Star formation

Shock impact

Interaction of young stars with their environment

$5^{h}33^{m}00^{s}$ $5^{h}32^{m}50$

UV radiation (M42)

Stellar winds (WR224)

Supernovae (Crab nebula)

Bowshock from outflow

Specific outflow chemistry

Shock chemistry

- Sputtering of grain mantles
 - dust grain disruption
 - SiO enhanced by up to 6 orders of magnitude
- Compression through shock
- High-temperature chemistry
 - molecular dissociation
 - endothermic reactions
 - ice sublimation (e.g. lot of CH_3OH released)
- Ion-neutral chemistry in ambipolar diffusion zone of C-shocks

Some of these processes have short time scales

 \rightarrow possibility to use them as chemical clocks

Types of shocks:

- J-shocks (jump shocks)
 - very high temperatures (10,000 K)
 - dissociative
 - molecule reformation in postshock gas
 - cooling by molecular radiation
- C-shocks

("continuous" shocks)

- in presence of magnetic fields
- broad shocks with moderate temperatures (100-1000 K)
- ambipolar diffusion in shock

Shock physics

J shock: radiative Strong heating $T/T_{\rm m}$ 0.1 zone from shock comthermalization 0.01 radiative zone pression precursor 10^{-3} 10² •Interaction of preshock transition shock gas with p1p0 10 post-shock gas preshock postshock through Radiation Magnetic V/Vs 0.5 field 0

distance

Shock chemistry

Example:

Water production in shock by neutral-neutral reactions initiated by O + H₂ + 2980 K \rightarrow OH + H OH + H₂ + 1490 K \rightarrow H₂O + H

Shock chemistry

Full example of OH chemistry in C shock:

