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Information from fine structure lines: 

How to excite C+, O and N+?
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Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom
● Simple problem: p + e-

– Pure Coulomb problem:

● With reduced mass 

– Solution has eigenvalues

● With Rydberg constant 

= main quantum 
number

= charge for more 
general case of 
multiple protons
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Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom
● Orbits: Solution of the full spatial problem

– Provides in total 3 quantum numbers: 
n, l, m

l

● l = orbital quantum number l=0...n-1

● m
l
 = projection of l on z-axis: m

l
=-l...l

● Energy levels n are degenerate 
with respect to l and m

l

● Corresponding eigenvector: |n, l, m
l 
>

l=0 l=1   l=2

n=

n=

n=
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Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom
● Possible transitions

– from level n to n'
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Basics of spectroscopy: The hydrogen atom

Repetition of basic atomic physics:

The H-atom
● Possible transitions

– from level n to n'

● Gives series for 
different n'

● n'=1 = Lyman
● n'=2 – Balmer
● n'=3 – Paschen
● n'=4 – Bracket
● n'=5 – Pfund



  

V. Ossenkopf                                                           SOFIA Winter School 2014,       Köln,      2/12/14                                                          7

Basics of spectroscopy: Fine structure 

The electron spin

● Adds spin system |s,m
s
> with s=1/2

● Provides additional coupling term between orbital momentum and spin 

– Solution has eigenvalues

● j = total angular momentum from                   →   j=l-s...l+s

●  Sommerfeld fine structure constant
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Basics of spectroscopy: Fine structure 

The electron spin
● Fine structure energies are scaled by α2 relative to main level energies

● H-atom

– No split for n=1, l=0 because
 j=1/2 independent of m

s

– First split for n=2, l=1
→ j=1/2, 3/2

● Requires n=2 excitation:
10.2eV = 120000K

● Not directly observable 
due to other splits 
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Basics of spectroscopy: Notation

Spectroscopy notation

● l encrypted in letters

– 0 = s, 1 = p, 2 = d, 3 = f, 4 = g, 5 = h,   ...

● p = parity

– Blank for parity = even, o for parity = odd

– Characterizes whether wave function changes sign under reflection of all electron 
positions through the origin.

● Examples: 

– 2s1/2 = ground state

– 2p1/2, 2p3/2 = first excited state (Balmer level)
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Basics of spectroscopy: Hyperfine splitting

The nuclear spin

● Adds nuclear spin system |i,m
i
> with i=1/2 for every nucleon

● Treatment equivalent to fine-structure splitting

● New quantum number

– f = total angular momentum from  →   f=j-i...j+i

● Eigenvalues of hyperfine coupling

● Hyperfine splitting typically lower than fine-structure splitting by factor
  

● g
N
 – Gaunt factor of the core

● Spectroscopic notation: explicite writing of f
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Basics of spectroscopy: Hyperfine structure splitting

Hyperfine structure
● H-atom

– for n=1 (ground state, l=0): 2s
1/2

: f=1-0

– Can be observed for “cold hydrogen”

● famous 21cm line = 1.42GHz
● allows for mapping of the Milky Way
● magnetic dipole transition → forbidden

● A= 2.9 10-15 s-1

● t=107 a
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Basics of spectroscopy: Hyperfine structure splitting

Hyperfine structure
● H-atom

– for n=1 (ground state, l=0): 2s
1/2

: f=1-0

– Can be observed for “cold hydrogen”

● allows for mapping of neutral 
interstellar gas

1951 Lyman Spitzer: Mapping of the Milky Way
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Basics of spectroscopy: Atoms

Multiple electrons
● Arrangement in subshells with increasing energy level

= increasing main  and orbital quantum numbers n, l

– Example: C+ = 1s2 2s2 2p1

● 3 subshells occupied

● Closed shells: Sum of orbital momenta and spins always = 0
– No contribution to radiative interaction
– Can be ignored

● 3rd subshell is open: 

– can take 6 electrons: ml= -1,0,1, ms= -½, ½

– dominates radiative interaction as 
– Only electrons in open shell need to be considered
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Basics of spectroscopy: Atoms

