}{kT_{ex,ij}}\right)$$

- Usually different for every pair of levels i,j
- Can be obtained exploiting properties of Einstein coefficients
- Radiation: $B_{ij}g_i = B_{ji}g_j$

• Collisions:
$$C_{ij} = C_{ji} \frac{g_j}{g_i} \exp\left(-\frac{h\nu_{ij}}{kT_{kin}}\right)$$

• for *j* > *I*

\rightarrow 3 limiting cases

Limiting cases

- Collision-dominated ($n_{i_{coll}}$ large): $C_{ij} \gg A_{ij}, B_{ij}u_{ij}$ for all i,j
 - \rightarrow Balance equation: $\frac{n_i}{g_i} \sum_{j \neq i} C_{ij} = \sum_{j \neq i} \frac{n_j}{g_j} C_{ij} \exp\left(\frac{h\nu_{ij}}{kT_{kin}}\right)$
 - Solution:
 - $T_{ex,ij} = T_{kin}$ for all i,j

= LTE (local thermodynamical equilibrium)

Limiting cases

• Radiation dominated (u_{ij} large): $B_{ij}u_{ij} \gg A_{ij}, C_{ij}$ for all i,j

→ Balance equation:
$$\frac{n_i}{g_i} \sum_{j \neq i} B_{ij} u_{ij} = \sum_{j \neq i} \frac{n_j}{g_j} B_{ij} u_{ij}$$

- Solution:
• $n_i/g_i = \text{const.}$

- Solution:

•
$$n_i/g_i = \text{const.}$$

- $T_{ex,ij} = \infty$
- Vacuum ($n_{i_{coll}}, u_{ij}$ small): $A_{ij} \gg B_{ij} u_{ij}, C_{ij}$ for all i,j - Solution:
 - $n_i \ll 1 \quad \forall i > 0$
 - $T_{ex,ij} = T_{bq}$

Excitation analysis: Excitation temperature

Gas-phase conditions

Element	number abundance	1 st ionization	n 2 nd ioniza potential	tion
– H	100	13.6 eV		
– He	9	24.6 eV	54.4 eV	
- O	0.026	13.6 eV	35.1 eV	
- C	0.012	11.3 eV	24.4 eV	
– N	0.008	14.5 eV	29.6 eV	Wakelam & Herbst (2008)

- O is neutral whenever H is neutral
- Only C can be (singly) ionized in regions where H is neutral
- OIII traces very energetic UV fields

Spatial distribution

HII/OIII HII/NII/CII H/O/CII H₂/O/CII H₂/O/C

Determines the main collision partners

Layering:

HII/OIII HII/NII/CII H/O/CII H₂/O/CII H₂/O/C

determines the main collision partners:

- OIII
 - Electrons: density given by number of H atoms
- NII
 - Electrons: density given by number of H atoms
- CII
 - Electrons: density given by H atoms or C atoms
 - H-atoms
 - $-H_2$ molecules
- Cl
 - $-H_2$ molecules

Excitation analysis: Collisions

[CII] excitation:

Critical densities for different relevant collision partners

 Electrons only play a role if more than the carbon is ionized (X[C/H]=1.3 10⁻⁴), i.e. in HII regions

Excitation analysis: Collisions

[OI] excitation:

63µm ground-state transition

- H-excitation is most efficient, but regions with high fraction of atomic H always have low densities (or volumes) so that there O⁺ is never in LTE
- High densities associated with H_2 factor 3 less efficient

Excitation analysis: Collisions

[OI] excitation:

• Full 3-level system - critical densities for two transitions:

- Critical densities are temperature-dependent!
- Non-trivial behavior for n-level systems (n > 2)!

n_i from balance equations

• Emission coefficient: $\epsilon_{\nu}(\vec{n}) = h\nu_{ij}n_iA_{ij}\frac{\phi_{\nu}(\vec{n})}{4\pi}$

(spontaneous emission)

• Absorption coefficient: $\kappa_{\nu}(\vec{n}) = h\nu_{ij} (n_j B_{ji} - n_i B_{ij}) \frac{\phi_{\nu}(\vec{n})}{c}$ (absorption and induced emission)

• With line profile $\phi_{\nu}(\vec{n}) = \int \delta \left(\nu - \nu_{ij} \left[1 + \frac{\vec{v}\vec{n}}{c}\right]\right) p(\vec{v}) d^{3}\vec{v}$ $\approx \frac{1}{\sqrt{2\pi\sigma}} \frac{c}{\nu_{ij}} \exp \left(-\frac{c^{2}}{2\sigma^{2}} \left[\frac{\nu - \nu_{ij}}{\nu_{ij}}\right]^{2}\right)$

for Maxwellian velocity distribution

– normalized so that omission of $\,\phi_
u(ec{n})\,$ gives line-integrated quantities

Alternative expression

•
$$\epsilon_{\nu}(\vec{n}) = \kappa_{\nu}(\vec{n}) \times B_{\nu_{ij}}(T_{ex,ij})$$

- $B_{
u_{ij}}(T_{ex,ij})$ - Planck function (blackbody emissivity)

Practical computation:

• LTE

- Boltzmann distribution of level populations
$$n_i$$
: $n_i \propto g_i \times \exp\left(-\frac{E_i}{kT_{kin}}\right)$

-
$$T_{ex,ij} = T_{kin}$$
 i.e. $B_{\nu_{ij}}(T_{ex,ij}) = B_{\nu_{ij}}(T_{kin})$

LTE emissivity:

• Most simple: [CII] as two-level system

[CII] 1.9THz:

Analytic description for emissivity

$$\int \epsilon \, dv = \frac{hc^3 A}{8\pi k\nu^2} \times N_{\rm C^+} \frac{g_u \exp(-\Delta E/kT_{\rm ex})}{g_l + g_u \exp(-\Delta E/kT_{\rm ex})}$$

$$\approx 1011 \frac{\rm K \, km s^{-1}}{\rm cm^{-3} \, pc} \times N_{\rm C^+} \frac{2 \exp(-91.2 \rm K/T_{\rm ex})}{1 + 2 \exp(-91.2 \rm K/T_{\rm ex})}$$
and absorption/optical depth
$$\int \tau dv = 7.15 \times 10^{-18} \, \frac{\rm km s^{-1}}{\rm cm^{-2}} \times N_{\rm C^+} \frac{1 - \exp(-91.2 \, \rm K/T_{\rm ex})}{1 + 2 \exp(-91.2 \, \rm K/T_{\rm ex})}$$

$$\approx 7.15 \times 10^{-18} \, \frac{\rm km s^{-1}}{\rm cm^{-2}} \times N_{\rm C^+} \frac{32.9 \, \rm K}{\rm c^{-91.2} \, \rm K/T_{\rm ex}}.$$

 \rightarrow With X(C⁺/H) =1.3 10⁻⁴, [CII] turns optically thick for N_{H} ~ 2 10²¹ cm⁻², i.e. A_{V} ~ 1

 cm^{-2} T_{ex}

LTE emissivity:

• [OI] as three-level system

• Transition to constant emissivity shifted by factor 2 due to higher level energies

Excitation analysis: LTE

LTE emissivity:

"Overshooting" in ground-state line for all ³P_{0,1,2} systems

Excitation analysis: LTE

LTE emissivity:

[NII] as equivalent system

• [OIII] fully equivalent (not shown here)

Next-step approximation:

- Negligible radiative excitation: $B_{ij}u_{ij} \ll A_{ij}, C_{ij}$
 - Implies optically thin geometry
 - Analytic solutions for 2-level system:

$$n_u = \frac{g_u n_l}{g_l} \exp\left(-\frac{h\nu_{ul}}{kT_{kin}}\right) \frac{C_{ul} + A_u}{C_{ul}}$$

- and 3-level system:

$$n_{2} = \frac{g_{2}n_{0}}{g_{0}} \frac{C_{12}C_{01} + C_{12}C_{10} + C_{02}C_{12}}{C_{21}C_{10} + C_{20}C_{10} + C_{21}C_{12}} + \frac{C_{20}A_{20}}{A_{10}(C_{21} + C_{20}) + A_{21}C_{10} + A_{10}A_{21}}$$

Line emissivity: Optically thin approximation

[CII] emissivity:

• For collisions with H₂ (left) and e⁻ (right)

