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ABSTRACT

We report serendipitous detections of line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 3, 6,
and 7 in the central parsec down to within 1” around Sgr A* at an up to now highest resolution (<0.5"") view of the Galactic center
(GC) in the submillimeter (sub-mm) domain. From the 100 GHz continuum and the H39« emission we obtain a uniform electron
temperature around 7, ~ 6000 K for the minispiral. The spectral index (S o v*) of Sagittarius A* (Sgr A*) is ~0.5 at 100-250 GHz
and ~0.0 at 230-340 GHz. The bright sources in the center show spectral indices around —0.1 implying Bremsstrahlung emission,
while dust emission is emerging in the minispiral exterior. Apart from CS, which is most widespread in the center, H*CO*, HC3N,
Si0, SO, C,H, CH3;0H, *CS and N,H* are also detected. The bulk of the clumpy emission regions is at positive velocities and
in a region confined by the minispiral northern arm (NA), bar, and the sources IRS 3 and 7. Although partly spatially overlapping
with the radio recombination line (RRL) emission at same negative velocities, the relation to the minispiral remains unclear. A likely
explanation is an infalling clump consisting of denser cloud cores embedded in diffuse gas. This central association (CA) of clouds
shows three times higher CS/X (X: any other observed molecule) ratios than the circumnuclear disk (CND) suggesting a combination
of higher excitation, by a temperature gradient and/or infrared (IR) pumping, and abundance enhancement due to UV and/or X-ray
emission. Hence, we conclude that this CA is closer to the center than the CND is to the center. Moreover, we find molecular line
emission at velocities up to 200 kms~'. Apart from the CA, we identified two intriguing regions in the CND. One region shows
emission in all molecular species and higher energy levels tested in this and previous observations and contains a methanol class I
maser. The other region shows similar behavior of the line ratios such as the CA. Outside the CND, we find the traditionally quiescent
gas tracer NoH* coinciding with the largest IR dark clouds in the field. Methanol emission is found at and around previously detected
methanol class I masers in the same region. We propose to make these particular regions subject to further studies in the scope of
hot core, cold core, and extreme photon and/or X-ray dominated region (PDR/XDR) chemistry and consequent star formation in the

central few parsecs.

Key words. Galaxy: center — Galaxy: nucleus — submillimeter: ISM — ISM: molecules — ISM: clouds —

ISM: kinematics and dynamics

1. Introduction

The inner few parsecs of our Milky Way are a very fascinat-
ing and complicated region where we have the opportunity to
study the interaction of a supermassive black hole (SMBH)
with its environment on the smallest possible spatial scales. Our

* Based on ALMA observations under the project number

2011.0.00887.S, which were executed on 18 May 2012.

** Supplementary data (reduced FITS cubes and images) of the
continuum and line emission listed in Tables 1 and 2 are only available
at the CDS via anonymous ftp to
cdsarc.u-strasbg. fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?J/A+A/603/A68

Article published by EDP Sciences

SMBH, Sagittarius A* (Sgr A*), is located at the heart of a nu-
clear stellar cluster of massive stars (e.g., Serabyn & Lacy 1985;
Krabbe et al. 1991, 1995), and these are both situated at the focal
point of three infalling ionized gas streamers, called the minispi-
ral or Sgr A West (e.g., Lo & Claussen 1983; Roberts & Goss
1993; Zhao et al. 2009). The minisprial is not only visible in the
thermal emission of ionized gas but also in the thermal emis-
sion of hot dust (T ~ 200 K; Gezari et al. 1985; Cotera et al.
1999; Viehmann et al. 2006; Lau et al. 2013). Several stars from
the nuclear stellar cluster are interacting with the streamers by
either just passing through them and forming bowshocks or
by being embedded into them. Furthermore, the extreme youth
(~6 x 10° yr; Paumard et al. 2006; Bartko et al. 2009) of many
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of these stars suggests they formed in situ and challenges our
current understanding of star formation in such environments
(e.g., Nayakshin et al. 2007). Two of the minispiral arms seem
to be part of the inner ionized edge of the circumnuclear disk
(CND) of molecular gas. The CND structure extends from 1.5 pc
to about 2.5 pc (e.g., Guesten et al. 1987; Jackson et al. 1993;
Marr et al. 1993; Yusef-Zadeh et al. 2001; Wright et al. 2001;
Christopher et al. 2005) and is connected via molecular gas
streamers, especially in the south and west, to larger cloud asso-
ciations ultimately related to the giant molecular clouds (GMCs)
— M-0.02-0.07 (50 kms~!-cloud) and M-0.13-0.08 (20 kms~!-
cloud) in the east and south of the CND (Coil & Ho 1999, 2000;
Liu et al. 2012).

Earlier large-scale molecular studies of the Galactic cen-
ter (GC), such as those mentioned above, suggested that the
central cavity inside the CND is devoid of molecular gas and
contains only neutral and ionized material. However, indica-
tions for the opposite have been accumulating in the past
in the form of CO, H,CO, Hj, and OH absorption fea-
tures (Geballe et al. 1989; Goto et al. 2014; Karlsson et al. 2003,
2015) as well as high resolution maps of CN, high energy transi-
tions of HCN and CS, and near-infrared (NIR) transitions of H,
(Montero-Castaiio et al. 2009; Martin et al. 2012; Ciurlo et al.
2016). In addition, Moultaka et al. (2004, 2005, 2015) confirmed
the ubiquitous presence of water and CO ice in the minispiral.
With the advent of the Atacama Large Millimeter/ submillime-
ter Array (ALMA) we have access to the spatial resolution and
sensitivity required to study the molecular gas content in this re-
gion. We report the serendipitous detection of line emission in
the central parsec up to within 1" (~0.04 pc) around Sgr A* in
projection. The ALMA data used was obtained from the archive
at an angular resolution of down to <0.5”. At the distance to
the GC of — here we adopt 8 + 0.3 kpc (Schodel et al. 2002;
Eisenhauer et al. 2003; Horrobin et al. 2004; Ghez et al. 2008;
Gillessen et al. 2009a,b) — this corresponds to about 28 mpc or
5775 AU. This allows the so far highest angular and spatial view
on the GC in the sub-mm domain. Among the highlights are
the very first 340 GHz map of the minispiral, the very first and
highly resolved detection of molecular emission in the imme-
diate vicinity of the SMBH, and the highly resolved structures
of CND features, especially of a region comprising a methanol
class I maser closest to the SMBH.

The paper is organized as follows: in Sect. 2 we give a de-
tailed description of the observations including the calibration
and line and continuum imaging. Results and data analysis are
given in Sect. 3. The global results on radio continuum and ra-
dio recombination lines (RRL) are given in Sects. 3.1 and 3.2.
The molecular gas emission in the outer and inner region (i.e.,
beyond and within the central 40” of the GC), including re-
sults from a few special regions, are described in Sects. 3.3
and 3.4. The results and analysis of the molecular gas kinematics
are presented in Sect. 3.5. In the discussion in Sect. 4 we con-
centrate on the continuum spectral index (Sect. 4.1), the elec-
tron temperature (Sect. 4.2), and the emission toward some of
the most prominent stellar sources in the central stellar cluster
(Sect. 4.3). Molecular line ratios including molecular excitation
and abundances are discussed in Sect. 4.4. In Sect. 5 we de-
scribe the general nature of the molecular gas toward the central
region of the Milky Way. Here we concentrate on the IR dark
clouds (IRDC) and methanol masers (Sect. 5.1), the high veloc-
ity clouds (Sect. 5.2), and the origin of the molecular gas in the
central region (Sect. 5.3). A summary is given in Sect. 6. We
present additional images and tables in Appendices A-E.
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2. ALMA observations and data reduction

The GC is one of the most complex regions in the Milky Way. A
detailed analysis requires high sensitivity and angular resolution.
Both can now be obtained using ALMA. For the presented de-
scription and analysis we used GC data obtained in a monitoring
campaign, under the project 2011.0.00887.S (PI: Heino Falcke),
on 18 May 2012 with ALMA in Band 3, 6, and 7 alternatingly.
A summary of the observational properties per band is given in
Table 1.

2.1. Observation

For the observations in the three bands the corresponding cen-
tral frequencies were tuned to ~100, 250, and 340 GHz, respec-
tively. Using the Time Division Mode, the correlator provides
128 channels with a width of 15.625 MHz resulting in a to-
tal bandwidth of the spectral window of 2 GHz. This translates
to velocity channel widths of ~50, 20, and 15 km s respec-
tively. Each band contains four spectral windows yielding a total
effective bandwidth of 8 GHz. The single pointing on Sgr A*
(17245m40%040, —29°00728”7118, J2000) covers a field of view
(FOV) of ~60, 23, and 17", respectively. During the observa-
tions, the array was in its most extended configuration (in cycle
0) with baselines ranging from 36 to 400 m. This results in an-
gular resolutions of about 1.5, 0.7”, and 0.5”, respectively.

The total observation time is 7.5 h and the integration time
per target and band is on the order of 20 min. Using 19 antennas
and distributing the scans per band equally over the whole obser-
vation time yields a superb uv coverage (see Fig. A.1). With this
configuration, the instrument is sensitive in the different FOVs
to angular scales <10”, <4” and <3, respectively.

2.2. Data calibration

The basic reduction and calibration was performed with
the Common Astronomy Software Application (CASAv3.4;
McMullin et al. 2007) using the reduction scripts provided with
the archive data. The uncertainty in the flux calibration is less
than 17%, 9%, and 10% in band 3, 6, and 7, respectively.
All further reduction, imaging, and analysis were carried out
in CASAv.4.3. We inspected the visibilities and flagged resid-
ual noisy data. The flux variability of Sgr A* produces strong
side lobes in the time-integrated image such that the underly-
ing fainter extended emission, which is a main focus of our
investigation, is not visible. Hence we performed an elaborate
and careful self-calibration not only on phase but also on ampli-
tude, despite the variable nature of the source. Phase-only self-
calibration enhances the dynamic range (DR) only by a factor
of 1.7, 6.4, and 6.2 at 100, 250, and 340 GHz, respectively.
Combining it with a subsequent amplitude and eventually an
amplitude-phase self-calibration yields a total improvement of
the DR by a factor of 11.4, 31.9, and 57.7, respectively. There-
fore, by trading astrometric and time resolution information of
the data, we were able to increase the DR dramatically, i.e., to
4500, 7600, and 11200, respectively, resulting in an overall data
quality sufficient for our purpose.

The subtraction of the continuum from the uv data gave ac-
cess to the emission line information. A description of the proce-
dures for the extraction of the line and continuum maps is given
in the following section.
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Table 1. Observational parameters.

Band Ve total FOV FOV10 Bbeam-c Uch peak. rms. rmsg
[GHZz] [min] 1 [’1 ["x"] [km s~!] [mJy beam™]

3 100 18 59.2 98.4 1.83 x 1.51 46.88 2.42 0.50 0.53

6 250 18 22.8 37.9 0.72 x 0.57 18.75 4.13 0.21 1.00

7 340 27 16.7 27.9 0.49 x 0.41 13.79 4.26 0.27 1.60

Notes. v, is the central frequency, f,., the target integration time, FOV the average field of view, FOV10 the average field of view at the 10%
primary beam power level (AFOV = AFOV10 = 10%), 6peum.c the continuum beam size, v., the average channel resolution, peak. the peak
(Sgr A*) flux density of the continuum, rms, the noise o of the continuum, and rms,;, the average noise o of the channel.

Table 2. Overview of the properties of the lines detected with ALMA.

Physical Technical

Molecule Transition % E, Nerie (100 K) Bbeam O chrms Acip Vint

[GHz] K] [em™] ["x"] [mJy beam™] [km s™!]
3¢S 2-1 92.494 6.66 33 x10° 1.93 x 1.57 0.52 3 -130-130
N,H* 1-0 93.174 4.47 2.0 x 10° 1.93 x 1.57 0.53 4 -150-100
H518 93.607 1.93 x 1.57 0.54 3 -370-340
CH;O0H-A 8071 95.169 83.50 7.9 x 10° 1.89 x 1.55 0.52 3 -120-130
H498 105.302 1.72 x 1.44 0.54 3 -350-320
H39« 106.737 1.75 % 1.48 0.62 3 -440-400
CS 5-4 244.936 35.30 5.4 % 10° 0.76 x 0.59 0.91 5 —-150-200
HC3;N 27-26 245.606 165.03 0.76 x 0.59 0.87 3 -70-100
H368 260.033 0.70 x 0.55 1.10 3 -330-340
H3CO* 3-2 260.255 24.98 3.3 x 10° 0.70 x 0.55 1.10 3 -80-110
SiO 6-5 260.518 43.76 8.3 x 10° 0.70 x 0.55 0.90 4 -150-210
SO 3% 67—5¢ 261.844 47.60 3.7 x 10° 0.70 x 0.56 1.00 4 -80-100
CH 33542253 262.004 25.15 6.3 x 10°
CH 335.3225.2 262.006 25.15 6.5 x 10°
CH 325.3215.2 262.065 25.16 6.7 x 10° 0.70 x 0.56 1.00 4 -190-80
CH 325.20-215.1 262.067 25.16 6.9 x 10°
H33p 335.207 0.50 x 0.42 1.28 5 -390-100
CH;O0H-E 7_1-6_1 338.345 70.60 1.3 x 10° 0.50 x 0.42 1.28 3 -80-100
CH;O0H-A 70—60 338.409 65.00 1.4 x 10°
SiO 8-7 347.331 75.02 2.0 x 107 0.48 x 0.41 1.90 4 -150-200

Notes. Listed are the frequencies v; upper state energies E,; critical densities n.; in the two-level approximation for given kinetic temperature based
on data from the Leiden Atomic and Molecular Database (LAMDA; Schaier et al. 2005, http://home.strw.leidenuniv.nl/~moldata/);
beam sizes Gpeam, channel noise o eh.rms, and noise clipping level from 70 ch-ms per line cube; velocity range vi, over which the integrated flux

maps were obained.

2.3. Line and continuum imaging

Apart from the continuum emission maps created using the line-
free channels, we indeed identified a large number of lines above
the 3—50 noise level in the different bands (see Table 2). Here we
describe the general procedure we followed for the creation of
line and continuum images. We also outline some general prop-
erties of the different spacial and spectral features in the data
cubes as far as they are relevant for the calibration of image
formation. We weighted the line and continuum data naturally
and restored the images with 768 x 768 pixels and a pixel size
of 0.15, 0.075, and 0.05”, respectively. In this way the images
cover twice the FOV. The channel resolution corresponds to the
natural channel size of the corresponding spectral window. The
noise rms is 0.5, 0.2, and 0.3 mJy beam™! for the continuum, and
0.5, 1.0, and 1.6 mJy beam™! for a channel.

All line (cube channels) and continuum data were clipped at
>30 to avoid the inclusion of noise and dilution effects. From the
clipped line cubes, we created the moment maps, i.e., integrated

flux (Oth order) and velocity field (1st order), for the velocity
ranges given in Table 2 using the CASA task immoments.

Subsequently, all moment 0 maps, i.e., integrated flux maps
and the continuum maps are corrected for the primary beam at-
tenuation out to a primary beam level of 10%. In the follow-
ing, we refer to the field given by the 10% power full width as
FOV10 (see Table 1). The accuracy of the primary beam cor-
rected fluxes suffer with distance from the pointing center owing
to the decreasing sensitivity of the primary beam. Nevertheless,
many bright features are detected beyond the FOV making an
extension of the map to the FOV10 preferable.

The minispiral, as the outstanding extended emission com-
ponent in the region, is well detected in the 100, 250, and
340 GHz continuum (Fig. 2) and in the He and 8 RRL emis-
sion in band 3 (Fig. 3).

The H498 and H51p lines are partly blended by faint
H616 and H58y line emission, respectively, which are offset
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by about 300 and —500 km s~ compared to H498 and H515,
respectively.

In band 6, the Hp line is fainter and rather tracing compact
features. Furthermore, it overlaps with the H'3CO™" line emis-
sion in frequency space such that emission from both, H3 and
H'3CO* lines, appear in the integrated flux maps. The HS line in
band 7 is very weak and only reliably detected in the IRS 2 and
13.

The hydrogen RRL emission is visible from —400 to
400 kms~!. The molecular emission lines in band 3 cover the
whole CND velocity range of —150 to 150 kms~'. Because of
the smaller FOV10, molecular emission lines in band 6 and
7 typically appear in channel ranges from —80 (-100) kms™!
to 80 (100) kms~'. Only CS extends to higher velocities up
to 200 kms~!' and SiO covers the largest range from —160 to
200 kms~!. The resulting images are shown in Fig. 5. The im-
age cubes of N;H* and C,H suffer from strong side lobe artefacts
in some channels, which are visible as ring structure around the
position of Sgr A* (compare Fig. A.1). Therefore, for NoH* we
doubt the ring-shaped structures in the inner 12" and the emis-
sion of C,H needs to be treated with caution since obvious real
emission is blended with the side lobes. These artefacts and the
emission on Sgr A* in several band 6 and 7 lines are likely to be
residuals of an imperfect and insufficient continuum subtraction.

2.4. Obtaining spectral and spatial properties of the sources

We catalogued all clumps with prominent molecular emission
with their positions, source sizes, fluxes, and spectral features
in all the molecular emission lines (see Tables B.2 and C.1-
C.3). In the continuum images, we looked for counterparts of the
sources detected in the infrared (IR) regime (Muzi¢ et al. 2007;
Viehmann et al. 2006, finding charts therein) and cm emission
(Zhao et al. 2009, finding charts therein) to obtain their posi-
tions, source sizes, and fluxes (see Table B.1). For a selection of
IR sources (IRS) in the inner 10”, we extracted the spectral prop-
erties (see Fig. D.1). Positions, sizes, and contained fluxes were
derived with the CASAv4.3 task imfit fitting a 2D Gaussian
to the naturally weighted, untapered (integrated) image. Spectra
were obtained from a beamsized aperture as given in Table 2 cen-
tered on the average position of each clump based on all emis-
sion lines and were fitted with the MPFIT module in Python'.
In this context, one has to bear in mind that the emission lines
often only cover 2-3 channels so that the spectral line fitting can
be challenging and the actual uncertainty in the fit is larger than
calculated. In such cases and in cases, where the fit fails despite
a 30 detection of a line, we estimate the uncertainties and/or the
parameters by visual inspection.