Multiple electrons
● Coupling between different electrons

– Provides additional term to Hamiltonian

– No analytic solution

– Approximation through Russell-Sounders coupling

● Inter-electron coupling stronger than spin-orbit coupling

● Individual orbital momentums and spins add up

● Remember: approximation only →  L,S, J are no “good” quantum numbers
● Different approximation for heavy elements

● Spectroscopic notation: 

– capital letters for sum over multiple electrons in open shell

– explicite writing of F for sum of total angular momentum including nuclear spin
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Basics of spectroscopy: Multiple electrons

Astrophysically relevant subterms

● Remember H-atom:

● Equivalently for multi-electron atoms
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Basics of spectroscopy: Multiple electrons

Russel-Sounders coupling
●  Solution

● “Hund rules”: 1) higher S  → lower energies
2) higher L → lower energies
3) lower J and shell ≤ half-full → lower energies

  shell > half-full → higher energies

● Example: C+ = 1s2 2s2 2p1

– 2p electron has S = ½, L = 1 

→ gives J = ½  (mJ= - ½, ½)  
          or J = 3/2  (mJ= -3/2,-1/2,1/2,3/2) = 2-level system

– Only 3rd Hund rule applies:

– Equivalent for N++:  ΔE=57µm



  

V. Ossenkopf                                                           SOFIA Winter School 2014,       Köln,      2/12/14                                                          17

Basics of spectroscopy: Hyperfine structure in atoms

Hyperfine structure
● Superimposed if nuclear spin does not sum up to 0
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Basics of spectroscopy: Hyperfine structure in atoms

Hyperfine structure

● Example: 13C+

– I = ½ combines with J = ½ to F=0 (mF= 0) or F=1 (mF= -1, 0, 1)

     with J = 3/2 to F=1 (mF= -1, 0, 1) or F=2 (mF= -2,-1, 0, 1, 2)

– C+ levels split up

– 3 possible transitions, F = 2 → 0 is forbidden
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Basics of spectroscopy: Multiple electrons in one subshell

Combination of states

●  Example: N+ = 1s2 2s2 2p2

– Combination of two electrons with s = ½  (ms=- ½, ½),  l = 1 (ml=-1,0,1) 
 → gives 6x6=36 possible combinations

● Pauli exclusion principle:
– 2 electrons never in same state
– Electrons indistiguishable, i.e. wave functions antisymmetric with respect of exchange  of 2 

electrons
– 15 allowed combinations remaining

● l1 ↑↑ l2 , s1 ↑↓ s2 : L=2, S=0 → J=2 (mJ=-2,-1,0,1,2) → 1D2 ,  g=5

● l1 ↑↓ l2 , s1 ↑↓ s2 : L=0, S=0 → J=0 (mJ=0) → 1S0 ,  g=1

● l1 ┴ l2 ,  s1 ↑↑ s2 : L=1, S=1 → J=0 (mJ=0) → 3P0 ,  g=1

→ J=1 (mJ=-1,0,1) → 3P1 ,  g=3

→ J=2 (mJ=-2,-1,0,1,2) → 3P2 ,  g=5
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Basics of spectroscopy: Combination of states

N+ = 1s2 2s2 2p2

●  “Hund rules”: 1) higher S  → lower energies
2) higher L → lower energies
3) lower J and shell ≤ half-full → lower energies

  shell > half-full → higher energies

The S=0 states need very high excitation energy

→ usually not relevant for ISM physics

→ treat N+ as 3-level system

122µm = 2457 GHz

205µm = 1458 GHz

Only 2 radiative transitions.  J = 2 → 0 forbidden
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Basics of spectroscopy: Combination of states

Other atoms with same configuration: 3P0,1,2

●  N+ = O++ = C

62
24
0

CI

609µm
370µm

17600
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Basics of spectroscopy: Combination of states

O = 1s2 2s2 2p4

● Similar addition of configurations for all 4 electrons

● Now third Hund rule with “shell > half-full” applies → reverse order: 3P2,1,0 

● Only S=1 states excited at moderate temperatures (below 20000K)

● Effectively 3-level system as well
● Radiative transitions only J = 2 → 1 and J = 1 → 0

326 K

227 K

0

2.060 THz = 145.53µm

4.744THz = 63.19µm
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Basics of spectroscopy: Summary

Few cases to distinguish:

● 2-level systems: HI, C+, N++

● 3-level systems: C, N+, O++, O

– 2P0,1,2 (C, N+, O++): ground-state transition has lower frequency

– 2P2,1,0 (O): ground-state transition has higher frequency

● 4-level systems: 13C+

● 2p3 systems:  N, O+ → “Darkness”

– no fine-structure transitions excited at temperatures << 20000K
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Line radiation
● Consider transitions 

between 2 levels:

– Spontaneous emission:
– Stimulated emission:
– Absorption:
– Collisional transitions:

  
● Rate coefficients are

  mutually dependent:

 

– Number conservation:

– Quantum mechanics:

Excitation analysis: Introduction of quantities
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Excitation analysis: Balance equation

General case: transitions between multiple levels
●  To determine the excitation of the system the matrix of balance equations had to 

be solved

●            - level population of level i

●         - spontaneous, induced radiative rate coefficients
- radiative energy density at transition frequency

●      -  collisional rate coefficients for different
collision partners icoll : 

H2, H, H+, He, electrons, ...
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Excitation analysis: n-level systems

Description of level populations by excitation temperature Tex

● Usually different for every pair of levels i,j

● Can be obtained exploiting properties of Einstein coefficients

● Radiation: 

● Collisions:
 

● for j > I

→ 3 limiting cases

●           
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Excitation analysis: Excitation temperature

Limiting cases

● Collision-dominated  (             large): for all i,j

→ Balance equation:
 

– Solution:
●  for all i,j

 = LTE (local thermodynamical equilibrium)
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Excitation analysis: Excitation temperature

Limiting cases

● Radiation dominated (          large):  for all i,j

→ Balance equation:
 

– Solution:
●  
●

● Vacuum ( small):  for all i,j

– Solution:

●

●
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Excitation analysis: Excitation temperature

General case

● Radiation field  atomic system Gas collisions
 

observer

● Observable excitation temperature:

 

    (e.g. 2.7K)

  
● Transition roughly around critical density: 
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Collision partners: Environmental conditions

Gas-phase conditions

 Element            number 1st ionization 2nd ionization
     abundance potential

– H     100 13.6 eV

– He         9 24.6 eV 54.4 eV

– O         0.026 13.6 eV 35.1 eV

– C         0.012 11.3 eV 24.4 eV

– N         0.008 14.5 eV 29.6 eV

– O is neutral whenever H is neutral

– Only C can be (singly) ionized in regions where H is neutral 

– OIII traces very energetic UV fields

Wakelam & 
Herbst (2008)
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Environmental conditions: abundances and collision partners

Spatial distribution

     HII/OIII  HII/NII/CII H/O/CII  H2/O/CII H2/O/C

  

● Determines the main collision partners

HII region
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Environmental conditions: abundances and collision partners

Layering:

   HII/OIII  HII/NII/CII   H/O/CII  H2/O/CII H2/O/C

determines the main collision partners: 

● OIII

– Electrons: density given by number of H atoms

● NII

– Electrons: density given by number of H atoms

● CII

– Electrons: density given by H atoms or C atoms

– H-atoms

– H
2
 molecules

● CI

– H
2
 molecules (all have additional minor contribution from He)
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Excitation analysis: Collisions

[CII] excitation: 

● Critical densities for different relevant collision partners
 

● Electrons only play a role if more than the carbon is ionized (X[C/H]=1.3 10-4), 
i.e. in HII regions
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Excitation analysis: Collisions

[OI] excitation: 

● 63µm ground-state transition

● H-excitation is most efficient, but regions with high fraction of atomic H always 
have low densities (or volumes) so that there O+ is never in LTE

● High densities associated with H2 – factor 3 less efficient
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Excitation analysis: Collisions

[OI] excitation: 

● Full 3-level system - critical densities for two transitions:
 

● Critical densities are temperature-dependent!
● Non-trivial behavior for n-level systems (n > 2)!



