
Star formation

Switching-on fusion



Global picture (for low-mass PMS)

• Start with isothermal collapse → Hayashi track
– Luminosity dominated by accretion

• End of main accretion phase
– Luminosity dominated by adiabatic contraction

• Fully convective core 
                        → continuation of Hayashi track
– Temperature limited by Hayashi temperature (H- opacity 

temperature)

• Increase of temperature to allow Lrad,max > L
– Radiative transfer of luminosity

– Reduced stellar contraction

→ Henyey track up to ignition



Palla & Stahler (1990)

dM/dt=10-5 MO/yr

tKH=tacc

Zero-age m
ain sequence

Sun
Massive stars 
are born on the 
Main Sequence!



Stellar structure
Spherical symmetry:

 dP/dr = -ρ(r) G m(r) / r2        Hydrostatic equilibrium
 dm/dr = 4πr2ρ                     Mass conservation
 P ~ ργ                                                          Equation of state 
                                              
 Energy transport: 

●  Radiative: 
     centre of massive 
     PMS
● Convective: 
     low mass, 
     low T, high κ

R
 



Stellar structure
Equation of state:

● p ~ ργ 

● Uniform equation of state through all radii for fully 

  convective star

●  ideal ionized gas: γ=5/3

• p = ℜ/μ ρ T

→  Closed equation for mass-size relation:

● 

●  M ~ R-3 for γ=5/3
● Negative mass-size relation! 

● More massive stars are smaller!



Stellar structure
Temperature evolution from virialization:

● By radiating away energy, the star gets hotter!

→ negative specific heat !

● T ~ R-1



Stellar structure
Special case: Fermi gas

● At high densities the Fermi pressure can exceed the

  thermal pressure

● Equation of state still p ~ ργ , γ=5/3 but independent

  of temperature T

● If p
Fermions

 > p
Ions 

●
 
Fermionic pressure stabilizes star

● No further temperature increase in contraction
● Determines fate of star → whether ignition temperature

  is reached



Ignition of the star

● D fusion: p + d → 3He + γ
● Critical temperature: 8 x 105 K
● Energy production:  4.2 103 J kg-1 s-1 X

D
 (T/106K)11.8 

● Li fusion: 7Li + p → 4He + 4He
● Critical temperature: 2.5 x 106 K

● H fusion: 4p → 4He + 4e+ + 4ν
e
 + 2γ

● Critical temperature: 10 x 106 K



H fusion

p-p process: 
● p + p → d + e+ + ν

e

● d + p → 3He + γ
● 3He + 3He → 4He + p + p        = PP-I

● 3He + 4He → 7Be + γ
●

7Be + e- → 7Li + ν
e
 + γ         = PP-II

● 7Li + p → 4He + 4He

● 3He + 4He → 7Be + γ
● 7Be + p → 8B + γ

●  8B → 8Be + e+ + ν
e
           = PP-III

● 8Be → 4He + 4He



H fusion

p-p process: 
● PP-I, PP-II, PP-III are three independent ways to 

create 4He from p.
● Same energy production, but different number of 

beta particles and neutrinos
● Temperature efficiency:

● T < 14 106 K → PP-I dominating
● 14 106 K < T < 24 106 K → PP-II dominating
● T > 24 106 K → PP-III dominating

● Energy production:
● Constrained by slowest reaction: p+p → d + e+ + ν

e

● 2.4 1016 J kg-1 s-1 X
H

2 exp(-3.4 (T/109K)1/3)/(T/109K)2/3 
● Steep function of temperature (~T4 at 10 Mio K)



H fusion

CNO cycle: 
● At T > 20 106K

● p + 12C → 13N + γ
●

13N → 13C + e+ + ν
e

● 13C + p → 14N + γ
● 14N + p → 15O + γ

●  15O → 15N + e+ + ν
e

● 15N + p →  12C + 4He        = CNO-I

● 15N + p →  16O + γ
● 16O + p → 17F + γ            = CNO-II

●
17F → 17O + e+ + ν

e

● 17O + p → 14N + 4He



H fusion

CNO cycle: 
● 12C acts as catalyst

● Energy production:
● Complex interplay of the multiple reactions
● Still only approximately known
● 4.4 1021 J kg-1 s-1 X

H
Z exp(-15.2 (T/109K)1/3)/(T/109K)2/3 

● Extremely steep function of temperature 
● ~T18 around 20 Mio K
● Completely dominating at high temperatures

He fusion:
● At T > 100 Mio K
● Only relevant at end of stellar life, not in star-forma-

tion. 



