Star formation

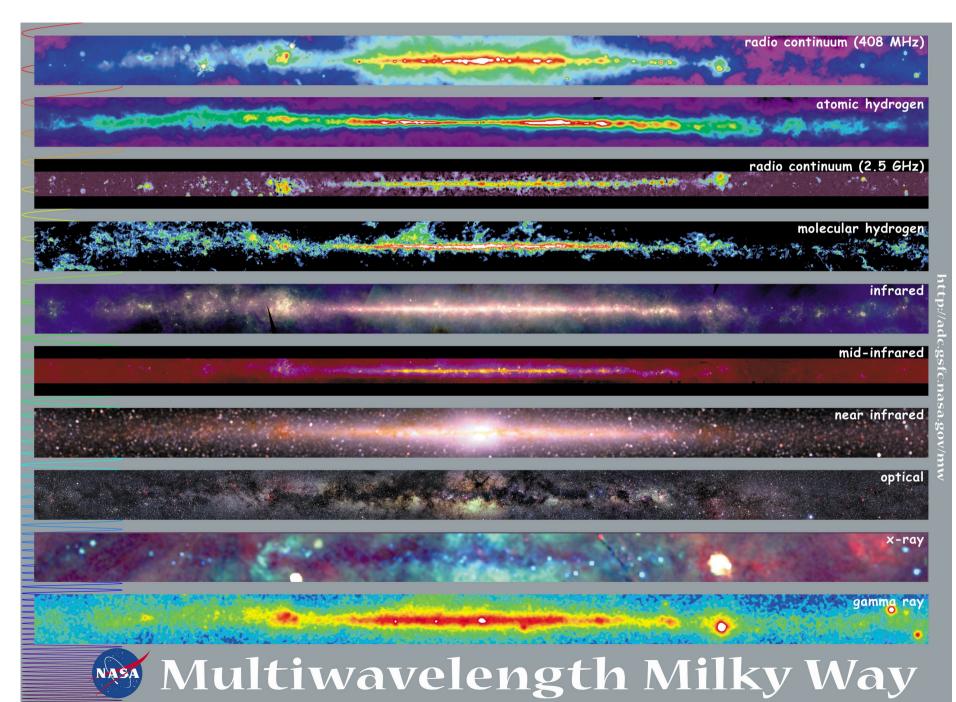
Physics and Chemistry of the Interstellar Medium

Starting point

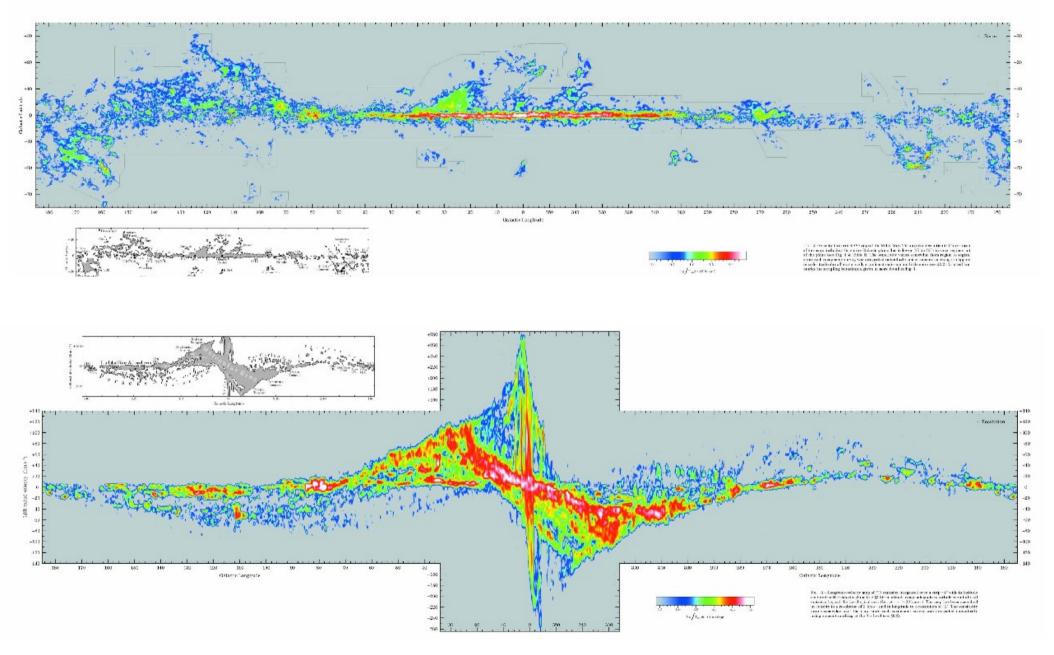
- Stars from through gravitational collapse of dense interstellar clouds of gas and dust
- The physics and chemistry of those molecular clouds governs the star-formation process

Historical approach to the ISM

- 1781 Charles Messier (1730-1817) publiziert einen Katalog von Nebeln und Sternhaufen (M42 - Orion Nebel, M31 - Andromeda Nebel).
- ~1800 William Herschel publiziert einen Katalog von Nebeln ("Löcher im Himmel" sternleere Gebiete).
- 1814 1920 Entwicklung der Spektroskopie als Grundlage der Astrophysik
- 1814 Sonnenspektrum durch Fraunhofer (1787-1826)
- 1859 Identifikation der Spektrallinien durch Bunsen & Kirchhoff
- 1861 Identifikation der Elemente im Sonnenspektrum durch Kirchhoff
- 1864 Spektren von M31 (sonnenähnlich) und M42 (Emissionslinien) durch William Huggins
- 1904 Hartmann findet stationäre CaII Absorptionslinien im Spektrum des spektroskopischen Doppelsterns δ Orionis.
- 1913 Entdeckung der Höhenstrahlung durch Hess
- 1919 Barnard veröffentlicht einen Katalog von Dunkelwolken.
- 1927 Clay findet, daß Höhenstrahlung durch hochenergetische geladene Teilchen verursacht wird.
- 1928 Bowen identifiziert die vorher einem Element "Nebulium" zugeordneten Linien als Übergänge metastabiler Niveaus von [NII], [OII] und [OIII], die durch e-Stöße angeregt werden.


Historical approach to the ISM

- 1930 Robert Trümpler (1886-1956) stellt fest, daß entferntere Sternhaufen größer und heller erscheinen -> interstellare Extinktion
- 1933 Plaskett & Pierce weisen die Existenz des interstellaren Mediums zweifelsfrei nach: CaII Linien sind stärker bei entfernteren Sternen Radialgeschwindigkeit v_{CaII} der Linien etwa v_{*}/2
- 1934 Entdeckung der "Diffusen interstellaren Banden" (DIBs) durch Merrill
- 1937 Entdeckung der ersten interstellaren Moleküle (CH, CH⁺, CN) durch Swings & Rosenfeld, Mc Kellar und Adams
- 1945 Vorhersage der 21cm Strahlung von neutralem Wasserstoff durch van de Hulst
- 1950 Nachweis dieser Linie durch Ewen & Purcell und Oort & Müller Identifikation von Protonen und α Teilchen als Bestandteile der kosmischen Strahlung
- 1960 Entdeckung der weichen Röntgen-Strahlung von heißem ionsierten Gas
- 1963 Barrett, Meeks & Weinreb entdecken OH anhand von Absorptions- und Emissionslinien (Maser) bei 18 cm
- 1968 Nachweis des ersten polyatomaren Moleküls (NH_3) durch die Gruppe von Charlie Townes


Historical approach to the ISM

1970 Nachweis der Emission des Rotationsübergangs J=0-1 von CO bei 2.6 mm (115 GHz) durch Wilson, Jefferts & Penzias Radionachweis z.T., exotischer" Moleküle, Kartierung der CO-Emission der Milchstraße Entdeckung von H₂-Linien im ultravioletten Spektralbereich durch Carruthers Copernicus UV-Satellit: Entdeckung einer sehr heißen Komponente des 1973 interstellaren Mediums anhand hochionisierter Atome (z.B. O VI) Verringerung der chemischen Häufigkeit von Elementen in der Gasphase durch "Abreicherung" auf Staubteilchen Entwicklung der Infrarot-Astronomie: 1980 Entdeckung von H₂-Linien, Festkörper- und Eis-Banden Himmelskartierung durch IRAS Anzeichen für sehr kleine Staubteilchen und große Moleküle Entwicklung der Submm-Astronomie: Untersuchung der warmen Grenzgebiete zwischen HII-Regionen und Molekülwolken (Photon dominated regions - PDRs) Suche nach kalten protostellaren Objekten ISO-Satellit: H₂O in Sternenstehungsgebieten, Chemie des Staubes, H₂ 1995 SIRTF-Satellit: Durchmusterung der Milchstraße, Scheiben und Planetenentstehung 1995