We calculated the line luminosity ratios for selected
molecules based on the channel fluxes (Table E.1) as well as
continuum spectral index maps and integrated line flux to con-
tinuum ratio maps. The results are discussed in Sect. 4. For ratios
between two maps, we uv tapered and restored the images and
image cubes with the same beam size per ratio and clipped them
at the flux levels given in Table 2 and at 30 for the continuum
maps. Ideally, the uv planes should be clipped to the same base-
line ranges for ratios between different ALMA bands. However,
this reduced the image quality so significantly, i.e., distortions
and flux losses of up to 50% even when clipping only large base-
lines, that we refrained from applying this procedure. Therefore,
ratios between a higher and a lower band can only be considered

! https://code.google.com/archive/p/astrolibpy/
downloads
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as lower limit owing to the missing flux resolved out in the higher
band data. In contrast to this, ratios within the same band is very
accurate in terms of the similarity of the uv-plane coverage and
flux calibration. The only bias is introduced by the channel bin-
ning on the same grid because of unreliable interpolation in uv-
plane regions with scarce sampling and/or low signal-to-noise
ratio (S/N), and the cleaning procedure. These effects are dif-
ficult to constrain. Since the S/N per channel is less than for
the total band, we treat the molecular line ratios per channel as
rough values and omit the uncertainties. For tracking trends in
the molecular line ratios by region this procedure is sufficient.

3. Results and analysis

In the following we present the main results of the ALMA data
including both continuum and lines. The complexity of the re-
gion results in a number of prominent features or objects dis-
tributed throughout the region.

In Fig. 1, we provide a finding chart for the names of the
features used in this paper. Following the CND nomenclature
of Christopher et al. (2005) and Martin et al. (2012), the most
dominant regions of the CND are the northeastern (NE) and
southwestern (SW) lobe. The southeast side of the ring is called
southern extension (SE). The northeastern extension (NEE) is
coincident with the eastern edge of the minispiral’s northern arm
(NA), while the CND northern arm (CNA) is on the west side of
the NA. East of the CND is the northeastern arm (NEA) located.

At this occasion, it is useful to define further regions that
are discussed in this paper: SEW is a small clump at the north-
western end of the SE; SEE is the large cloud extending east
of the middle of the SE; the triop is located at the southern
tip of the CNA; and the eastern edge of the V cloud coincides
with the southern tip of the NEA.

In addition, we use the minispiral nomenclature of
Paumard et al. (2004) to describe the features in the ionized gas
emission: The brightest part of the minispiral is within the so-
called bar extending from west to the south of the SMBH. The
NA extends north parallel to the NEE, the western arc (WA) is
parallel to the SW CND lobe and the eastern arm (EA) streams
toward the center from the east. The latter can be subdivided into
the ribbon comprising most of the EA, the tip, a luminous sec-
tion between the ribbon and the bar, and the eastern bridge (EB),
which is visible as vertical connection between the NA and the
ribbon.

For the description of the innermost region around Sgr A* it
is helpful to use the IRS sources as reference points (Fig. 1).

3.1. Continuum

Figure 2 shows the continuum emission at 100, 250, and
340 GHz. Overall, the minispiral is well detected in all three
continuum maps.

The 100 GHz continuum emission traces well the arms of
the minispiral in their overall extent and prominent clumps with
them. The resolution of the 100 GHz ALMA map is comparable
to the data of, for example, Lo & Claussen (1983) at 6 cm (Very
Large Array; VLA). The brightest emission after Sgr A* comes
from the IRS 13/2L complex and the ridge in the IRS 16/21/33
region (see Fig. 1 for orientation). Furthermore, the IRS 1W, 5,
6,7, 8, and 9 regions are discernible. Nevertheless, we find some
differences in the morphology with respect to the 6 cm map;
there is a southeast extension at the eastern end of the EA to
a cloud slightly to the south (Aa ~ 177, A6 ~ —15""). While this
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Fig. 1. Left: overview of the structures in the inner 4.8 pc of the GC. Shown in orange: CND (CN(2-1), Martin et al. 2012); blue: minispiral
(100 GHz continuum, this work); and green star: Sgr A*. The abbreviations are as follows: NE lobe for northeastern lobe, SW lobe for southwestern
lobe, SE for southern extension, NEE for northeastern extension, CNA for CND-northern Arm, NEA for northeastern arm, NA for northern arm,
WA for western arc, EA for eastern arm, and EB for eastern bridge. The new defined regions are southern extension west (SEW), southern
extension east (SEE), Triop, and V-cloud. Right: overview of the stars and filaments Paumard et al. (2006), Viehmann et al. (2006), Muzi¢ et al.
(2007) mentioned in this work, demonstrated for the inner 20” (0.8 pc) on a Very Large Telescope (VLT/NACO) NIR L’ (3.8 um) emission map

(Sabha, priv. comm., here: arbitrary units).
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Fig. 2. Continuum emission images of the inner <3 pc. From left to right: central 80" at 100 GHz, central 40" at 250 GHz with 100 GHz contours
of [6, 12, 24, 48, 96, 144, 192, 384, 1920, 4800] x o (=0.5 mJy beam™), and central 20" at 340 GHz with 250 GHz contours of [6, 12, 24, 36, 48,
72,96, 144, 192, 1920, 19200] x o (=0.21 mJy beam™"). The beam sizes are 1.8” x 1.5”, 0.7” x 0.6”, and 0.5” x 0.4, respectively.

faint cloud (peak flux ~10 mJy beam) is not visible in the low
frequency (<20 GHz) observations, except from a tentatively
detected extension (e.g., Lo & Claussen 1983; Roberts & Goss
1993; Zhao et al. 2009), it seems to be visible in the 1.3 mm map
of Kunneriath et al. (2012a) and the extension toward it is clearly
seen in the mid-infrared (MIR). The detection in both emission
regimes is suggestive of a dusty nature. This clump is located
between the northern tip of the CND SE and a CND clump east
of the eastern end of the EA.

At 250 GHz the major filaments start to resolve, i.e., in the
NA: the filaments X1, NE 1, 3, and 4; in the bar: SW 6, 7,
8 (south of IRS 2L), 3 (west of IRS 13); and in the tip: X2

(filament nomenclature: MuZi¢ et al. 2007). The dust features
XS (tip region, north of IRS 9), SW 2, 4, and X6 (IRS 6 re-
gion) are located at the edges of the radio continuum emission.
Moreover, the IRS 13 cluster and IRS 2L are separated, and the
ridge in the IRS 16/21/33 region displays a substructure within
which the filament NE4 and IRS 21 are discernible. In the NA,
IRS 5 (bowshock to the northeast) and several sources east (most
eastern: IRS 17) of the NA emerge (IRS 58S, 5SE1, 5SE2, 17);
IRS 10W, 16NE, 16C, and VISIR 60 (K 22) also become visi-
ble (Viehmann et al. 2006; Zhao et al. 2009) — the latter two are
both <2” away from Sgr A* — and K 42 (Zhao et al. 2009) is
detected at the center of the minicavity. In addition, we find a
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positional shift of IRS 7 from the 100 GHz to the 250 GHz map
of <0.5” to the south(west), which is either due to the lower res-
olution at 100 GHz unable to separate the star or bowshock head
from the tail (Serabyn et al. 1991; Yusef-Zadeh & Morris 1991;
Zhao et al. 2009) or to different excitation conditions in the head
and the tail.

While the 250 GHz continuum traces the extended gas in the
minispiral, the high resolution image at 340 GHz perfectly out-
lines the compact features as seen in the MIR and in the radio
(compare Viehmann et al. 2006; Zhao et al. 2009). Additional
filaments are visible at 340 GHz are X3 and SWS5, which are
southeast and southwest of IRS 13, respectively. In addition, the
IRS 13 cluster begins to separate into the 13N and 13E clusters
at this resolution.

3.2. Radio recombination lines

Figure 3 shows the emission of the brightest RRLs in this data
set. Further RRL images can be seen in Fig. A.2. The bright
emission in the H39« line very closely mimics the distribution
of the 100 GHz continuum. The low sensitivity of the primary
beam only becomes notable toward the edge of FOV10; neither
IRS 8 (Aa ~ 3”, A6 ~ 28”) nor the southern tip of the WA
are properly detected. The clump south of the EA end, which
is even fainter than the diffuse WA emission at 100 GHz, is not
detected.

In the following we compare the general brightness distri-
bution in the RRL emission to that in the radio continuum and
to the results of corresponding radio cm-wavelength observa-
tions. When comparing our data to the H92« and Ne 11 data of
Zhao et al. (2009) and Irons et al. (2012), respectively, we spot
some differences. In the integrated H92a emission image shown
in Zhao et al. (2009), the region southeast of Sgr A*, i.e., out-
lined by IRS 21, 16SW, 33, is fainter close to Sgr A* and peaks
south of IRS 33 (see Fig. 1 for orientation). This trend is oppo-
site from what is seen in our data. Furthermore, the middle part
of the EA is very weak and the tip is weaker than the eastern end
of EA. In the Ne 11 data of Irons et al. (2012), the region between
IRS 13, 21, 33 is fainter than IRS 1W and 2L, which might sim-
ply be related to a different excitation behavior of the Ne ion,
but the H30a data of Zhao et al. (2010) looks similar. However,
our RRL maps might be affected by the large velocity bins given
by the observational setup, i.e., ~50 kms~'. This is implied by
the slight discrepancies between the H494 and H518 maps. The
line transitions are close enough to each other so that opacity
changes — if significant at all at 100 GHz — or deviations from
local thermal equilibrium (LTE) cannot explain the differences.
Therefore, an instrumental bias cannot be ruled out.

The observations of Zhao et al. (2009, 2010) and Irons et al.
(2012) have been conducted at a spatial resolution similar to our
data, but with a much higher spectral resolution of ~15 kms™!
and ~4 kms~!, respectively, suggesting the minispiral clumps
are well traced. On the other hand, the region south(west) of
Sgr A* is the second brightest in all of the three RRL at 100 GHz.
The difference in the velocity ranges for integration could also
have an impact on the RRL emission distributions from our data
set and theirs. While we integrate the H39« emission from —400
to 400 kms~!, Irons et al. (2012) use a range of ~339-299 km s~!
and Zhao et al. (2010) a range of —360-345 kms~! even though
faint emission extends to even more extreme negative velocities.
This is supported by Bry, Fe 111, and He I observations discussed
in Steiner et al. (2013) and can also be seen in the Ne IT data cube
of Irons et al. (2012, link on online journal page), both tracing
the ionized gas up to —380 kms~'. The H364 emission outlines
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the high S/N regions along the minispiral filaments and the H333
is too faint to be reliable, except maybe toward the IRS 2L and
13 region.

3.3. Molecular gas in the outer regions

The large FOV of the band 3 data enables us to look at the full
CND and regions outside of it. With outer regions we refer to a
distance r > 40” from Sgr A*. The emission of '3CS, N,H*, and
CH;OH(8-7) is shown in Fig. 4 and compared to the CN data of
Martin et al. (2012). The regions of '*CS and CH;0H(8-7) line
emission are less extended than in the N,H* line. The '3CS line
emission is faint and restricted to the west side of the CND. It
is also prominent in the SEW and SEE regions (see Fig. 1 for
orientation). NoH™ is found within the CND and partly matches
local peaks in CN emission, but the strongest emission resides
in regions outside of it, i.e., in the SEE and in the V cloud.
This is consistent with the NoH* and CH;0OH(2-1) distribution
obtained from lower resolution (fyeam ~ 8’') observations by
Moser et al. (2014), Moser et al. (in prep.). Moreover, the overall
distribution resembles very much that of H,CO in Martin et al.
(2012). Apart from the molecules just mentioned, the V cloud
has never been detected that clearly in any other molecule in the
past (cf. Christopher et al. 2005; Montero-Castafio et al. 2009;
Martin et al. 2012). While H,CO has also been well detected
in the northern clump of the eastern extension (nomenclature:
Christopher et al. 2005; Martin et al. 2012), the same clump is
faint in NoH*.

CH;OH(8-7) is found in CND regions close to the cen-
ter, in the clump east of the SE and along the eastern edge of
V cloud, that is part of the eastern extension. This is supported
by the observations of Moser et al. (2014), Moser et al. (in prep.)
where the CH3OH(2-1) emission is brighter in the eastern part
of the V cloud than the western part. The dominant peak in the
V cloud is consistent with a source radiating 36 GHz and 44 GHz
class I methanol maser emission (Yusef-Zadeh et al. 2008;
Sjouwerman et al. 2010; Pihlstrom et al. 2011). The clumps
north and south of the V cloud coincide with local peaks in NoH*
and the most southern of the four clumps is situated in a cavity
of NoH* emission at the V-cloud edge. The other 36 GHz maser
(Sjouwerman et al. 2010) has no CH30H(8-7) counterpart. In
the SEE cloud, the position of the CH3;OH(8-7) emission co-
incides with a 36 GHz maser (Sjouwerman et al. 2010), but in
contrast to the bright point source in the V cloud, the CH;OH(8—
7) emission appears extended and faint.

3.4. Molecular gas in the inner 40 arcsec

In this section, we describe and discuss the features of different
molecular emission lines with respect to the line emission of the
J = 5-4 transition of the excited density tracer CS, which is the
brightest line in the central region. The integrated flux images of
the lines can be seen in Fig. 5.

The CS line emission is strong, widespread, and clumpy
within the FOV10 of band 6. As expected, CS is found in the
CND, i.e., east and west of the center. In fact, it appears at the
inner edges of the CND. In the east, the CS emission follows
the eastern edge of the extended minispiral emission (e.g., at
100 GHz) and appears intersected by the EA of the minispiral
(e.g., at 250 GHz). The maximum in emission lies in the SEW
(see Fig. 1 for orientation). In the west the emission resides in the
triop and in the northwestern edge of the WA of the minispiral
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Fig. 4. Molecular line emission images of the inner 120" (4.8 pc). From left to right: *CS(2-1), N,H*(1-0), and CH;0H(8-7) at a resolution of

1.9” x 1.6” (see Table 2). The contours at the levels [8, 16, 24, 32, 48, 64

, 80, 96, 112] X 0 (=19 Jy beam™! km s™!) show CN(2-1) emission of

the CND at a resolution of 4.0” x 2.6” for orientation (compare Fig. 1; CN data: Martin et al. 2012).

(see also Fig. A.4), where the CS emission is limited to the south
by the FOV10 cutof.

The emission from H'3CO*, SiO, SO, and C,H is fainter but
typically found, in different fractions, in the strong CS peaks in
the center and in the CND, whereas the emission of 13CS, N,H*,
and CH3OH(8-7) is rather found toward the CND, which might
also be related to the different angular scales traced in the two
ALMA bands.

The CS transition is the brightest in our data set. In order to
estimate the amount of missing flux, we generated a 5”-tapered
map for the CS transition, which is the brightest transition in out
data. The resolution corresponds to the largest angular scales to
which the observations are sensitive. This tapered map is com-
pared to our originally 0.75” CS map smoothed to 5” resolution.
Considering these scales, about 20-40% of the emission is re-
solved out at 0.75”.

3.4.1. Triop

In our ALMA data, this structure has an unusual triangular shape
that is reminiscent of a crustacean shrimp, which is why we
gave it the name triop. This region is visible in all molecu-
lar emission lines in our ALMA data (see also Fig. A.5). We
subdivide the region into the head, which is the wide north-
eastern part of the friop, and the tail, which is the thin south-
western part. Most of the molecular emission lines are pre-
dominantly detected toward the edge facing the GC and the
nuclear cluster, especially in the center of the tail and in the
southeast clump in the head, which is closest to the cen-
ter. The former is the brightest (peak) in all molecules, ex-
cept from '*CS and N,H*, which peak rather toward the cen-
ter or the triop. The triop is visible in all molecules detected
in previous studies (e.g., Guestenetal. 1987; Jackson et al.
1993; Marr et al. 1993; Yusef-Zadeh et al. 2001; Wright et al.
2001; Christopher et al. 2005; Montero-Castafio et al. 2009;
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Fig. 5. Molecular line emission images of the inner 40” (1.6 pc) at a resolution of about 0.7” x 0.6”. Top row (from left to right): CS(5-4),
with 250 GHz contours as in Fig. 2, HC3N(27-26), and H'*CO*(3-2). Bottom row (from left to right): SiO(6-5), SO(7-6), and C,H(3-2). The
contours show the CS(5—4) emission at the levels of [4, 8, 12, 18, 24, 30, 36, 48, 60, 72, 84] x o (=0.08 Jy beam™! km s™!) for comparison (see
also Fig. A.4). Zooms into the inner 20", the friop (15" northwest of Sgr A*), and the SEW clumps (15” south(east) of Sgr A*) can be found in

Figs. A.8 and A.7, A.5, and A.6, respectively.

Martin et al. 2012), comprising typical density and photon dom-
inated region (PDR) tracers, such as HCO*, HCN, CN, as well
as highly UV-sensitive species, such as HC3N. While the shape
in the previous studies is rather oval or triangular because of the
larger beam sizes, these ALMA observations resolve its filamen-
tary structure for the first time.

This region becomes even more extraordinary by its class I
methanol maser emission at 44 GHz, possibly indicating
an early phase of star formation (Yusef-Zadeh etal. 2008;
Sjouwerman et al. 2010). The maser coincides with the promi-
nent clump in the center of the tail and with the peak in
CH3;0OH(8-7) and is thus the closest class I methanol maser to
the center so far.

3.4.2. Southern extension west

The SEW cloud stands out by showing emission in the band 6
molecules, except from HC3;N, about as bright as in the triop but
more extended. In contrast to the triop, the emission of N,H*
and CH30OH(8-7) is not detected in this cloud. This is con-
sistent with previous studies (compare Christopher et al. 2005;
Montero-Castaiio et al. 2009; Martin et al. 2012) and implies a
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less efficient shielding from the UV field than in the triop. In the
CS emission, the SEW shows a diameter of 4" with a double
core in north-south direction and an elongation from the north-
western tip to the southwest that appears as a front perpendicu-
lar to the direction to Sgr A* (see also Fig. A.6). Close to this
front, i.e., 1”” west of the CS peaks, lies the maximum of the
C,H emission, which extends to the northern CS peak. The SO
emission behaves similar to this but with a larger extent over the
CS cores to the east. The SiO peak is located east of the SO and
C,H maxima and slightly east of the southern CS peak, but still
on the northern CS peak from where it extends to the north and
east. Another SiO peak is on the southern CS maximum itself.
Furthest away from the front facing the center is the H'*CO*
emission displaying a peak between the northern CS and SiO
maximum from where it extends to the northeast similar to SiO.

Additional smaller H'3CO* peaks are found 1" east and west
of the southern CS core, where the former is consistent with the
eastern edge of the SO emission and the latter with southern edge
of the CoH peak. The *CS emission is strong at the CS max-
ima and in a region at northeastern edge of SEW as well. For
this line, the lower resolution and larger scales traced in band 3
have to be taken into account. The spatial distribution of the line
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Fig. 5. continued. Molecular line emission images of the inner 40” (1.6 pc) at a resolution of about 0.7 x 0.6”. Top row (from left to right): 3CS(2—
1), NoH*(1-0), and CH30H(8-7) as in Fig. 4, but zoomed in. Bottom row (from left to right): CH;0OH(7-6) and SiO(8-7), both at resolutions of
0.5” x 0.5”, and CS(5-4) as before. The contours show the CS(5-4) emission at the levels of [4, 8, 12, 18, 24, 30, 36, 48, 60, 72, 84] X o
(=0.08 Jy beam™' km s~!) for comparison. except from bottom right image, which is overlayed with the CN(2—1) emission as in Fig. 4. The inner
rim of the CND is detected (cf. Fig. 1) toward the edge of the FOV10 of the band 6 and 7 emission lines.

emission from the different molecules with respect to the direc-
tion to Sgr A* and the nuclear stellar cluster suggests some kind
of stratification of the emission.

3.4.3. The central 20 arcsec

It is remarkable that there is CS emission within a (projected) ra-
dius of <8 around the SMBH (see also Figs. A.4, A.7, and A.8).
This central association (CA) of clouds extends over the location
where the bar of the minispiral meets the NA to the region north
of Sgr A*, where it appears to be outlined by the inner edge
of the bar and the NA facing Sgr A*. The latter contains two
prominent features: one region extends from 2" northwest from
Sgr A* parallel to the bar toward the northwest with a length of
about 3" (SE-NW cloud) and the other extends from 4’” north of
Sgr A* northward with a length of 4" and a slight tilt to the east
(NS cloud). Both regions seem to comprise 2—3 clumps. In com-
parison with the continuum emission, the center of the NS cloud
coincides with the ionized emission from IRS 7. The northwest-
ern part of the CA shows strong similarities to the NIR H, (hot
gas) and extinction maps of Ciurlo et al. (2016).

The CS emission southeast of Sgr A* consists of two clumps,
one covering a triangular region given by the IRS 16 southern
cluster, IRS 16 SE2 and 16SE3 (35), and IRS 21, the other out-
lining the eastern inner edge of the minicavity. Parts of these
clumps are tentatively also detected in C,H, but contaminated by
a side lobe. South of this configuration the CS emission is found
in the EA nearby IRS 9. Furthermore, CS is present in small re-
gions immediately north and south of IRS 1W, which otherwise
are only detected in CoH. In addition, the CS emission extends
along the EB, i.e., the north-south connection between the NA
and the EA (compare MIR images in Fig. 6), where H'*CO*,
SiO, SO, and C,H are also detected. Except from these regions,
the CS emission seems to avoid the inner minispiral, especially
the IRS 13 to IRS 2 region. The SE-NW cloud reaches from the
IRS 29 sources to the southwest of IRS 3. These two positions
mark two clumps clearly visible in all band 6 emission lines.
There are fainter extensions in CS emission on IRS 3 itself and
to the northwestern edge of the IRS 3 dust shell. The latter is
remarkably bright in HC3N and CH3O0H(7-6), neither of which
are reliably detected elsewhere in the central 12", and slightly in
H'3CO*, implying a change in the ISM conditions (see Sect. 4.4
for discussion). The southern part of the NS cloud originates in a
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Fig. 6. Molecular gas and continuum emission maps in the inner 20” compared to the NIR VLT/NACO L’ (3.8 um) emission (fop, Sabha, priv.
comm.) and the MIR VLT/VISIR PAH (8.6 um) emission images (botfom, Sabha et al., in prep.) in arbitrary units. The left side shows the 340 GHz
continuum in red contours of [6, 12, 18, 24, 36, 48, 72, 96, 960, 9600, 17280] x o (=0.24 mJy beam™"). The right side shows CS(5-4) in red
contours as in Fig. 5 and SiO(6-5) in green contours of [2, 4, 8, 12, 16] X o (=0.08 Jy beam™! km s7').

region almost between IRS 3 and 7, passes IRS 7 slightly south-
west of it in a second clump, and prolongs to the northeast to
a third clump, but not along the tail of IRS 7 (MIR images in
Fig. 6). These clumps are also detected in H!3CO*, SiO, SO,
and C,H. Another clump indicated by all band 6 lines is halfway
between IRS 16CC and IRS 7. Emission of CS, SiO, SO, C,H,
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and CH;OH(7-6) is also found at the southwestern edge of the
Bar, i.e., south of IRS 6E and 6W.

Apart from HC3;N and CH3OH(7-6), SiO shows a peculiar
deviation from the distribution of the CS detected gas. The two
SiO clumps southeast of IRS 1W and southwest of IRS 12,
first reported by Yusef-Zadeh et al. (2013, clump 1 & 2 and
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Fig. 7. Velocity distribution maps from —140 to 20 km s~ in the inner 40" overlayed onto the MIR (8.6 um) PAH image from Fig. 6. Red contours
show the CS(5—4) emission at the levels [4, 8, 12, 24, 48, —3,-45] X o (=0.91 mJy beam™"), green contours the SiO(6-5) emission at [4, 5, 6, 7,
8, 10, 12, 14, —4] x o (=0.94 mJy beam™"), and yellow contours represent the H368 emission at [3, 4, 5, 6, 8, 10, =3, —6] X o (=1.05 mJy beam™!)
for comparison to the RRL emission. Green numbers denote the IRS sources and the green cross Sgr A*.

clump 11; YZ1-2 and YZI11 hereafter), are both detected in
SiO(6-5), while only the first is detected in SiO(8-7). There is
no other emission line present in the immediate vicinity at the
corresponding velocities except from faint CS emission north-
east of IRS IW and south of IRS 21. Two other prominent
SiO point sources seen in both transitions coincide in position
and velocities (see Fig. 7) with the SiO maser stars IRS 7 and
IRS 10EE (Reid et al. 2007; Li et al. 2010). IRS 10EE corre-
sponds to clump 3 (YZ3) in Yusef-Zadeh et al. (2013).

3.5. Kinematics in the inner 40 arcsec

In the following we describe the kinematics in a central main
velocity range between about —100 km s~ and +100 kms~! and
higher velocities beyond the limits of this interval. In general,
one can expect that the high velocity features can be attributed
to either kinetically more active regions (due to outflows or cloud
collisions) or the regions that are physically closer (<10” or
0.4 pc) to the center. In order to disentangle the cloud complexes

A68, page 11 of 54


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628385&pdf_id=7

A&A 603, A68 (2017)

L 1 1 1 1 1 1 L 1 1

15 10 5 g =5 =10 =15
Ax [arceac]

Fig. 7. continued. Velocity distribution from 40 to 200 kms™' in the inner 40” overlayed onto the MIR (8.6 um) PAH image from Fig. 6. Red
contours show the CS(5-4) emission at the levels [4, 8, 12, 24, 48, —3,-45] x o (=0.91 mJy beam™"), green contours the SiO(6-5) emission
at[4,5,6,7,8, 10, 12, 14, —4] X o (=0.94 mJy beam™), and yellow contours represent the H3683 emission at [3, 4, 5, 6, 8, 10, =3,-6] X o
(=1.05 mJy beam™") for comparison to the RRL emission. Green numbers denote the IRS sources and the green cross Sgr A*.

and study the motion of the molecular and ionized gas, we plot
the channels maps between —140 kms~!' and 200 (220) kms™!
for CS and SiO in comparison to H364 in Fig. 7. The given chan-
nel velocities denote the lower edge of the channels, which have
a width of 20 km s~!. Details on the spectral properties of the re-
gions can be found in the Tables C.1-C.3, and D.1, maps of the
velocity fields in Fig. A.9.

3.5.1. Main velocity range

The main range of the velocities of about —100 kms~! and
+100 kms~! in the inner 40” is given by the velocities of the
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molecular gas clumps within this cutout of the CND. How-
ever, in Fig. 7, we start at —140 km s~! to show the SiO emis-
sion in IRS 7, which is visible from channel —140 kms™! to
—100 kms~!. This is consistent with its velocity of —114 kms™!
and a line width of 5-10 kms™' (Reid et al. 2007), considering
our low velocity resolution. In this channel range the H368 line
is located around IRS 21 with an elongation in north-south di-
rection and in the western end of the bar, i.e., between IRS 6E
and 6W. The first CS emission regions appearing between chan-
nel —80 to —40 kms™! are small (r ~ 2") clumps in the NA, i.e.,
between the EA around IRS 21, and IRS 1W, between IRS 1W,
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10 and maybe 5, and south of IRS 7. In the channel range from
—40 to 0 kms™! the large CS cloud in the minispiral, and south
and east of Sgr A* emerges and extends from the eastern edge of
the minicavity to 1W with the thickness of the NA in that region.
At the same time IRS 10EE is visible in SiO emission around the
expected velocity of —27 kms™! and a line width of 5-10 kms™!
(Reid et al. 2007; Li et al. 2010). The hydrogen RRL emission
in the channel range of —80 to 0 kms~! moves northeast from
IRS 21 to 1W and appears in this way mostly at the northeastern
edge of the central extended CS emission clump or is surrounded
by it. These are also the channels in which the SEW arises in CS
and SiO, peaking around —40 kms~!. In the channels —40 and
—20 kms~!, we make out a faint apparent connection between
SEW and the extended central CS clump south of Sgr A*.

From channel —20 kms~! onward the SEW emission turns
into the eastern CND, passing the EA and extending northward
along the NA until the channel of 60 kms~!. We note small CS
clumps nearby or at the dusty sources east of IRS 5 (Perger et al.
2008) and IRS 5 itself between channels 20 to 60 kms™'.

The CS emission within the minispiral in channels above
0 kms™! is not strong or widespread anymore. Instead the bulk
of the molecular gas at velocities between 20 to 100 kms™' is
found in the region delineated by the NA, the bar, IRS 3, and 7,
with a southwestern extension across the bar, i.e., to the south-
east of IRS 6W, and a collection of small clumps between the
southwest of the bar and the WA in the velocity range of 40
to 80 kms~!. SiO emission appears in several CS peaks in this
region and velocity range. Meanwhile, the H368 line emission
proceeds from IRS 1W northward to IRS 5. It does not overlap
with the CS emission anymore but might follow it. We cannot
exclude that more extended RRL emission is either too faint or
resolved out. The CS emission in the channels 40 to 80 kms™!
seems to be perfectly outlined by the NA edge between IRS 1W
and 10W. From channel 20 to 120 kms™', or 40 to 80 kms~! for
the weaker lines, the triop emission appears, moving from the
southwest to the northeast and peaking at 60 kms~!, as well as
a larger clump 15” north of Sgr A*, peaking at 80 kms~'. Both
features are also bright in SiO emission. Furthermore, a clump
is visible in the 80 to 100 kms~! channels southwest of the bar,
south of the triop, and apparently within the CND.

3.5.2. High velocities

Outside these CND typical velocities, i.e., ~100 to 100 kms~! in
the CND regions between the lobes, we find some high velocity
clumps within 10" around the SMBH (see also Fig. A.9). The
two SiO clumps YZ11 and YZ1-2 mentioned before can be seen
from 80 to 200 kms~! and 100 to 180 kms™', respectively, and
peak at ~140 to 160 kms™'. This is consistent with the results
of Yusef-Zadeh et al. (2013). In addition, we find three CS emit-
ting clumps: one extending from southwest of IRS 9, i.e., within
the tip, past IRS 21 to the eastern edge of the minicavity in the
range of 80 to 200 kms~!, another one 5 north of IRS 6W in
the range of 120 to 180 kms™', and the last one cospatial with
faint SiO emission 5" northeast of YZ1-2 in the range of 100
to 180 kms~'. In the channels above 100 kms~' the H36p line
emission is faint and only visible in the form of tiny clumps.
Moreover, the noise increases in these channels of the H368 im-
age cube. However, the RRL emission appears in the tip at veloc-
ities above 100 kms™!, which is in agreement with other ionized
emission studies (e.g., NeII cube of Irons et al. 2012). There it
partially spatially overlaps with the CS emission at the channels
120 and 140 kms™".

4. Discussion

In this section, we first address the spectral index of the (sub-)
mm continuum emission in the inner 40” and the electron tem-
perature of the ionized gas. This is followed by a study of the
relation between the gas and the stars. The last part of this sec-
tion deals with the trends in the molecular line ratios with respect
to their location in the GC and their possible explanations.

4.1. Continuum spectral index

We computed spectral index maps (see Fig. 8) between 100, 250,
and 340 GHz defined by a power law with S, o« v*, where « is
the spectral index. To accomplish this, we clipped the tapered
(same resolution) continuum maps at S0 before primary beam
correction. A map of the uncertainties based on the S/N and the
flux calibration uncertainties is given in Fig. A.10. In the high
S/N regions Aa is dominated by the flux calibration errors (see
Sect. 2.2). We find Sgr A* to have an inverted spectrum in the
100 to 250 GHz range with ajgp-250 ~ 0.58 + 0.21, which is
related to the synchrotron emission from the accretion disk. The
spectral index is in agreement with @jg9-230 ~ 0.5 obtained by
Kunneriath et al. (2012a,b) and with the results of Falcke et al.
(1998), i.e., @100-150 ~ 0.76 and @43-190 ~ 0.52 in the 3-2 mm
and 7-3 mm range, respectively.

The spectral index of Sgr A* is reliable because of its high
S/N detection and its nature as a point source but it may be af-
fected by flux density variability (Kunneriath et al. 2012a). How-
ever, the overall spectral trend in this frequency domain remains
preserved.

In contrast to the minispiral, Sgr A* is detected with a high
S/N at 340 GHz and displays a flat ap50-340 = 0.17 = 0.45.
This matches the a30-¢90 ~ —0.13 obtained by Marrone et al.
(2006b) and the @;17-355 = —0.06 £ 0.26 by Bower et al. (2015)
very well. The latter suggests the emission at these frequencies
to be in a transition between the optically thick and thin regime.

From 345 GHz and 690 GHz SMA measurements, there
is evidence that the overall spectrum of Sgr A* peaks around
345 GHz (Marrone et al. 2006b,a; Marrone 2006). This is also
in agreement with Eckart et al. (2012), who find for the bulk of
their synchrotron and synchrotron-self Compton (SSC) models,
synchrotron turnover frequencies in the range 300-400 GHz.

The spectral indices in the minispiral between 100 and
250 GHz are rather lower limits owing to the flux at larger an-
gular scales being resolved out in the 250 GHz observations, but
measured in the 100 GHz observations. Within a region of 10”
around Sgr A* the spectral indices in the minispiral are nega-
tive, similar to the results of Kunneriath et al. (2012b). Toward
IRS 13, 2L, 6, 1W, and 10W, ap9_250 reaches values of ~—0.1,
which is indicative of free-free thermal bremsstrahlung emis-
sion. These values might be largely unaffected by resolution and
beam filling factor effects because of the brightness and com-
pactness of these sources, consequently dominating the emission
from these regions. The filaments south and west of Sgr A* in the
bar and the filaments in the tip are fainter compared to the dif-
fuser emission gas they are embedded in. Missing the extended
250 GHz flux could be the reason why the spectral index value
drops to ~—0.4 and even less, i.e., ~—0.7 in the tip.

The spectral index map of Kunneriath et al. (2012b) shows
similarly steep values toward the compact sources, but their re-
sults suffer from the lower angular resolution of the CARMA ob-
servation. The reliability of the spectral index for faint extended
emission depends heavily on the uv coverage, which is superior
for ALMA. At ALMA resolutions, the spectral index of point
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Fig. 8. Continuum spectral index distribution in the inner <1.6 pc. Top:
between 100 and 250 GHz (inner 40”) tapered to a resolution of 1.5”
with contours of [-0.75, 0.5, -0.375, -0.25, -0.125, 0, 0.25, 0.5, 1,
1.5]. Bottom: between 250 and 340 GHz (inner 20”) tapered to a reso-
lution of 0.65” with contours of [-2, -1, 0.5, 0, 0.5, 1, 2]. Maps on the
uncertainties can be found in Fig. A.10.

source is solely dominated by the corresponding point source
fluxes. Positive spectral indices prevail in the region south of
IRS 5 (at A6 ~ 7” from Sgr A*) and in the IRS 1 to IRS 16NW
region of the NA with @jg0-250 = 0, in the ribbon of the EA
with @gp-250 = 0.1, and in a few single clouds in the field with
@100-250 = 0.5. These indices imply a growing importance of
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dust for the continuum emission at frequencies >230 GHz (see
discussion in Kunneriath et al. 2012a).

This trend continues to the next higher band at 340 GHz,
where an a»s50_349 = 0 between 250 and 340 GHz is even found
downstream the NA toward the south of IRS 1W. The bar and
the tip show a steep a2s0-3a0 ~ —1—0. The 340 GHz data is not
only influenced by resolution effects but also by a lower S/N in
this region. An aps0-340 ~ —0.3 is only found in the brightest
sources. It is very likely that diffuse emission, although within
the angular scales of the 340 GHz observation, is too faint to be
detected at this noise level, which results in even more extreme
apparent spectral indices than for the 100-250 GHz range.

4.2. Electron temperature

The electron temperature can be used as a tool to investigate the
strength and location of the ionization in the central region. This
allows us then to speculate on the cause for the ionization. Un-
der the assumption of optically thin RRL and continuum emis-
sion and LTE conditions for the ionized gas, we use the formula
given in Zhao et al. (2010) to derive the LTE electron temper-
ature from the H39¢ and the continuum emission. To accom-
plish this, we clipped the tapered (same resolution) continuum
map and RRL cube at 30~ and 30, respectively, before primary
beam correction. Since the line width in our data cannot be prop-
erly measured due to the low velocity resolution, we replaced
S LAVpwgy with the integrated flux f S 1dV. Moreover, we ad-
justed the correction factor for the power-law approximation to
the value for 100 GHz, i.e., (v = 100 GHz, T. ~ 10* K) ~
0.904 (Mezger & Henderson 1967). In Fig. 9 we show that the
LTE electron temperature is relatively uniform over the whole
minispiral with ~6000 K. In the NA and the central part of the
bar it approaches 7000 K, around IRS 1W and 10W 9000 K,
and drops in the western bar, the EA, and the WA to 5000 K.
Extreme values at the edges of the minispiral are nonphysical,
i.e., S/N related, and can be neglected. In general, the tempera-
ture range of 6000 = 1000 K is in agreement with the results of
H76a, H92a, and H30a observations by Schwarz et al. (1989),
Roberts & Goss (1993), Roberts et al. (1996), and Zhao et al.
(2010) reporting temperatures of ~7000 K, especially in the
arms. The rise in T, in the IRS 1W to 10W region in our data
might result from an improper H39« flux detection due to the
wide channels as mentioned in Sect. 3.2. We derive T, from the
H51p line (Fig. 9), which is the better detected of the two band
3 Hp lines, by scaling its flux to the Ha emission using the LTE
Hea/Hp ratio of 3.55 (e.g., Gordon & Walmsley 1990); this yields
~6000 K for this region and looks very similar to the Ha based
LTE T. in all other regions in the minispiral.

However, toward the center of the bar, i.e., the region be-
tween IRS 21, 16, and 33, Zhao et al. (2010) find temperatures
well above 10000 K. There could be an indication for this behav-
ior in the H518 based temperature map, but the high temperature
region does not reach up the NA as far as in the observations
of Zhao et al. (2010). Based on the T, (H518) distribution, we
attribute the higher temperatures to a low S/N effect; a similar
behavior can also be seen toward the edges of the minispiral.
In contrast to the H513 data, our H39« data is sensitive enough
to reliably detect the very broad (in velocity) but faint ionized
gas component close to and in the minicavity (see also spectra
and line cube in Roberts et al. 1996; Zhao et al. 2010; Irons et al.
2012) resulting in an electron temperature of 6500 + 500 K
throughout this region, which is consistent with the ~6850 K
found by Roberts et al. (1996).
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Fig. 9. Electron temperature distribution in the inner <1.6 pc. Top: based
on H39« (inner 40”) and tapered to a resolution of 1.5” with contours
of [4, 6, 8, 10] x 1000 K. Bottom: same as top, but based on H513 (inner
20""). Maps on the uncertainties can be found in Fig. A.11.

Owing to the moderate significance of our RRL line cubes
(spectral resolution), we can only reason that our data reproduces
the electron temperature well for regions with single velocity
components, i.e., the arms, but deviates from former results in
the crowded regions, where the minispiral arms and, potentially,
the until now unidentified and unassigned velocity components
overlap in projection.

4.3. Stellar sources

In order to investigate the relation between the molecular gas, the
ionized gas, and the stars, we compare the line centroids of these
features (see Table 3). We find that even for a generous velocity
offset of 70 kms~! between two features, the list of matches is
still not long. The line of sight (LOS) velocity of the RRL emis-
sion of the ionized gas agrees within the offset range with the
stellar velocities for the IRS 1W, 1E, 7, 9SW, 9SE, 10W, 13W,
13E2, 16NE, 33N, 34E, 34NW, W11b, and W13b (see Figs. 1
and A.13). This agreement in velocity suggests that the stellar
motion might be related to the gas motion, but one has to keep
in mind that the stellar IR spectra might have been blended by
the bright ionized gas emission in some cases, which then dom-
inate the resulting spectrum. In contrast to the RRL emission,
the motion of the CS traced molecular gas agrees with stellar ve-
locities only in the case of IRS 3E and W13b. Hence, an origin
of the molecular gas in the stellar atmospheres appears unlikely,
despite the large amount of O/B and Wolf-Rayet stars. However,
the interaction of the winds from all the stars in the cluster might
have dispersed the hint for a common velocity and origin.

As already indicated in Sect. 3.5, the molecular and ionized
gas have common velocities in the NA/bar crossing region of
the minispiral, i.e., in IRS 5, 6E, 16SSW, 16CC, 16SE2, 33SW,
33NW, 33N, W13b, W10b, W7b, and W14b from our selection.
We revisit this coincidence in more detail in Sect. 5.3. In the
following, we discuss the most famous IRS sources in the light
of the emission lines.

4.3.1. IRS1W

In the NIR, IRS 1W is a dust embedded bowshock star
(Sanchez-Bermudez et al. 2014) at the lower tip of the minispiral
NA close to the location at which it touches the minispiral bar.
It shows spectral line features in CS(5-4) and RRL at its radial
velocity of 20 kms™'. The line maps show two CS(5-4) emis-
sion clumps to northwest and southeast of the source position.
The overall velocity pattern follows that of the NA. The gas has
a velocity of 0 kms™ to 15 kms™' southeast of the source, then
splits to a northwest and southeast component in the 15 kms™' to
30 kms~! interval, leaving out the exact position of IRS 1W, to
finally present itself as a northwest component in the 30 kms™!
to 45 kms~! interval. The reason for this behavior might be a
combination of absorption and excitation.

The 340 GHz and 250 GHz continuum emission peak on the
bright minispiral ridge about 0.2” to 0.3” southwest of the stel-
lar source position at 8 mJy beam™' and ~13 mJy beam™!, re-
spectively. As the compact source blends into the minispiral in
the lower resolution 100 GHz map, IRS 1W is bright with peak
emission of ~34 mJy beam™' and more extended flux density
toward the southwest along 0.5” to 1”.

4.3.2. IRS 2L

The RRL velocity at IRS 2L is about —270 kms™' (e.g.,
Zhao et al. 2010) in consistency with a H368 line peak at
—280 kms~!'. The source is in a void of molecular gas emis-
sion. There is no clear line identification right at the position
of IRS 2L. RRL line flux from material north of IRS 2L (see
IRS 13E) is smeared into the aperture. At 340 GHz and 250 GHz,
there is a continuum flux peak at the position of IRS 2L with flux
densities of 19 mJy beam™! and 27 mJy beam™!, respectively. At
100 GHz, we find a continuum flux of about ~100 mJy beam™!
toward IRS 2L.
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Table 3. Gas radial velocities in RRL and CS emission at the position of the nuclear cluster stars, their stellar radial velocities, and spectral type.

Sources Gas radial velocity vg Stellar radial velocity vg Type
[km s~ [km s~

H39a H3683 CS(5-4)
IRS 1WF06 32 5 - 35006 Be?
IRS 1EF06 34 - - 18P14 B1-31
IRS 2L.V06 -251,22 284 - - -
IRS 28"06 237 -289 - 107690 L
IRS 3"06 - - 61 - E
IRS 3EF06 - - 63 107700 WC5/6
IRS 4V06 175 - -20 - -
IRS 5V00 125 - 66 - -
IRS 6W"00 -128 —147 - —150G00 E
IRS 6E"%6 -134 -67,21 28,99 - -
IRS 7V06 -110 -118 -130%19 | 53 —114R07 L
IRS 7E2(ESE)P0¢ 102 - - -80P06 Ofpe/WN9
IRS 9V00 173 - - —342R07 -
IRS 9NV00 170 160 - —110G%0 -
IRS 9WF06 —70, 300 - - 140706 WNS8
IRS 9SWF06 202 - - 180706 WC9
IRS 9SEP06 198 - =31 130700 wC9
IRS 10W"06 91 65 - 7600 -
IRS 10EEVY00 102 - —3150 —55600  _p7RO7.LI0 L
IRS 12N"06 -207 - - 96600 _g3R07.LI0 L
IRS 13EV00 —200, —40 - - 45600 E
IRS 13WV06 -220, =30 - - —74600 L
IRS 13N7"00 —40 -33 - 40P06 B V/III
IRS 13E1706 -200, =30 —45 - 7106 BO-11
IRS 13E4P00 ~180, -30 - - 56706 WC9
IRS 13E2P06 -200, =30 -55 - P14 WN8
IRS 16NWP06 - - 46 —30000 | _44P06 17P14 Ofpe/WN9
IRS 16CP06 - - 41 125706 186714 Ofpe/WN9
IRS 16SWF00 -130 -155 -36 320706 460714 Ofpe/WN9
IRS 16SSWF06 -157 222,37 -36, 45 20606 221F15 08-951
IRS 16CCP00 -52 - -41 241706 | 145P14 256F15 09.5-B0.5 I
IRS 16NEP06 -19 - - 17600 _10P06  53P14 Ofpe/WN9
IRS 16SSE2P00 122 -137 34 286706 | B0-0.51
IRS 16SSE1£00 -117 -133 -33 216706 229F15 08.5-951
IRS 16SE1706 -93 -30 - 450600 36606 WC8/9
IRS 168706 -128 -155 34 100706 | 123P14 14915 B0.5-11
IRS 16SE2P00 40 -72 -38 327P06 WN5/6
IRS 16SE3700 -30 —54 - 281706 08.5-9.51
IRS 1706 - - 16 185600 73R07 L
IRS 2006 -199 - - 17600 L
IRS 2106 -84 -96 -9 - -
IRS 29NE1F00 - - 46 —130C%  _ggPl4 WC8/9
IRS 2906 - - 46 —190P06 wC9
IRS 33SW"06 -220, 29 - -27,138 - -
IRS 33NWV06 -300, 18 -312 -30 - -
IRS 33NF06 -235,19 -295 -29 68P06 [ 93P14 105F15 B0.5-11
IRS 33EF00 -150 -167 - 160690, 170706 | 214714 Ofpe/WN9
IRS 34EFP06 -200, =30 - 63 _154P06 09-951
IRS 34WF06 -180, =50 - 40 215600 _290P06  _184P14 Ofpe/WN9
IRS 34NWP06 -248 200 55 —150P06 WN7
AFNW?06 - 74 - 150600 70P06 WN8
AFNWNW?00 - 84 - 30700 WN7
W11bF00 -295,22 - 34 —364F06 OB
W13bF00 -301, 20 - -33 —24P06 OBI?
W10b"00 27 - -30 —434P06 08-9.5 TMI/1
W7bP06 31 - 79 _344P06 09-9.5 I11?
W14bF00 11 - -26 —224F06 08.5-9.51?
B9bP00 145 130 3 —150F06 WC9