Brown dwarfs

M < 0.08 M
⊙
: 

● p
Fermions

 > p
ions

 at T < 106K
● Critical temperature for H fusion is never reached.

→ Brown dwarf

M > 0.08 M
⊙
: 

● p
Fermions

 < p
ions

 
● Temparture grows by contraction above 106K
● H fusion starts

→ Star



Brown dwarfs
Stellar structure

● Determined by equation of state for Fermi gas

● M = M
BD

 R-3

● 

● Z – average atomic number

● A – average atomic weight

● For a pure Fermi gas, the final stable state is well-

   defined.



Brown dwarfs

● Brown dwarfs can only radiate their contraction energy

● The follow the Hayashi tracks until the end of their life

● For M > 13M
J
 D fusion is still possible (M

J
 ~ 10-3 M

⊙
)

● Gives only small lumino-

sity enhancement

● They are still bright when 

 they are young

● Contraction luminosity 

allows us to find only 

young brown dwarfs



Brown dwarfs

● 



Deuterium burning phase

● There isn't much deuterium ([D/H] = 2.5 10-5) 
and it is rapidly exhausted in the interior

● supply from outside through convection



Li depletion
● Li fusion happens at T ≥ 2.5 106 K

→ it is quickly removed
● Li (671nm) absorption is only seen in the atmos-

pheres of very young 
stars

● Li absorption can be 
used to measure 
stellar ages



Li depletion
● Li absorption can 

be used to measure 
stellar ages

Unsolved problem:
“post-T-Tau gap”



Li depletion
Detailed models:
● Depth of the convection 

zone determines atmo-
spheric Li depletion

● M < 0.5M
⊙
:

fully convective, 
Li immediately depleted

● M < 1.7M
⊙
:

Convection down to 
2.5Mio K, depletion 
by factor ~100

● M > 1.7M
⊙
:

depletion only on time 
scales of 109a

● Critical test for 
stellar evolution 
models



Deuterium burning

● Critical temperature: 8 x 105 K
● Energy production:  4.2 103 J kg-1 s-1 X

D
 (T/106K)11.8 

● Extreme temperature sensitivity
● Reaction is always self-sustaining
● As soon as critical temperature is reached all D is 

burned
● Deuterium burning is limited by supply!

● Accretion of fresh material provides luminosity

● X
D
 ~ 2 10-5, Q

D
 = 5.5 MeV



Deuterium burning

● Energy production:  4.2 103 J kg-1 s-1 X
D
 (T/106K)11.8 

● Temperature in interior rises
● Heating leads to increase of radius



Geometry of deuterium burning

● M < 3M
⊙
: (T Tauri stars)

● Critical temperature for D burning only in center
● Core fusion zone

● M < 0.6 M
⊙
:

● Star remains fully convective
● M > 0.6 M

⊙
:

● Temperature increase triggers radiative stability
● Switch over to Henyey track

● Continued hydrostatic evolution to the H fusion



Geometry of deuterium burning

● M > 3M
⊙
: (Herbig Ae/Be stars)

● Quick switch over to radiative core
● Strong increase of radius: factor 2

● Temperature for D burning already in outer layers
→ D burning shell



Evolution to the main sequence

Palla & Stahler 1991

Onset of convection
due to central 
deuterium burning

Appearance of a 
radiative barrier

Onset of central 
convection due to 
hydrogen burning

Palla 2000, Aussois school

isochrones

During protostar evolution

Zero-ago main sequence differs from main sequence due to 
residual accretion and embedding in disk and parental cloud
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