Our Galaxy seen at different wavelengths

Milky Way in CO

Molecular Cloud formation

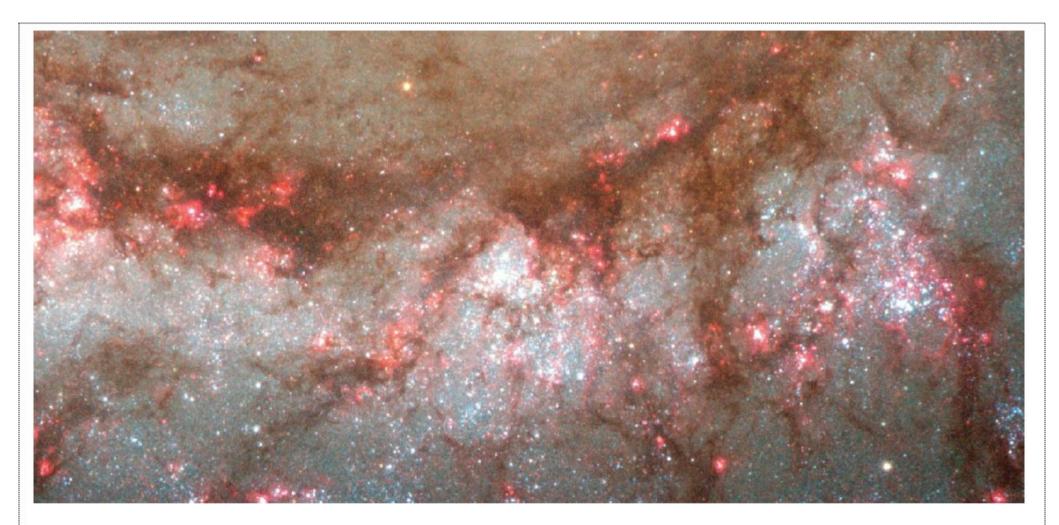


FIG. 5.— Section of the southern inner arm of M51 from the full-resolution Hubble Heritage image. The overall dimensions are 3.49 by 1.65 kpc. There are two giant cloud complexes in the main dust lane $(10^7 M_{\odot})$. Each has embedded H II regions, showing that star formation begins very soon after cloud formation with no significant downstream displacement. The postshock flow is mostly from left to right in this figure as the gas streams along the spiral arm. The feathers of dust clouds below the main dust lane are twisted remnants of former cloud complexes in which star formation has dispersed the cores. Many filaments or ribbons of dust surround complexes of bright blue stars, suggesting pressurized dispersal. Star formation lingers in the filaments and in other debris because of triggering from these pressures and because of parallel collapse along the filaments into dense knots. The lowest density regions do not show star formation. These low-density regions are presumably the envelopes and shredded debris of former GMCs. They appear to last a relatively long time; some even get to the next spiral arm (not shown).

Whirlpool Galaxy • M51

0.15 µm

0.4-0.8 μm 1.2-2.2 μm 3.6 μm

70 µm

160 μm

8.0 µm

24 µm

Molecular Clouds

200

(Magneto-)hydrodynamic equations:

1) Navier-Stokes equation (equation of motion):

$$\rho \frac{d\vec{v}}{t} = \vec{k}_{grav} + \vec{k}_{press} + \vec{k}_{frict} + \vec{k}_{mag}; \quad \frac{dv}{dt} = \frac{\partial v}{\partial t} + (\vec{v}\nabla)\vec{v}$$

$$\rho \frac{dv}{dt} = -\rho \nabla U - \nabla p + \eta \Delta \vec{v} + \left(\frac{\eta}{3} + \zeta\right) \nabla (\nabla \vec{v}) + \vec{j} \times \vec{B}$$

- ρ mass density
- U gravitational potential
- p pressure
- η , ζ dynamic and volume viscosity

Gas motion driven by 4 forces: gravitation, pressure, friction, magnetic fields.

Assumption:

fluid properties η , ζ , conductivity σ , and ionization X constant

2) Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0$$

Mass conservation of considered medium.

Example: spherical geometry:

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho v \right) = 0$$

3) Poisson equation

 $\Delta U = -4\pi G\rho$

G - gravitational constant

The gravitational potential is produced by the local mass density.

4) Thermal equation of state

 $p = p(\rho, T)$

Trivial example: Ideal gas: $pV = Nk_BT$

$$p = \frac{R}{\mu}\rho T$$

 μ – molecular mass, R – Rydberg constant

More general: Polytropic gas: $p \propto \rho^{\gamma}$; $\gamma = 1 + \frac{2}{n_f}$ n_f – degrees of freedom: mono-atomic gas: $\gamma = 5/3$ di-atomic gas: $\gamma = 7/3$ multi-atomic gas: $\gamma = 4/3$ Isothermal case (energy radiated away): $\gamma = 1$

Additional equations (often omitted):

5) Caloric equation of state:

 $e=e(\rho,T)$ - inner energy as function of pressure and temperature

Trivial example: Ideal gas:

$$e = \frac{n_f}{2} \frac{kT}{\mu}$$

6) Heat transfer equation:

$$\rho \frac{\partial e}{\partial t} = -p\nabla \vec{v} + \kappa \Delta T + \frac{\vec{j}^2}{\sigma} + 2\eta v_{ik} v_{ik} - \left(\frac{2}{3}\eta - \zeta\right) (\nabla v)^2 + \Gamma - \Lambda$$

- κ heat diffusion coefficient
- Γ radiative heating
- Λ radiative cooling

7) Magnetohydrodynamics: $\vec{B} = \vec{B}(\rho X_e \vec{v})$

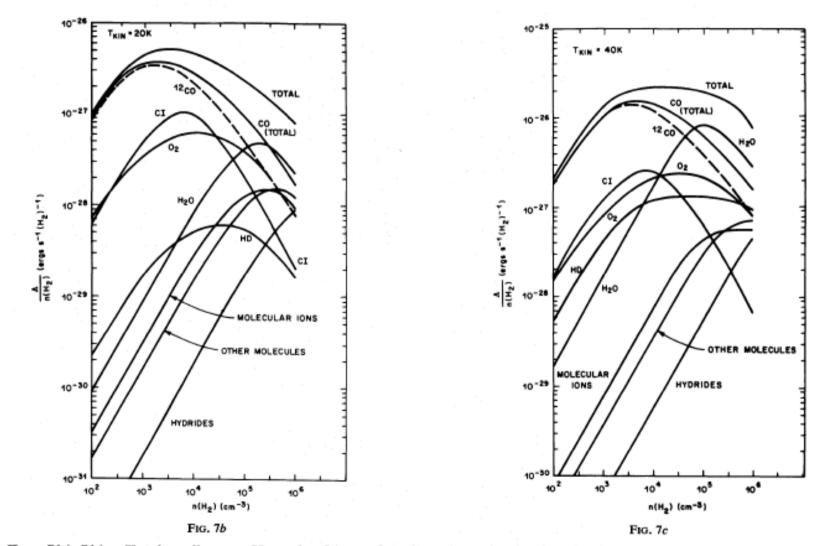
Heating / Cooling

Heating = Feed of kinetic energy into the gas

- Photoionization of neutral particles
 - Kinetic energy of electrons
- Photoeffect on dust particles
 - Kinetic energy of released electrons
- Cosmic ray ioniziation of neutral particles
 - Kinetic energy of secondary electrons
- X-ray heating
 - Kinetic energy of secondary electrons
- Photodissociation of molecules
 - Kinetic energy of fragments

Heating / Cooling

Heating:


- UV pumping of H₂
 - Radiative excitation of electronic states, collisional de-excitation
- Chemical heating
 - Kinetic energy of reaction products
- Dissipation of turbulence and shocks
- Ambipolar diffusion
 - Differential movement of ions and neutrals in magnetic field
- Gravitational collapse
 - Potential energy

Heating / Cooling

Cooling:

- Collisional excitation with emission of radiation
 - Molecule, atom or electron with molecule or atom
- Collisions of gas particles with dust
 - Energy lost by dust radiation
- Free-free emission of electrons
 - In HII regions
- Recombination of ionized particles
 - Emission of recombination lines (and continuum)

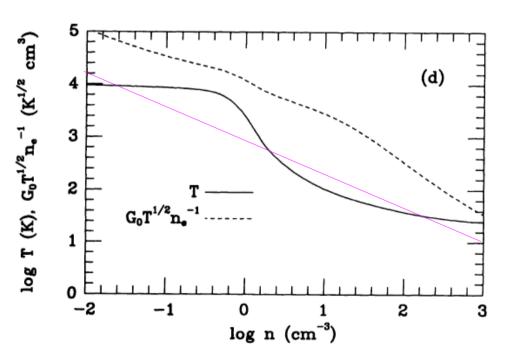
Cooling in molecular clouds

FIGS. 7(a)-7(c).—Total cooling per H₂ molecule as a function of H₂ density for kinetic temperatures 10 K, 20 K, and 40 K. The fractional abundance for each species has been taken from Table 3.