  

V. Ossenkopf                                                           SOFIA Winter School 2014,       Köln,      2/12/14                                                          36

Line emission: Emission and absorption coefficients

ni from balance equations

● Emission coefficient:

(spontaneous emission) 

● Absorption coefficient:

(absorption and induced emission)

● With line profile

for Maxwellian velocity distribution

– normalized so that omission of                gives line-integrated quantities
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Line emission: Emission and absorption coefficients

Alternative expression

●

–                             - Planck function (blackbody emissivity)

Practical computation:

● LTE

– Boltzmann distribution of 
level populations ni:

–
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Excitation analysis: LTE

LTE emissivity: 

● Most simple: [CII] as two-level system 2P1/2,3/2

● Constant emissivity at temperatures above 
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Excitation analysis: LTE

[CII] 1.9THz: 

● Analytic description for emissivity

and absorption/optical depth

 → With X(C+/H) =1.3 10-4, [CII] turns optically thick for 
NH ~ 2 1021 cm-2,  i.e. A

V
 ~ 1



  

V. Ossenkopf                                                           SOFIA Winter School 2014,       Köln,      2/12/14                                                          40

Excitation analysis: LTE

LTE emissivity: 

● [OI] as three-level system 3P2,1,0

● Transition to constant emissivity shifted by factor 2 due to higher level energies
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Excitation analysis: LTE

LTE emissivity: 

● [CI] as three-level system 3P0,1,2

● “Overshooting” in ground-state line for all  3P0,1,2 systems
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Excitation analysis: LTE

LTE emissivity: 

● [NII] as equivalent system 3P0,1,2

● [OIII] fully equivalent (not shown here)
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Line emission: Non-LTE

Next-step approximation:

● Negligible radiative excitation: 

– Implies optically thin geometry

– Analytic solutions for 2-level system:

– and 3-level system:
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Line emissivity: Optically thin approximation

 [CII] emissivity: 

● For collisions with H2 (left) and e- (right)

● Transition from subthermal excitation at low densities to LTE at high densities

● At high densities only Tkin counts

● Critical density for electron-collisions lower by factor 1000
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Line emissivity: Optically thin approximation

 [CII] emissivity: 

● Combination of higher emissivity above 91.2K and lower critical density for 
excitation through electron-collisions
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Line emissivity: Optically thin approximation

 [OI] emissivity: 

● Excitation through H2

● Very simple:                      for subthermal excitation, monotonic transition to LTE

● High densities needed for thermal excitation

● Significant emission only for temperatures above 150K
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Line emissivity: Optically thin approximation

 [CI] emissivity: 

● Excitation through H2:

● Partially non-monotonic behaviour for ground-state transition

● Much lower densities and temperatures needed for excitation

● Qualitatively same for [NII]
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General case

● To derive physical parameters, 
the full radiative transfer problem 
needs to be solved

● Practical way out: Local approximation – escape probability

Line emission: Non-LTE
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Line emission: Escape probability

Probability that a line-photon escapes from the cloud β:

● Same probability that a background photon enters the cloud

● Consequence: 

– Radiation field given by “trapped” radiation field and external field:

– “Cooling of the system” not through all spontaneously emitted photons, 
but only through those photons also escaping from the cloud

● Modified Einstein-A coefficient: 
– Analytic solution for 2-level system:

 

● with 

Goldsmith et al. (2013)
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Line emissivity: Escape probability

Result
● e.g. PDR model

(χ=104, n=105 cm-3)

● Transition to LTE shifted to lower densities

● Emissivity remains proportional to column density in subthermal range

Goldsmith et al. (2013)
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Line emissivity: Final step

Combination with model for chemical abundance
● e.g. PDR model

(χ=104, n=105 cm-3)

● Convolution of abundance profile with density and temperature for given 
chemical model needed.
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Diffuse Gas 

Classic PDRs

Orion PDR
[CII]

n

Kaufman et al. 1999

F
U

V

F
U

V

n

[OI]/[CII]

→ see talk by M. Röllig

Line emissivity: Final step

PDR emission:
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Summary

Fine structure transitions are simple!

– Just a few numbers to describe them

● But always think of the dominant collision partners

OIII NII CII OI CI

Line frequencies
[GHz]

3393.0
5785.9

1461.3
2459.4

1900.5 4745.8
2060.0

492.2
809.3

Formation energy
[eV]

35.1eV
(IP)

14.5eV
(IP)

11.2eV
(IP)

11.1eV
(CO diss.)

11.1eV
(CO diss.)

Main collision 
partners

e- e- e-

H
H2

H2 H2

Typical critical 
densities
[cm-3]

500
4000

200
100

10
3000
5000

5 105

8 104
1000
1500

High-temperature
LTE emissivities
[K km/s cm3 pc-1]

550
940

699 1990
670

182
345
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