
Star formation

Protostellar Cores, Stability and Collapse



Starting point

● Dense cores on molecular clouds

● Do they collapse?



Isothermal cloud in pressure 
equilibrium
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1-D equilibrium between gravity and pressure:

Pressure from gravity:

Included mass:



Combine with equation of state                 
 (Bernoulli equation):

P=n k T=
k T
m

=c s
2

with the isothermal sound speed

c s= ∂ P∂ = kTm ≈0.06 T [K ]

m/mH 2

[km s−1]

m  is the mass of a gas particle

Isothermal cloud in pressure 
equilibrium



Singular isothermal sphere
Shu 1969, 1977:                        

Ignore singularity at r=0

Density and mass distribution

r =
c s
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= Scale-free solution!                



solved with the boundary conditions

0=cand
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dr ∣r=0

=0

using variable substitutions

y=

c
; x=r  4Gmc

kT
leads to the following form of the Emden equation
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with boundary conditions
y 0=1 and y ' 0=0

the solution of which is a Bonnor-Ebert sphere

Bonnor-Ebert sphere



Solution (numeric)

● density is flat at the core
● falls off with r-2 to the outside



B68 – a Bonnor-
Ebert sphere



Mass

the mass of the BE sphere is

M=4∫0

R
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with xu=R4G c /c s
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Relevant integral:

I  xu=∫0

xu
y x2dx



Boundary

at the outer edge, at r=R
the cloud is bound by the outer pressure Pext

which is equal to the inner pressure at this point
Pext=c s

2R

Problem: Solution only valid for infinite configuration

● At any outer edge, the mass would disperse from the 
thermal pressure.
● Cloud boundary must be consistent with external pres-
sure.



Boundary

●  The value of the outer pressure P
ext

 and radius “scale” 
the dimensionless BE-sphere to physical units.

Total radius and mass:

R=
c s

2

2G
P ext

−1 /2

M R= 2


c s
4
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Stability

A cloud is stable if a pressure increase will be

compensated by a size reduction:     
∂Pext

∂R
0

Detailed computations show:               

P crit=1.40
k 4

G3m4

T 4

M 2     maximum outer pressure

Rcrit=0.411
Gm
kT

M    minimum radius for stability

when such a cloud is perturbed, it will oscillate
around its equilibrium position



Oscillating B68



Critical mass

M crit=1.18
cs

4

G3 /2 P ext
−1 /2



Remarks

● Pressures as in tenuous HII regions (nkT = 
10-12 dyn cm-2, that is a density of 1 cm-3 at 
a a temperature of 10,000 K) would allow a 
maximum mass of only 6 M

⊙

● That doesn't mean that more massive 
clouds can't be stable, it just means they 
need other ways of support (turbulent, 
magnetic, [rotation]) besides thermal

● unstable clouds will collapse and form stars



Structure of protostellar cores in ρ Oph: Motte & Andre (1999)



Structure of protostellar cores in ρ Oph: Motte & Andre (1999)



Clump size spectra

●Wide distribution of clump masses
●Many cores close to virial equlibrium

(Stutzki & Güsten 1990)



Virial Theorem
1
2
d 2 I

dt 2 =2T2U2intMmW

with I=∫V
 r2dV  moment of inertia

and T=
1
2∫V

v2dV  kinetic (bulk) energy

and U=
3
2∫V

P dV  internal (thermal) energy

and int=
1
2∮S

x i P ni dS  surface pressure term

and M=
1
8
∫V

B2dV  magnetic energy

and M=
1
4
∮S

x i Bi B j n jdS  magnetic stress at surface

and W=−∫V
x i 

∂

∂ x i
dV  gravitational energy



Virial equilibrium

1
2
d 2 I

dt2 =0  virial equilibrium

and int=M=0

2T2UMW=0



Thermal Support

for U=
M RT


 (thermal energy)
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≪1 for reasonable values: no thermal support



Magnetic Support

M
∣W∣

=
∣B∣2R3

6 GM
2

R 
−1

=0.3  B
20G 

2

 R
25 pc 

4

 M

105 M ⊙

−2

M
∣W∣

 close to 1: possible for support



Kinetic Energy
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 virial velocity dispersion

many clouds observed with approximately
 virial velocity dispersions



Virial mass
● For cloud supported by turbulence one often 

assumes virial equilibrium and    U = M = 0
● Then, one defines a virial mass

2TW=0

M vir=
〈R〉 v2

G
 virial Mass

v2  is the 3-D rms
obtained from 1-D FWHM assuming isotropy

M
M ⊙

=250  vFWHM
km s−1 

2

 Rpc 



Stability

● Often, one compares M
vir 

with some other 
mass (e.g. determined by dust measure-
ments) and says

● The cloud is stable, if M
vir

 ≥ M
● Unstable to collapse, if  M

vir
 ≤ M

Rests on a lot of assumptions



Jeans criterion

● James Jeans was the first to define a 
general criterion for stability

● Infinitely extended uniform medium
● Purely thermally supported
● constant temperature, uniform density and ini-

tially at rest 
● unphysical, but useful order-of-magnitude estimate



Jeans criterion

● Consider infinite medium with constant 
density ρ

0
:



Jeans criterion

● Consider temporal evolution of a small pertubation ρ
1
:

● Induces pertubation in velocity field v
1
, pressure p

1
 and 

gravity field Φ
1



Jeans criterion

Resulting dispersion relation:

● Real solution: density waves

● Imaginary solution: collapse
or expansion

● Transition at k
J

Phase velocity

Group velocity



The cloud is unstable if the pertubation
grows exponentially, i.e. 2

0
which leads to the critial wavenumber

k J=

LJ

= 4Gm0

kT

Jeans criterion

● A medium with a size > L
J
 allows instable pertubations 

to develop
● Clouds with L > L

J
 are prone to collapse.



Jeans length

LJ=  k T
4Gm

=0.12 T /10[K ]

n /104[cm−3]
[ pc ]



Jeans Mass

M J≈L J
3
=   k

4Gm 
3/2

 T
3


≈ T /10K 3

n /104 cm−3

[M ⊙ ]



Jeans Mass

● Giant Molecular clouds: T=20K, n=103 cm-3

→ M
J
= 10 M

⊙

but: M
GMC

= 104 M
⊙
 → all GMCs should collapse

● Should not be taken too seriously
● other means of support

● magnetic
● turbulent – that can be included by using the turbulent 

velocity instead of the sound velocity

● Because the Jeans mass drops with densi-
ty, a collapsing cloud will fragment



Free-fall time
● Compute time scale from Jeans dispersion relation:

● Fastest growth 
for k → 0

●

● Only density
dependent

● Every mass 
> M

J 
must 

collapse in τ
ff



Free-fall time

1
2
d 2 I

dt 2 =W  free gravitational collapse

1
2
d 2 I

dt 2 =−
G M 2

R
  R  is a characteristic Radius

and I=MR2

t ff= R3

GM
=7×106 yr  M
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3 /2

free-fall time

● Alternative computation
● Assuming finite cloud (virial approach)

● Same result – fast collapse 



Free-fall time

● Same result – fast collapse 

Depends only on 
density, not on total 
mass or size



Star Formation and Molecular 
Clouds

● Star Formation Efficiency in Clouds
● 1% to 4% of mass with A

V
>2 in dense cores

● 2% to 4% in stars
● Cloud depletion time 40-100 Myrs

● Star Formation Efficiency in Cores
● About 25% in dense gas
● Core depletion time 0.5 to 3 Myr



What does it mean?

1) Star formation could be slow, but efficient
● At any given time, only a few % of the mass are 

made into stars
● But eventually, most of the cloud gets trans-

formed into stars
2) Star formation could be fast, but inefficient

● Molecular clouds form rapidly
● A few % of the mass is transformed into stars
● The rest is dispersed again

● Relationship with Molecular Cloud lifetimes



Model 1: slow star formation

● Molecular clouds are long lived (few 107 yrs)
● ISM is in an equilibrium state
● Magnetic fields prevent rapid collapse of 

cores
● Stay in quasi-static equilibrium for a long time
● Collapse possible through ambipolar diffu-

sion
● Filamentary appearance: magnetic fields



Model 2: fast star formation

● Molecular clouds short lived (few 106 yrs at 
most)

● ISM is not in any equilibrium, particularly 
not virial

● Rapid turbulent fragmentation: solves the 
problem of support for turbulence

● Star Formation is very dynamic
● Some cores collapse and form stars
● Some cores disperse again
● Filamentary appearance: shocks



Arguments for rapid star formation

● Few starless 
cores 
observed

● No magnetically subcritical cores observed
● Small age spread in stellar associations
● Young chemistry supports young clouds



Global scenario

● Model 1: Retarding effects
● turbulent pressure
● Rotation → angular momentum transfer
● magnetic fields are significant

● Model 2: No static cores exist!
● Large scale turbulent flows

→ external terms τ
int

, τ
M
 exceed internal terms

● Continuous “stirring” of turbulence



Hennebelle et al. 2008

Models: colliding flows





Dynamics of collapse
● Larson-Penston solution
● Inside-Out collapse: never static



Dynamics of collapse 

● Run-away collapse
● Higher density → faster collapse → higher density



Turbulent fragmentation

● High density regions always evolve fastest

● The density increase further reduces the Jeans mass

● Subunits become gravitationally instable and collapse 

independently

● Break-up of collapse into smaller and smaller entities 

→ fragmentation

● End of cascade determined by

● Dissipation scale from molecular viscosity

● Ambipolar diffusion scale



Observational evidence for 
Fragmentation 

Zhang et al. 2009

M≈ 10 M
Jeans



Turbulent cloud collapse



Turbulent cloud collapse
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