Goldsmith & Langer 1978

Thermal instability

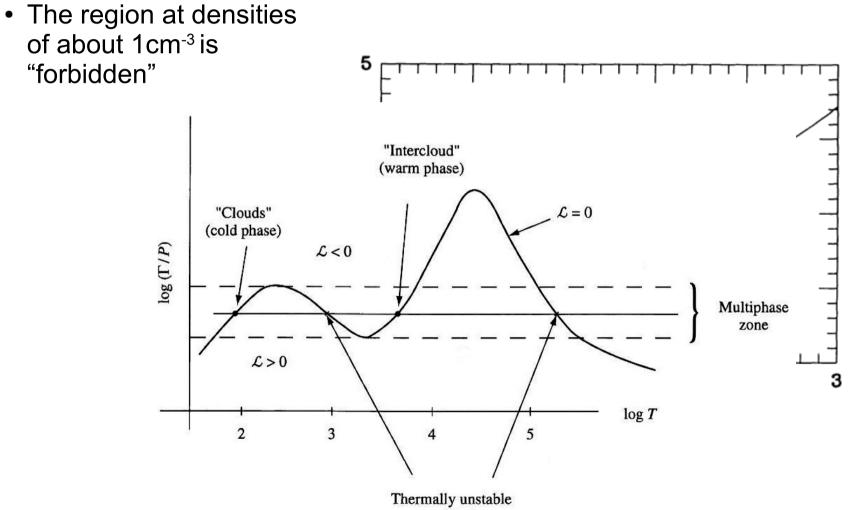
Starting point:


- Energy balance equation (assume steady-state): $\,\partial e/\partial t = \Gamma \Lambda = 0\,$
- Pressure equilibrium (p = const.): $T \propto 1/
 ho$

Heating processes Γ:

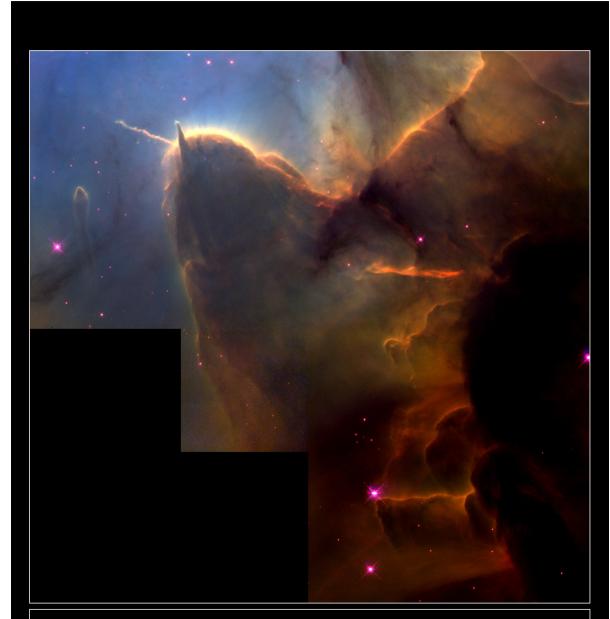
- cosmic rays, radioactive decay
- UV radiation → photo-ionization and dissociation
- Proportional to gas density ρ

Cooling processes Λ :


- recombination
- Gas-grain cooling
- Collisional excitation of radiation
- Proportional to square of density $\rho^{\scriptscriptstyle 2}$
- Threshold processes requiring minimum energy/temperature to work

Thermal instability

Resulting "equilibrium curve":


• Two stable branches separated by instable branch

equilibria

Thermal instability

Produces phase transition \rightarrow sharp cloud boundaries

Trifid Nebula • M20 Hubble Space Telescope • WFPC2

The Multiphase Interstellar Medium

- most HI mass seen in 21cm absorption (cold!)
- much of volume filled by HI seen in emission (warm!)

Field (1962): cosmic rays heat intercloud medium to 10,000K, but thermally unstable so clouds form.

Field, Goldsmith, Habing (1969): two phase ISM warm intercloud phase is stable.

Cox & Smith (1974), McKee & Ostriker (1977) 3rd phase: hot gas from Supernovae and HII Regions filling factor 0.2 - 0.7 unclear.

Three-Phase ISM

2-Phase + Supernovae produced hot medium

A SMALL CLOUD

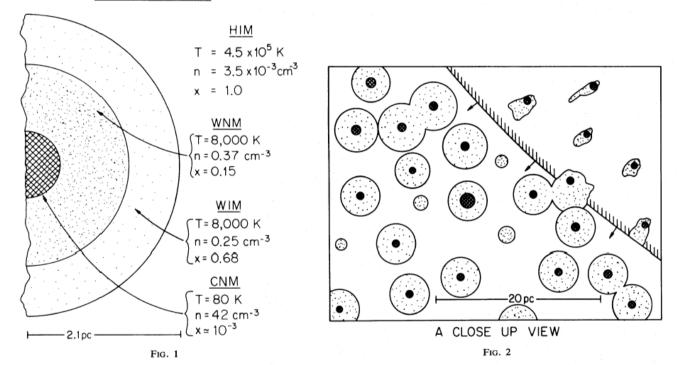
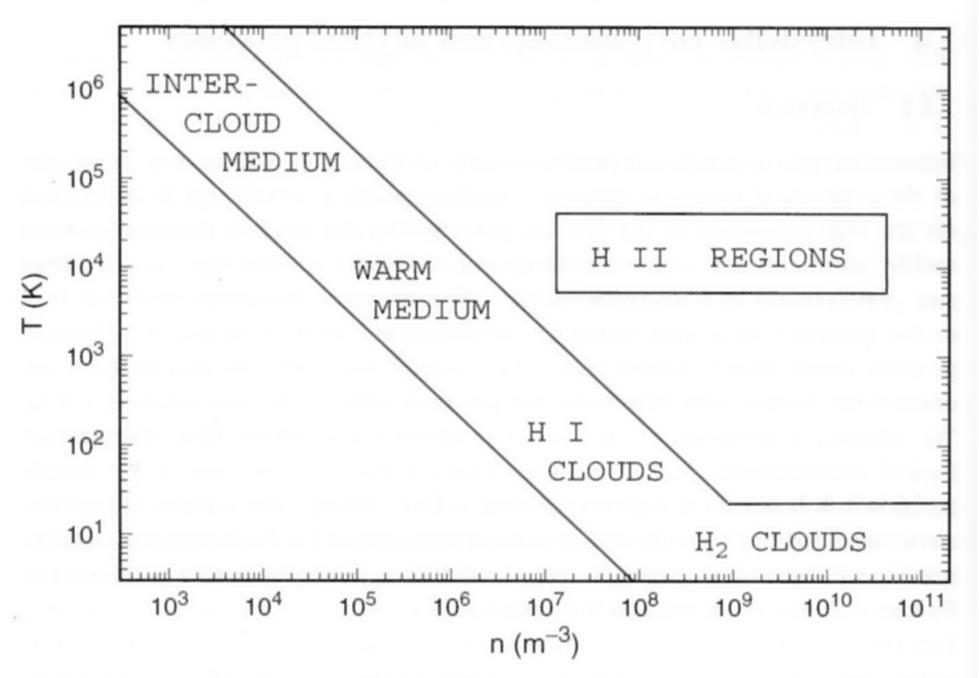


FIG. 1.—Cross section of a characteristic small cloud. The crosshatched region shows the cold core, which gives the usual optical absorption lines. Next is the warm neutral medium (WNM) with ionization produced by soft X-ray background. The outer layer (WIM) is gas largely ionized by stellar UV background. Typical values of hydrogen density n, temperature T, and ionization $x = n_e/n$ are shown for each component, except that a higher than average value of the soft X-ray flux has been assumed in order to produce a significant amount of WNM at this pressure.

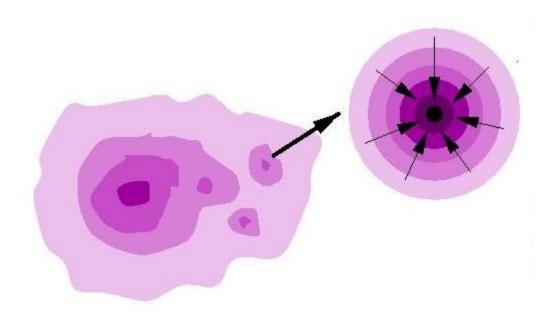
FIG. 2.—Small-scale structure of the interstellar medium. A cross section of a representative region 30 pc \times 40 pc in extent is shown, with the area of the features being approximately proportional to their filling factors. A supernova blast wave is expanding into the region from the upper right. The radius of the neutral cores of the clouds (represented by crosshatching) ranges from about 0.4 to 1 pc in this small region; all the clouds with cores have warm envelopes (*dotted regions*) of radius $a_w \sim 2.1$ pc. A few clouds are too small to have cores. The envelopes of clouds inside the SNR are compressed and distorted.

McKee & Ostriker 1977


The phases of the Interstellar Medium (ISM)

Composition of interstellar matter: 90% H, 10% He, traces of other elements Interstellar hydrogen exists in different chemical forms:

- molecular (H₂)
- atomic (HI) : warm and cold phases,
 - coexisting in pressure equilibrium (n.T ~ $3 \times 10^3 \text{ K cm}^{-3}$)
- ionized (HII) : gas illuminated by UV radiation from stars \rightarrow transient


Phase	Density (cm ⁻³)	Temperature (K)	Total mass (10 ⁹ M _{sun})
molecular	>300	10	2.0
cold neutral (HI)	50	80	3.0
warm neutral (HI)	0.5	8000	4.0
warm ionized	0.3	8000	1.0
hot ionized	3 x 10 ⁻³	500000	

Components of the ISM

Molecular clouds

- ...are the places where stars form
- So we have to understand them first

Moleçular Clouds

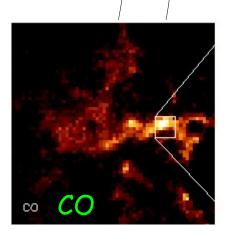
Diffuse Cloud (<2mag)

Translucent Cloud (3-5 mag)

Dark Cloud (10mag, cold, narrow lines)

Giant Molecular Cloud

4-10mag, warm, broad lines

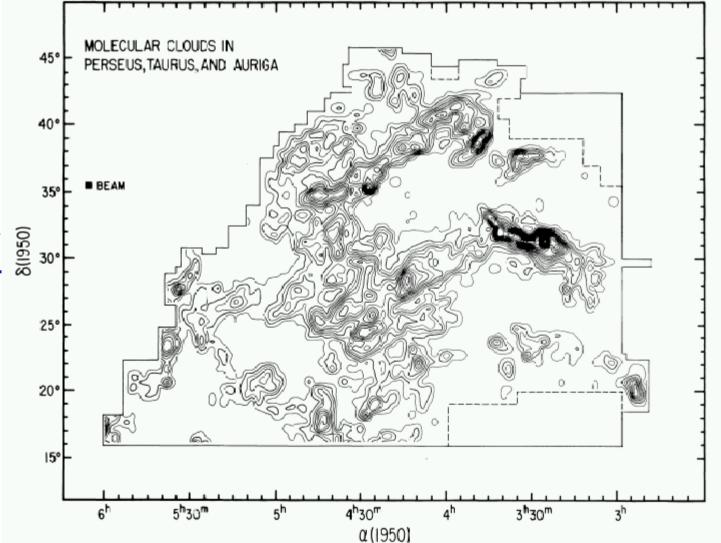

Clump f_v~5%

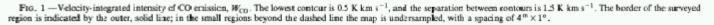
Core

CS

 $C^{18}O$

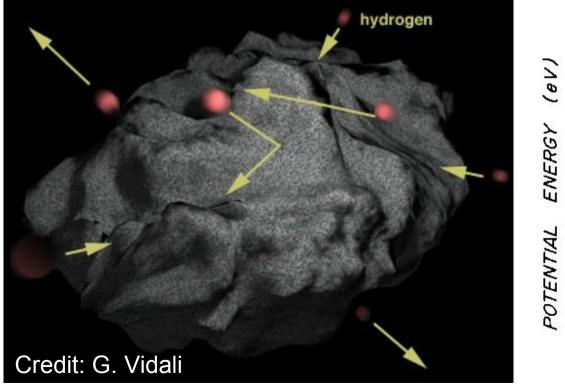
c¹⁸0

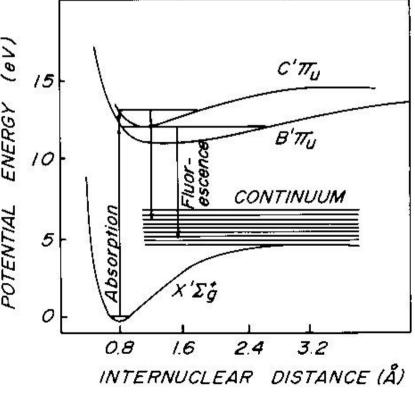

Molecular clouds


- dense interstellar matter, forming H₂
- visible in CO
- in pressure- and virial equilibrium
- condensations form stars

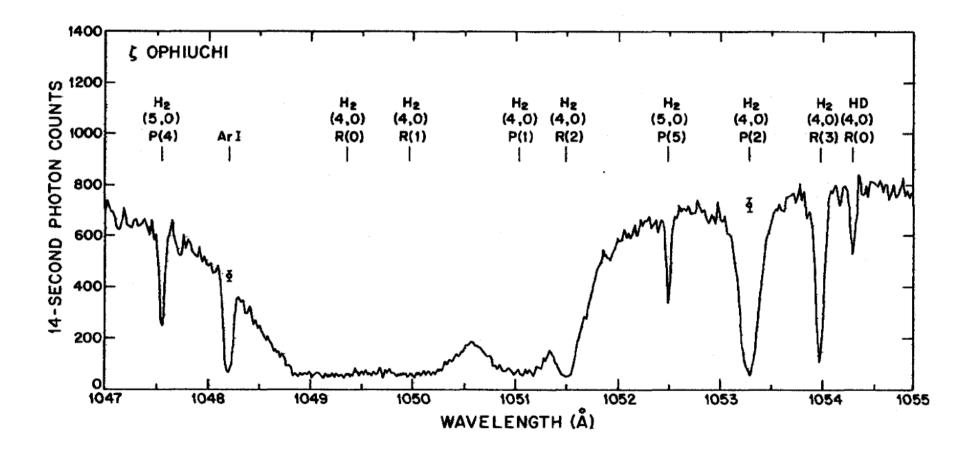
Туре	Size (pc)	n (cm ⁻³)	Temperature (K)	Mass (M _{sun})
Giant Molecular Cloud	50	10 ²	15	105
Dark Cloud Complex	10	5.10 ²	10	104
Individual Dark Cloud	2	10 ³	10	30
Dense low-mass Core	0.1	10 ⁴ -10 ⁵	10	10

Dark cloud complexes

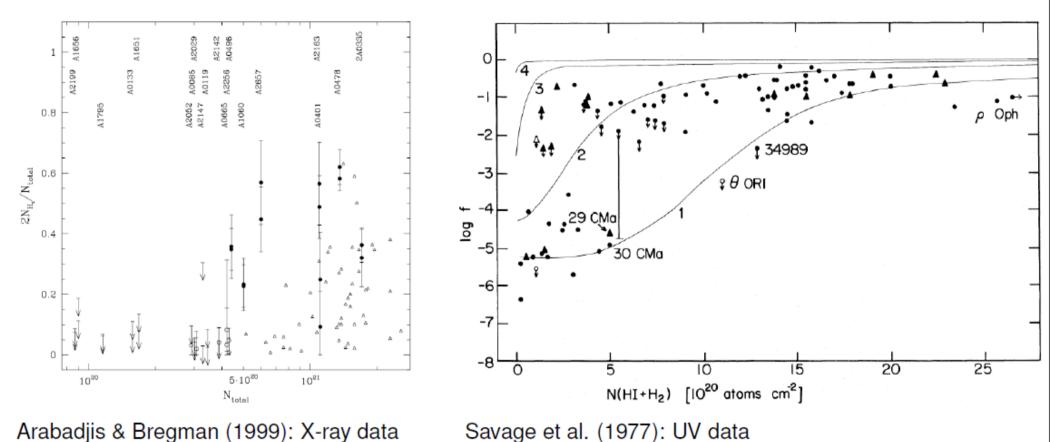

- Taurus-Auriga: isolated SF
 - **Ungerechts &** Thaddeus (1987)
 - 1.2m Columbia
- telescope, NYC ρ Ophiuchus: clustered SF



H₂ formation and destruction

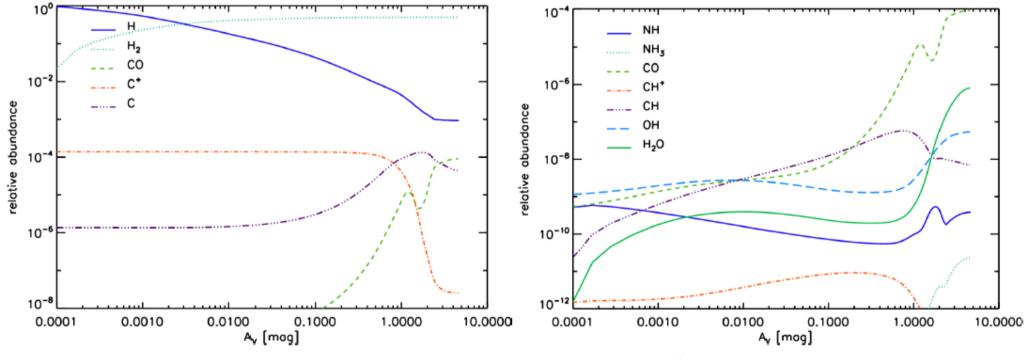

- Formation on dust grains
- Destruction by photodissociation

H₂ abundance


Interstellar H_2 lines towards ζ Ophiuchi

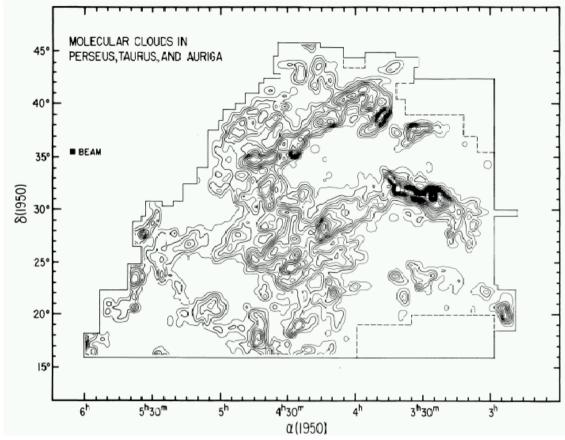
- Copernicus data 1970's
- FUSE data >1999

H₂ abundance


H₂ fraction

- up to 50% of the CNM+WNM in solar neighbourhood is molecular (Savage 1977)
- f_{H_2} is a steep function of $N(H_{tot})$, with a critical column density at about $5 \, 10^{20} \text{ cm}^{-2}$ (Savage et al. 1977, Liszt & Lucas 2001)

H₂ abundance


Density profile and external UV field produce chemical gradients:

KOSMA- τ model of a cloud with $\chi = 1, M_{tot} = 100 M_{\odot}, n = 500 \text{ cm}^{-3}$

- There is no "molecular cloud". Each molecule sees a different size of the cloud.
- None of the mm/sub-mm tracers measures H₂. H₂ is molecular where many other molecules are dissociated.

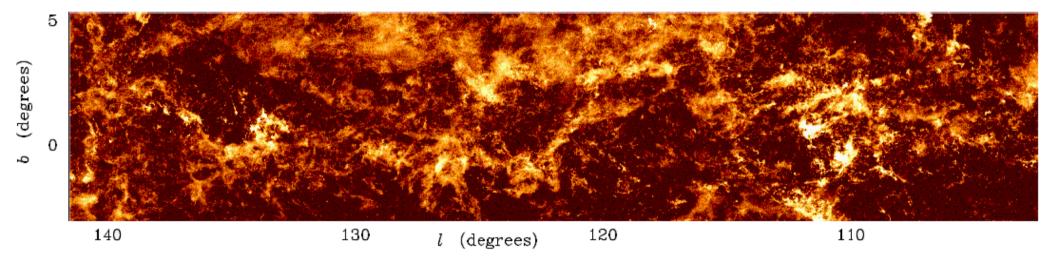
CO

- CO is most abundant molecule after H₂ and is easily observed through (sub-) mm lines ⇒
- Good tracer of H₂
- CO is very stable ($D_e = 11.09 \text{ eV} \Leftrightarrow 1118 \text{ Å}$) \Rightarrow can only be dissociated at 912 Å < λ < 1118 Å

Column densities with $A_{\rm V}$ 10-3 10 AV 0.3 1.3 5 3 0.7 N(CO)/N(H3) 104 n=10 105 10 10-6 107 22 10 10 20 10 $N(H_2)(cm^2)$

 \Rightarrow Increase in CO/H₂ at A_v=1-2 mag from 10⁻⁷ to 10⁻⁴

- Exact location and sharpness transition depend on
 - Strength UV radiation field
 - Density


CO

• Gas-phase carbon abundance

CO

CO fraction

- CO is efficiently formed at $N(H_{tot}) \stackrel{>}{\sim} 210^{21} \text{ cm}^{-2}$ ($A_V \stackrel{>}{\sim} 1$)
- $N(\text{CO}) \propto N(\text{H}_2)^2$ (Liszt & Lucas 2001)

Heyer et al. (1998): FCRAO survey of the Outer Galaxy

22% of the lines of sight through the Outer Galaxy show CO emission above a sensitivity limit of ≈ 2.4 K for the CO 1–0 line.

¹³CO in the inner Galaxy: lots and lots of structure

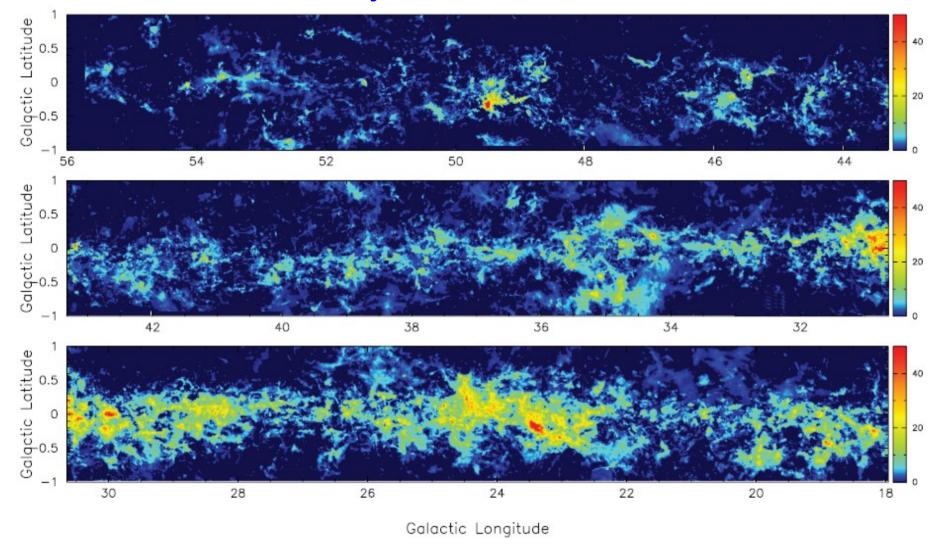
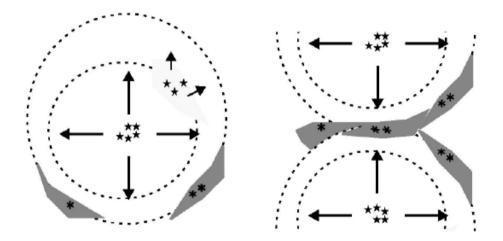


Fig. 1.—Integrated intensity image (zeroth-moment map) of GRS ¹³CO emission integrated over all velocities ($V_{LSR} = -5$ to 135 km s⁻¹ for Galactic longitudes $l \le 40^{\circ}$ and $V_{LSR} = -5$ to 85 km s⁻¹ for Galactic longitudes $l \ge 40^{\circ}$). The image shows that most of the emission is confined to $b \sim 0^{\circ}$, with concentrations at $l \sim 23^{\circ}$ and $\sim 31^{\circ}$. A striking aspect of the image is the abundance of filamentary and linear structures and the complex morphology of individual clouds. The image is in units of K km s⁻¹.

Clouds are not smooth, but complex, filamentary, fractal.


• fractal structures are created by a cascade of interstellar turbulence

The dynamic picture

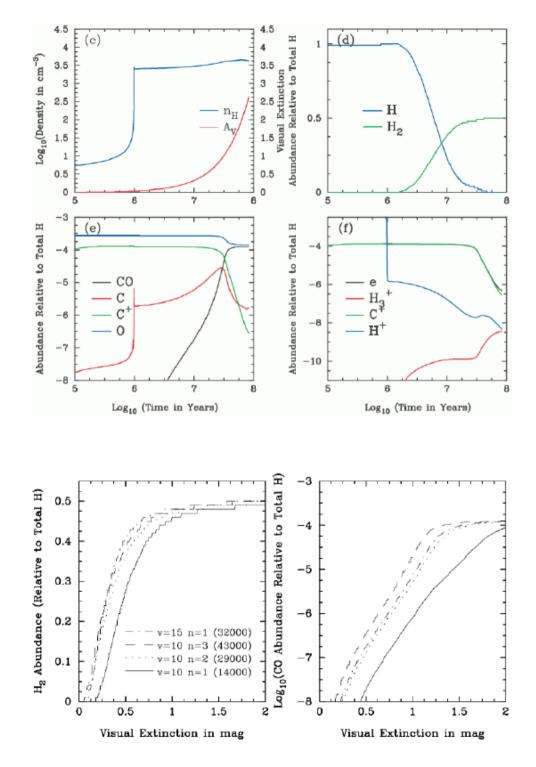
- Turbulence in molecular clouds is large-scale driven (Ossenkopf & Mac Low 2002).
- Turbulent clouds are just high-density knots in large scale flows of atomic material (Brunt 2003)
- Clouds are essentially shock-dominated structures (Hartmann et al. 2001)

Implications:

- clouds are short lived (1 ... 2 Myr)
- turbulent mass transport
- turbulent diffusion
- heating due to turbulence dissipation

Hartmann et al. (2001): triggering of molecular cloud and star formation by large scale flows, rapid dispersal of gas by newly formed stars

Problem:


At standard H₂ formation rate, $\approx 10^9 \text{yr}/n_{\text{H}}[\text{cm}^{-3}]$, $\tau_{\text{H}_2}(300 \text{ cm}^{-3}) = 3 \text{ Myr} > \tau_{\text{cross}}$

Fast H₂ formation

Solution: H₂ formation in short times at high densities created in shocks

Bergin et al. (2004):

- H₂ formation in a 1-D slow-velocity (10 km/s) shock in the atomic gas (1 cm⁻³).
- H₂ is efficiently formed and selfshielded.
- CO forms for $A_{\rm V} > 0.7$ on timescales of 10-20 Myr

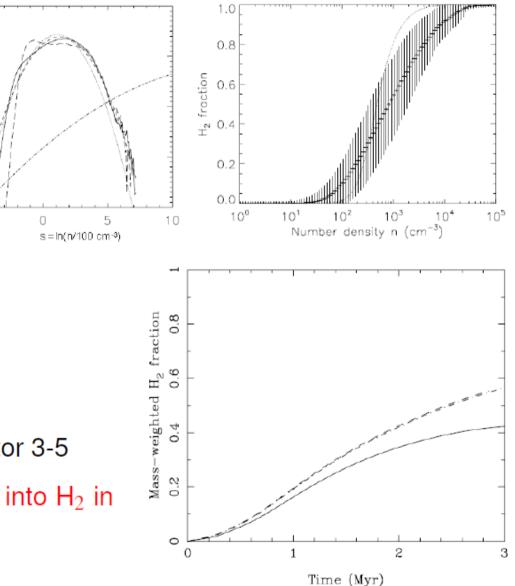
$\textbf{Fast}~\textbf{H}_2~\textbf{formation}$

Distribution of the formed H₂ by turbulent advection:

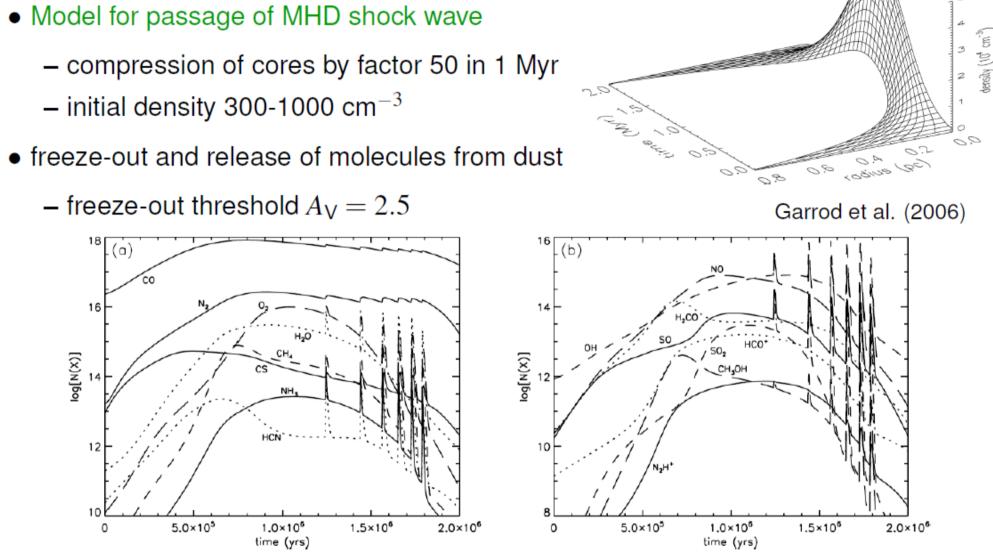
Log₁₀[p_m(s)]

-.3

-10


-5

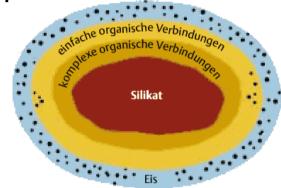
Turbulent cloud simulation including H₂ formation/self-shielding


Glover & Mac Low (2007):

• wide density distribution

- fast H₂ formation at $n_{\rm H} \stackrel{>}{\sim} 300 {\rm ~cm^{-3}}$
- turbulent redistribution of H₂ gas
- H₂ formation rate accelerates by a factor 3-5
- conversion of $\approx 40\%$ of the hydrogen into H₂ in the scale of 1-2 Myr

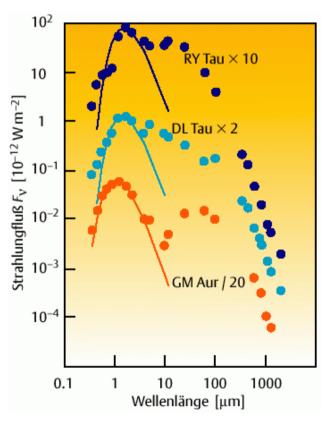
Fast chemistry



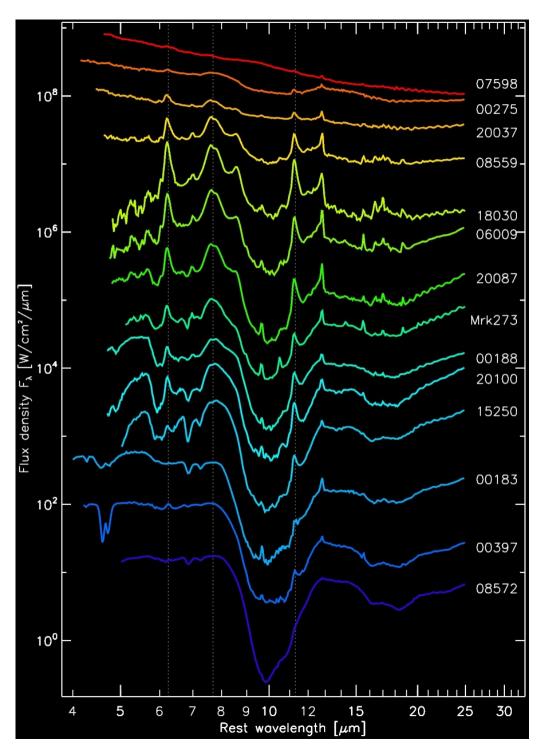
- Very fast formation and destruction of many molecules
- Molecular clouds are ensembles of transient cores

Dust

- Essential for cooling
 - Efficient emission through continuous spectrum
- Surface chemistry to form complex molecules
- Diagnostics as optically thin

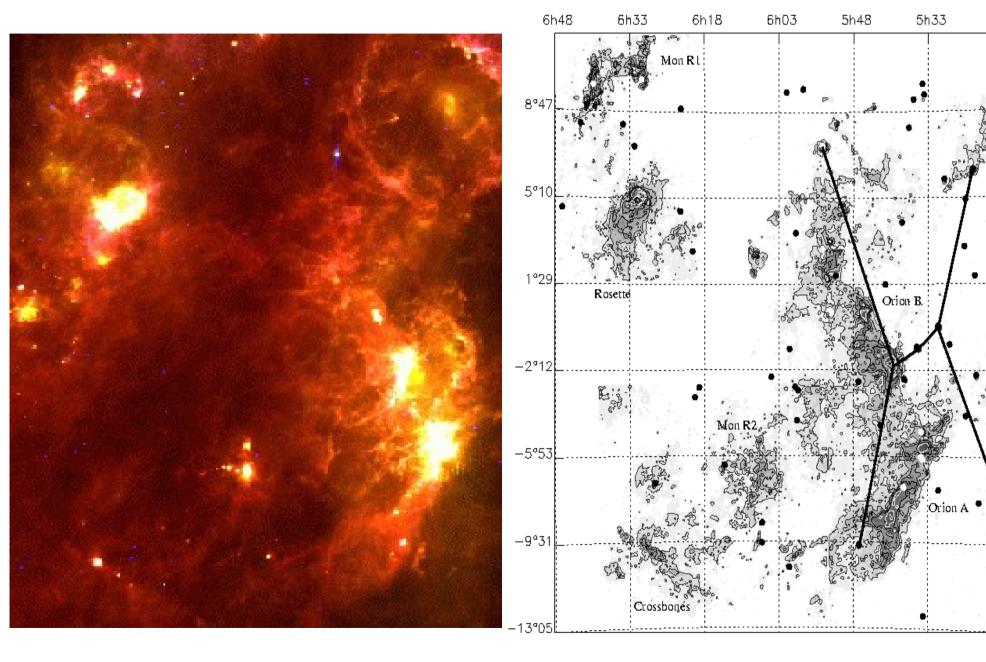

(far-) infrared emitter

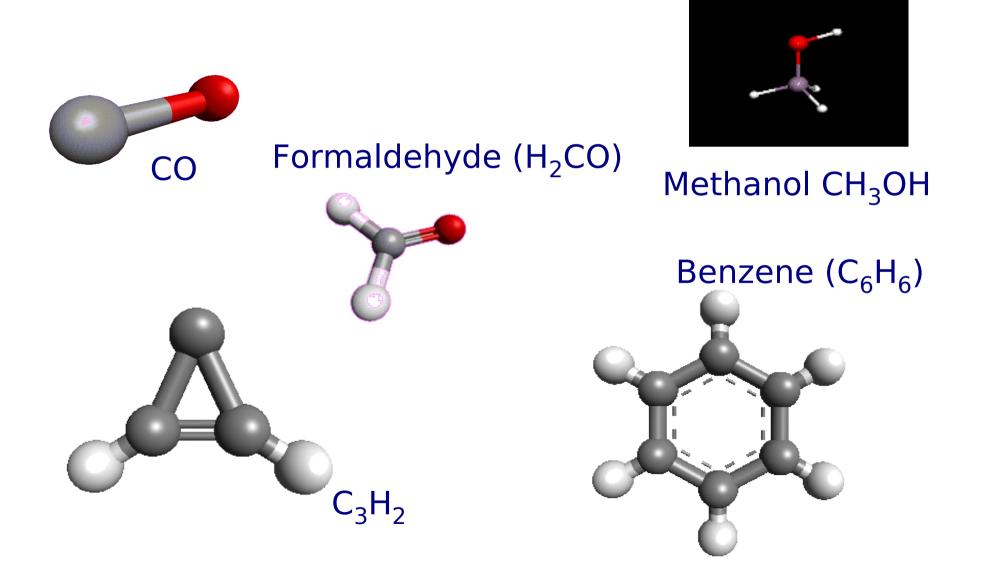
- Silicate and carbonaceous grains
- Organic and icy mantles
- Size spectrum from few Å to μm
 - → typical size 0.1µm
- Irregular structure


Dust

• Re-emits 99% of the total energy injected into the ISM

Spectroscopy traces composition

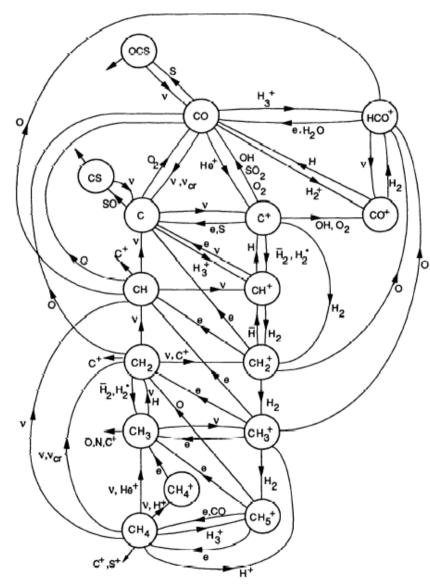

Infrared spectra of ultra-luminous galaxies (Lahuis et al)

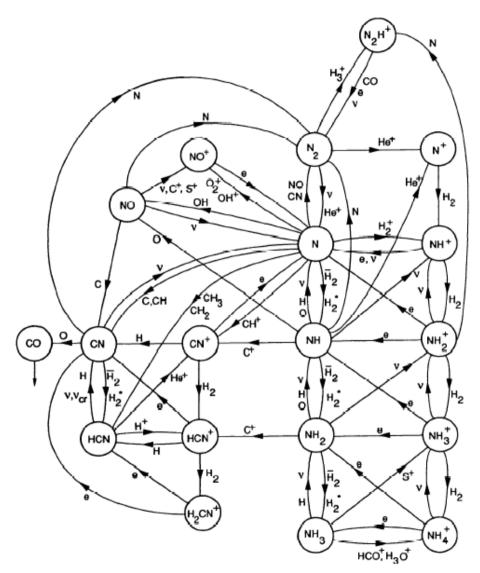


IRAS 100 μm

Starcounts

5h19



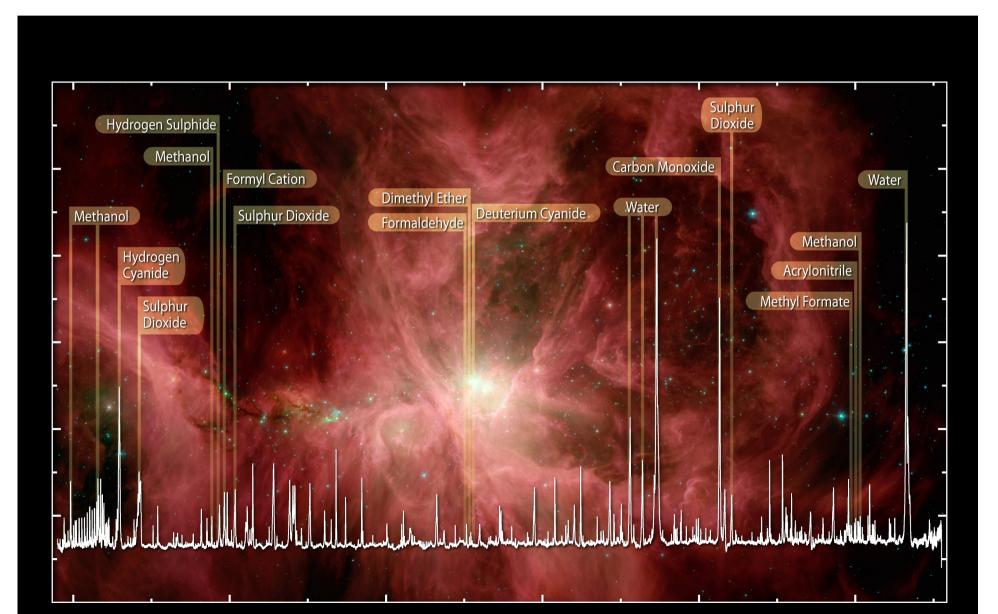


Networks of chemical reactions

- Formation of bonds
 - Radiative association:
 - Grain surface:
- <u>Destruction</u> of bonds
 - Photo-dissociation:
 - Dissociative recombination:
- <u>Rearrangement</u> of bonds
 - Ion-molecule reactions (fast): $X^+ + YZ \rightarrow XY^+ + Z$
 - Neutral-neutral reactions (slow): $X + YZ \rightarrow XY + Z$

- $X^+ + Y \rightarrow XY^+ + h_V$ $X + Y:g \rightarrow XY + g$
- $XY + h_V \rightarrow X + Y$
- $XY^+ + e \rightarrow X + Y$

Chemical networks of reactions Carbon

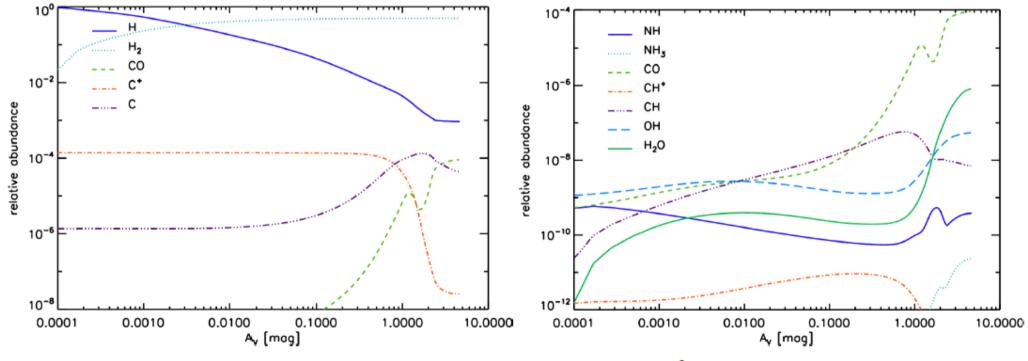

Nitrogen

Quantification of reaction rates

• Depend on temperature, UV field and cosmic ray rate

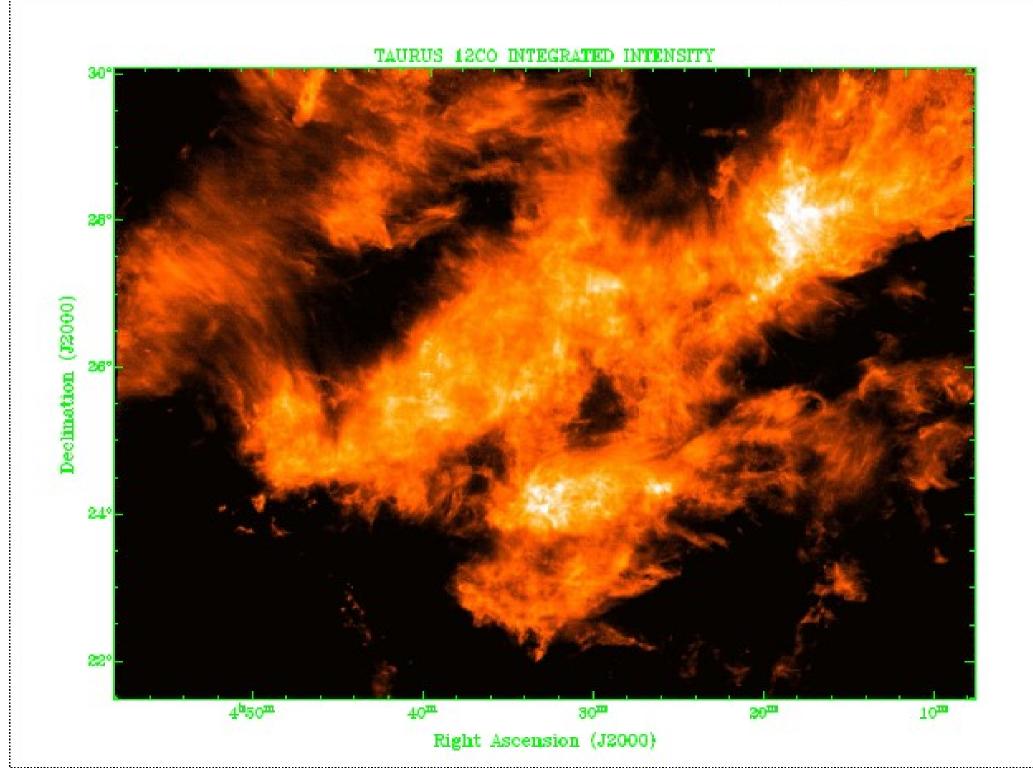
Reactants		Products		k _{ij}	Ea	Species	Cru	ED	
				(cm ⁺³ s ⁻¹)	(K)		(s ⁻¹)	(K)	
Н	HNO	NO	H2	3.68E+05	1.50E+03	Н	6.00E-09	3.50E+02	
н	HCS	H2CS		1.94E+12	0.00E+00	H2	1.20E-09	4.50E+02	
н	OCN	HNCO		1.94E+12	0.00E+00	HE	5.70E-08	1.00E+02	
н	ocs	CO	HS	1.94E+12	0.00E+00	c	4.20E-12	8.00E+02	
н	C20	HC2O		1.94E+12	0.00E+00	N	3.90E-12	8.00E+02	
н	C30	HC30		1.94E+12	0.00E+00	0	3.70E-12	8.00E+02	
н	HC2O	CH2CO		1.94E+12	0.00E+00	NA	6.70E-80	1.18E+04	
н	HC30	H2C30		1.94E+12	0.00E+00	MG	9.30E-40	5.30E+03	
н	H2O2	02Н	H2	5.16E+04	1.90E+03	SI	8.30E-24	2.70E+03	
н	CH4	CH3	H2	1.27E-01	5.94E+03	s	4.20E-14	1.10E+03	
н	C2H6	C2H5	H2	1.44E+00	4.89E+03	FE	3.60E-33	4.20E+03	
н	CHNH	CH2NH		1.94E+12	0.00E+00	CH	3.00E-11	6.54E+02	
н	CH2N	CH2NH		1.94E+12	0.00E+00	NH	5.40E-11	6.04E+02	
Н	CH3N	CH3NH		1.94E+12	0.00E+00	OH	6.30E-15	1.26E+03	
H	CHNH2	CH2NH2		1.94E+12	0.00E+00	C2	1.10E-14	1.21E+03	
H :	CH3NH	CH3NH2		1.94E+12	0.00E+00	NAH	3.80E-81	1.20E+04	
н	CH2NH2	CH3NH2		1.94E+12	0.00E+00	MGH	2.60E-41	5.55E+03	
н	H3C3N	H4C3N		3.19E+07	7.50E+02	FEH	1.00E-34	4.45E+03	
н	H4C3N	H5C3N		1.94E+12	0.00E+00	CN	1.60E-16	1.51E+03	
н2	CN	HCN	н	1.33E+00	2.07E+03	N2	9.80E-15	1.21E+03	
н2	NH2	NH3	н	2.49E-08	6.30E+03	co	9.80E-15	1.21E+03	
н2	CH2	CH3	Н	1.58E-03	3.53E+03		2.80E-25	2.94E+03	
H2	CH3	CH4	н	1.82E-08	6.44E+03	SIH			
				1.022 00	0.110.00	NO	9.40E-15	1.21E+03	