- Transition from subthermal excitation at low densities to LTE at high densities
- At high densities only T_{kin} counts
- Critical density for electron-collisions lower by factor 1000

[CII] emissivity:

 Combination of higher emissivity above 91.2K and lower critical density for excitation through electron-collisions

Line emissivity: Optically thin approximation

[OI] emissivity:

• Excitation through H₂

- Very simple: $\epsilon_{
 u} \propto n_{H_2}$ for subthermal excitation, monotonic transition to LTE
- High densities needed for thermal excitation
- Significant emission only for temperatures above 150K

Line emissivity: Optically thin approximation

[CI] emissivity:

• Excitation through H₂:

- Partially non-monotonic behaviour for ground-state transition
- Much lower densities and temperatures needed for excitation
- Qualitatively same for [NII]

Line emission: Non-LTE

General case

• To derive physical parameters, the full radiative transfer problem needs to be solved

$$\vec{n} \cdot \operatorname{grad} I_{ul} = -\kappa_{ul} I_{ul} + \epsilon_{ul}$$

$$\kappa_{ul} = \frac{h \nu_{ul}}{c} [n_l B_{lu} - n_u B_{ul}] \Phi(\nu)$$

$$\epsilon_{ul} = \frac{h \nu_{ul}}{c} n_u A_{ul} \Phi(\nu)$$

$$n_i \left(\sum_{j < i} A_{ij} + \sum_{j \neq i} B_{ij} u_{ij} + \sum_{j \neq i} C_{ij} \right) = \sum_{j > i} A_{ji} n_j + \sum_{j \neq i} B_{ji} u_{ij} n_j + \sum_{j \neq i} C_{ji} n_j$$

$$u_{ul} = \frac{1}{c} \int_{4\pi} d\vec{n} \int_0^\infty d\nu \Phi(\nu) I_{ul}$$

• Practical way out: Local approximation – escape probability

 $I(\nu, \vec{r} + d\vec{n}, \vec{n})$

 $I(\boldsymbol{\nu}, \vec{r}, \vec{n})$

dīi

Probability that a line-photon escapes from the cloud β :

- Same probability that a background photon enters the cloud
- Consequence:
 - Radiation field given by "trapped" radiation field and external field:

 $u = (1 - \beta)B_{\nu}(T_{ex}) + \beta B_{\nu}(T_{bg})$

- "Cooling of the system" not through all spontaneously emitted photons, but only through those photons also escaping from the cloud
 - Modified Einstein-A coefficient: $A_{ul} imes eta$
- Analytic solution for 2-level system:

$$n_{u} = \frac{n_{l}g_{u}}{g_{l}} \frac{\beta A_{ul}G + C_{ul}\exp\left(-\frac{h\nu_{ul}}{kT_{kin}}\right)}{\beta A_{ul}\left(1+G\right) + C_{ul}}$$
• with
$$G = \frac{1}{\exp\left(\frac{h\nu_{ul}}{kT_{bg}}\right) - 1}$$
Goldsn

Goldsmith et al. (2013)

Line emissivity: Escape probability

Result

Transition to LTE shifted to lower densities

Goldsmith et al. (2013)

• Emissivity remains proportional to column density in subthermal range

Line emissivity: Final step

Combination with model for chemical abundance

• Convolution of abundance profile with density and temperature for given chemical model needed.

Line emissivity: Final step

Summary

Fine structure transitions are simple!

- Just a few numbers to describe them
- But always think of the dominant collision partners

	OIII	NII	CII	OI	CI
Line frequencies [GHz]	3393.0 5785.9	1461.3 2459.4	1900.5	4745.8 2060.0	492.2 809.3
Formation energy [eV]	35.1eV (IP)	14.5eV (IP)	11.2eV (IP)	11.1eV (CO diss.)	11.1eV (CO diss.)
Main collision partners	e-	e-	e ⁻ H H ₂	H ₂	H ₂
Typical critical densities [cm ⁻³]	500 4000	200 100	10 3000 5000	5 10 ⁵ 8 10 ⁴	1000 1500
High-temperature LTE emissivities [K km/s cm ³ pc ⁻¹]		550 940	699	1990 670	182 345