Star formation

Compact HII regions

Radiative impact

Ionization of surroundings:

compact/ultracompact/hypercompact HII regions

 $2^{h}21^{m}53^{s}$. 4

2^h21^m53^s

Right Ascension (B1950)

(1971) and Harris & Wynn-Williams (1976).

Tieftrunk et al. (1997)

Radiative impact

Ionization balance:

• Consider star with T_* in medium with density $n_{_{\rm H}}$

$$n_H \int_{\nu_T}^{\infty} 4\pi N_{\nu} \alpha_H(\nu) d\nu = n_e n_p \beta_A(T)$$

- v_T ionization threshold (912Å = 13.6 eV)
- $N_v photon density: J(v)/hv$
- $n_e = n_p electron/proton density$
- $\beta_{\rm A}$ recombination coeff.: $\beta_A \approx 4.3 \, 10^{-13} \frac{\rm cm^3}{\rm s} \left(\frac{T_e}{10^4 \rm K}\right)^{-0.8}$
- $\alpha_H(v)$ ionization cross section

Radiative impact

Figure 7.1 The ionization cross sections of hydrogen and helium, showing a maximum at the ionization edge and dropping away approximately as ν^{-3} . The ionization cross section of oxygen shows a more complex behavior due to ionization to excited levels within the same configurations.

Strömgren sphere

Number of UV photons with $v > v_{\tau}$ determines the size of the ionized region

Strömgren radius:
$$R_S = 0.032 \text{pc} \left(\frac{10^5 \text{cm}^{-3}}{n}\right)^{2/3} \left(\frac{N_{\nu}}{10^{49} \text{s}^{-1}}\right)^{1/3}$$

Table 7.1 Stellar parameters of O and B stars^a

Spectral type	$T_{\rm eff}({\rm K})$	$L(10^5L_{\odot})$	$\mathbb{N}_{Lyc}(10^{49} \text{ photons s}^{-1})$	$\mathcal{R}^b_{\mathrm{s}}$ (pc)
03	51 200	10.8	7.4	1.3
04	48 700	7.6	5.0	1.2
05	46 100	5.3	3.4	1.0
06	43 600	3.7	2.2	0.88
07	41 000	2.5	1.3	0.75
08	38 500	1.7	0.74	0.62
09	35 900	1.2	0.36	0.49
B 0	33 300	0.76	0.14	0.36

^{*a*} Stellar parameters for main sequence stars.

^b Strömgren radius calculated for a density of 10^3 cm⁻³.

Quenched Hll regions

If more material is replenished by accretion than re-ionized, the HII region will be suffocated

Mass infall rate:

$$\dot{M} > \dot{M}_{\rm crit} = 2\sqrt{\pi}\mu m_H \left(\frac{N_\nu G M_\star}{\langle \beta_A \rangle}\right)^{1/2}$$

1/9

 μm_H – mean atomic weight

 \rightarrow one would expect bipolar HII regions Increasing Ionizing Flux

 \rightarrow hardly observed

 \rightarrow HII regions form on scales where the infall is still isotropic

Ultracompact Hll regions

So far steady-state computation

- Justified only if dynamical timescale $\tau_{\rm dyn}$

>> recombination timescale τ_{rec}

$$\tau_{\rm rec} = \frac{1}{\langle \beta_A \rangle n}$$

• $T_{rec} \sim 100a$ for n=10⁵ cm⁻³ \rightarrow massive star switch-on is faster

 \rightarrow initial size of HII region determined by total number of Lyman photons produced so far:

$$N_{\nu}t = \frac{4\pi}{3}nR_{\rm IF}^3(t)$$

neglecting all recombination, i.e. for t < τ_{rec}

→ formation of hypercomapct/ultracompact HII regions

Ultracompact Hll regions

Hypercomapct/ultracompact HII regions

Lasts only ~ 100a

Ultracompact HII region morphologies

Ultracompact Hll regions

- \bullet Asymptotic approa to $\rm R_{s}$
- Steady-state reach after ~ 4 τ_{rec}
- Initial expansion
 velocity > 1000km/s
 > c_s

→ strong shock driven through envelope

Figure 12.2 The initial expansion of the ionization front after the sudden "turn on" of a massive star in a uniform density cloud. The size is plotted (relative to the Strömgren radius) as a function of the time in units of the recombination time scale, $\tau_{\rm rec} = (\beta_{\rm B} n)^{-1}$.

Global picture