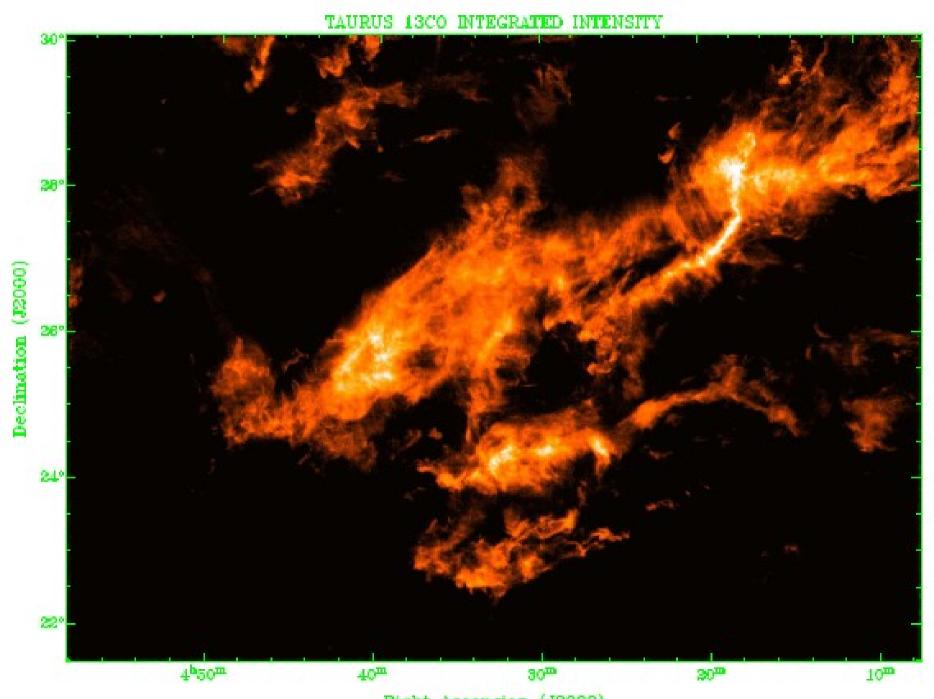
Systematic line searches


2 Atome	3 Atome	4 Atome	5 Atome	6 Atome	7 Atome	8 Atome	9 Atome	10 Atome	11 Atome	12 Atome	13 Atome
H ₂	C ₃	c-C₃H	C₅	C₅H	C₀H	CH ₃ C ₃ N	CH₃C₄H	CH₃C₅N	HC₃N	C ₆ H ₆	HC ₁₁ N
AIF	C₂H	I-C₃H	C₄H	I-H₂C₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH₃C6H	C ₂ H ₅ OCH ₃	
AICI	C ₂ O	C₃N	C₄Si	C₂H₄	CH ₃ C ₂ H	CH₃COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂ (?)	C₂H₅OCHO	C ₃ H ₇ CN	
C ₂	C ₂ S	C₃O	I-C ₃ H ₂	CH₃CN	HC₅N	C₂H	CH ₃ CH ₂ OH	H ₂ NCH ₂ COOH (?)			
СН	CH ₂	C₃S	c-C₃H₂	CH₃NC	CH₃CHO	H ₂ C ₆	HC7N	CH ₃ CH ₂ CHO			
CH⁺	HCN	C ₂ H ₂	CH ₂ CN	CH₃OH	CH ₃ NH ₂	CH₂OHCHO	C₃H				
CN	НСО	NH ₃	CH₄	CH₃SH	c-C₂H₄O	I-HC₀H (?)	CH ₃ CONH ₂				
со	HCO⁺	HCCN	HC₃N	HC₃NH⁺	H₂CCHOH	CH₂CHCHO (?)	C₅H [.]				
CO⁺	HCS⁺	HNCH*	HC₂NC	HC₂CHO	C ₆ H ⁻	CH₂CCHCN	CH ₂ CHCH ₃				
СР	HOC+	HNCO	нсоон	NH₂CHO		NH ₂ CH ₂ CN					
SiC	H ² O	HNCS	H₂CNH	C₅N							
HCI	H ² S	HOCO⁺	H ₂ C ₂ O	I-HC₄H							
KCI	HNC	H₂CO	H₂NCN	I-HC₄N							
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O							
NO	MgCN	H₂CS	SiH₄	H₂CCNH							
NS	MgNC	H₃O⁺	H₂COH⁺	C₅N⁻							
NaCl	N₂H⁺	c-SiC₃	C₄H⁻								
ОН	N ₂ O	CH ₃	CNCHO								
PN	NaCN	C₃N⁻									
SO	OCS	PH₃ (?)									
SO⁺	SO ₂	HCNO									
SiN	c-SiC₂										
SiO	CO ₂										
SiS	NH2										
CS	H ₃ +										
HF	H₂D⁺, D₂H⁺										
SH	SiCN			К Л							
HD	AINC	Molecules in space									
FeO (?)	SiNC							•			
O ₂ (?)	HCP										

CF⁺

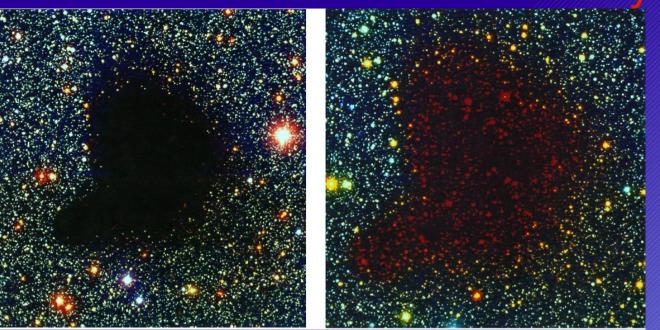
C₂P


Abundances


Density profile and external UV field produce chemical gradients:

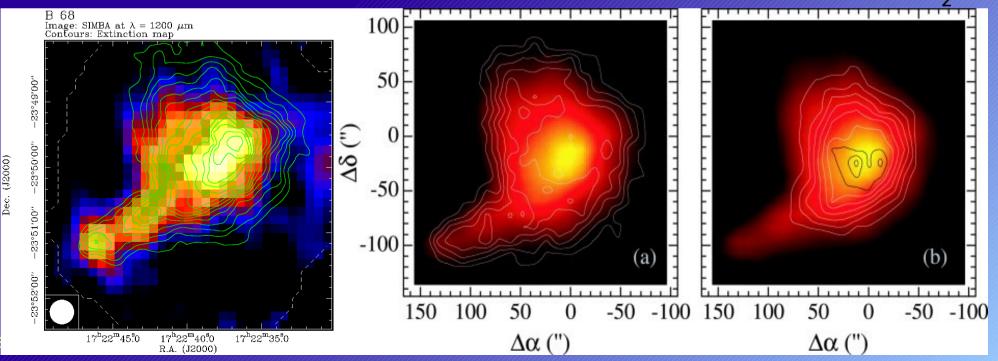
KOSMA- τ model of a cloud with $\chi = 1, M_{tot} = 100 M_{\odot}, n = 500 \text{ cm}^{-3}$

- There is no "molecular cloud". Each molecule sees a different size of the cloud.
- None of the mm/sub-mm tracers measures H₂. H₂ is molecular where many other molecules are dissociated.



Right Ascension (J2000)

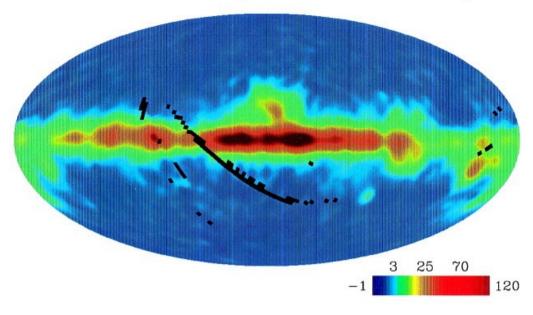
B68: Another "hole" in the sky


Visual

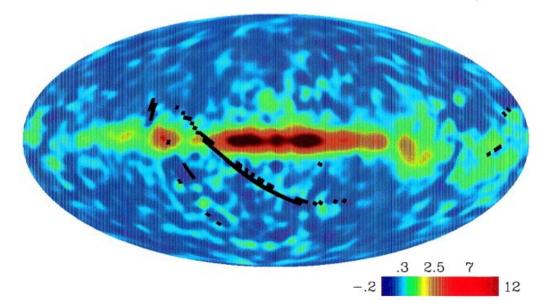
 $C^{18}O$

Near Infrared

1.2 mm dust continuum



Most important cooling lines


Wolken	neutral	ionisiert
diffus	 HI: 21 cm OI: 2.06 und 4.74 THz CII: 1.90 THz 	 Hα: 660 nm NII: 1.47 und 2.46 THz OIII: 3.39 und 5.78 THz NIII: 5.23 THz
	kalt	warm
dicht	 CO: Linien aller 0.12 THz CI: 0.49 und 0.81 THz CH: 0.54 THz 	 CO: Linien aller 0.12 THz CI: 0.49 und 0.81 THz CH: 0.54, 1.66 und 2.58 THz OH: 2.51 THz H₂O: viele Linien ν > 1 THz Staub: Kontinuum

Most important cooling lines

COBE FIRAS 158 μm C⁺ Line Intensity

COBE FIRAS 205 μ m N⁺ Line Intensity

CII and NII from the diffuse ISM and bright HII regions around young stars