Notes. Spectra were obtained from a beam sized aperture centered on the source position (see Table D.1, and Figs. 1 and A.13 for details). Refer-
ences for the source positions and velocities are: "9 Paumard et al. (2006); V°® Viehmann et al. (2006); ©'9 Pfuhl et al. (2014); ©°Y Genzel et al.
(2000); ®97 Reid et al. (2007); “'9 Li et al. (2010); and !> Feldmeier-Krause et al. (2015). The spectral type is taken from Paumard et al. (2006),
except from the classes E and L that are denoting the early-type and late-type stars as given in Genzel et al. (2000). $‘? velocities from SiO(6-5)
emission of SiO maser stars.
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43.3.IRS 3

This is a dust-enshrouded star. Very Large Telescope Inter-
ferometer (VLTT) observations in the NIR have shown that it has
an extended shell that contains also a central compact source
(Pott et al. 2008b). Its radial velocity is not known. Toward the
position of the central star the ALMA spectroscopy data show a
CS(5-4) and a C,H(3-2) line at 60 kms~! as well as somewhat
less well-defined RRL at 80 kms~'. The line maps reveal that
the CS(5—4) and C,H(3-2) line detections are associated with a
bright bar extending about 1” to the north and south with line
flux toward IRS 7. In addition, we find a mysterious clumps 2"
west of IRS 3 extending 2” in north-south direction. It appears
as a northern extension of northwest tip of the SE-NW cloud in
CS(5-4) and H'*CO*(3-2) emission at around 50 to 80 kms~!.
It is the brightest source in CH3;OH(7-6) and HC3N(27-26)
emission in the CA. The RRL emission of the H368 line rep-
resents itself as a bright bar extending about 1” to southwest
with a velocity of about —200 km s~!. In the continuum, we de-
tect a weak point source with a 340 GHz peak flux density of
1.4 mJy beam™!. There is also low level extended continuum
emission to the south and west. At 250 GHz, there is a ridge of
continuum emission with IRS 3 and IRS 7 at the southwest and
northeast tips. The ridge has a peak brightness of 1.5 mJy beam™!
with a ~2 mJy beam™! (peak) unresolved source at the position
of IRS 3. At 100 GHz, the entire continuum structure is speared
out.

43.4.1RS5

The RRL radial velocity at the dust embedded bow-
shock star IRS 5 is 110 kms! (e.g., Zhaoetal. 2010;
Sanchez-Bermudez et al. 2014). It shows no strong emission line
that could be attributed to the source. Line emission of the NA
occurs about 1.3” to the west. No continuum emission can be
attributed to the source at 340 GHz, 250 GHz, and 100 GHz.
Only two sources to the southeast, i.e., IRS 5S and SSE1, have
counterparts in the continuum emission (see Table B.1).

4.3.5.IRS 6

The RRL emission of IRS 6E and IRS 6W occurs at veloci-
ties of about —120 kms™'. The RRL and continuum emission
avoid the IRS sources in that region and fill the gap between
them as a filaments (K13, K14, K17, K19; Zhao et al. 2009).
The CS(5-4) emission passes IRS 6E 1” north and extends 3”
to the southwest. At the latter position, also SiO(6-5), SO(7-6),
and CH3OH(7-6) peak locally.

4.3.6.IRS7

At a radial velocity of about —120 kms~! IRS 7 shows spatially
unresolved maser emission in SiO(6-5), and a bit stronger in
Si0O(8-7) (compare with Reid et al. 2007). This corresponds to
the RRL velocities given the channel sizes. The CS(5-4) line
peaks around —50 km s~! and +50 km s~!. C,H(3-2) shows a be-
havior that is very similar to CS(5—4). Maps of the CS(5-4) line
show that the source is part of a NS ridge that peaks in molec-
ular line emission about 0.5” south-southeast of the source. The
C,H(3-2) line emission is unresolved with an offset if about 0.2
to the south. In the 340 GHz and 250 GHz continuum, we have
a point source right at the source position with peak flux densi-
ties of about 2 mJy beam™' and 2.8 mJy beam™', respectively.
In the 100 GHz continuum, we confirm a 1.5” to 2” long tail

to the north (Serabyn et al. 1991; Yusef-Zadeh & Morris 1991,
Zhao et al. 2009). This extended component peaks at 0.65” north
of the stellar position. At the position of IRS 7, we find a
peak flux density of 1 mJy beam™' and on the tail of about

1.6 mJy beam™".

43.7.1RS 9

The stellar radial velocity for IRS 9 is —340 kms~' (Reid et al.
2007). Toward its position, there is weak CS(5-4) line emis-
sion at 0 kms~!. Otherwise there is no conspicuous line emis-
sion to be detected neither on IRS 9 nor on the NIR source 0.5”
to the north. On IRS 9 itself, there is no continuum detection
above 1 mJy beam™! at 100 GHz to 340 GHz. The dusty source
IRS 9N (X5 in Muzi¢ et al. 2007) 0.3” to the north shows a faint
2.5 mJy beam™! emission peak at 340 GHz and ~5 mJy beam™!
at 250 GHz.

4.3.8.IRS 10

For IRS 10W, the radial stellar velocity is about 10 kms™'. We
find emission in the RRL H36 line at about 70 kms~. In the
340 GHz and 250 GHz continuum, it is a marginally extended
source with total fluxes of ~23 mJy and peak flux brightnesses
of ~7 mJy beam™! and ~8 mJy beam™!, respectively. In the lower
resolution 100 GHz map, the continuum emission blends in with
the minispiral flux with a peak brightness of ~50 mJy beam™".

IRS 10EE is bright in the masing SiO lines at about
-30 kms™! (compare with Reid et al. 2007; Li et al. 2010). For
IRS 10EE, we also find a bright compact component in the
H364 emission at 70 km s~! within the stream of minispiral NA.
There are no other lines and no continuum emission detected for
IRS 10EE.

4.3.9. IRS 12N

The stellar radial velocity of the prominent NIR source IRS 12N
lies at about —60 km s~!. In the ALMA data, it has no prominent
submillimeter line or continuum emission.

4.3.10. IRS 13E

The stellar radial velocity of the compact 0.5” diameter cluster
(Eckart et al. 2013) is about 45 kms~! (Paumard et al. 2006). In
the RRL H368 line emission map at the position of IRS 13E, we
find peaks at =190 kms~! and —40 kms~! both about 75 kms~!
broad. In line maps, the source is devoid of in molecular gas
emission. The RRL H36p is locally brightest between IRS 13E
and IRS 2L. It peaks about 0.5” north of IRS 2L at =300 km s~!
at the position of a faint NIR L-band source. We also find a
component at —160 kms~' peaking on IRS 13E and a com-
ponent at —60 kms~' and —43 kms~! in the general IRS 13E
and IRS 13N region. The behavior in the H39a RRL is consis-
tent with the findings for the H368 line except that the spatial
resolution is lower. The 340 GHz and 250 GHz continua peak
on the center of IRS 13E with a peak flux of 23 mJy beam™!
and ~30 mJy beam™', respectively. In the lower angular res-
olution 100 GHz band, we find a peak brightness of about

110 mJy beam™".
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4.3.11. IRS 13N

IRS 13N (Eckart et al. 2004, 2013) is a 0.3” diameter stellar
cluster disjunct from IRS 13E at a IR radial velocity of about
40 kms~' (Paumard et al. 2006). It is rather inconspicuous in
its line emission. There is a detection in the CS(5-4) line at
90 kms~! that is possibly not associated with the source. In the
H39a emission, we find possible extensions in line emission at
velocities of 44 kms™! and from —90 till —170 kms~!. In the
H368 emission, the southern edge of the source is bright over a
velocity range of —43 kms™' till -60 kms~!. In the 0.5" reso-
lution 340 GHz map, we find continuum flux peak on all 13N
members at about 7.5 mJy beam™! with some a diffuse compo-
nent about 0.5” to the northwest. In the 250 GHz data, the cluster
has a point flux density of 18 mJy beam™'. In the lower resolu-
tion 100 GHz map, IRS 13N appears only as an extension of the
brighter IRS 13E source.

4.3.12. IRS 16NE

The stellar radial velocity of IRS 16NE is 50 km s~! (Pfuhl et al.
2014). At its position, we see in RRL the H338 peaking at a ve-
locity of =30 kms™! and —-80 km s~! with a width of 100 kms~".
The source appears as part of the minispiral flow. The H36p line
emission peaks 0.5” to the east at —80 kms~'. There is RRL
emission in the range of —100 kms™! to +100 kms~! east of
source. We find a similar behavior for H334 line except that the
emission at —80 kms~! peaks weakly upon source itself. In the
velocity range —40 kms~' until =10 kms~!, we find emission
line flux 0.5” east of the source. Other than that, IRS 16NE
is clear of line emission in all line maps. At 340 GHz and
250 GHz, IRS 16NE is a point source with ~5 mJy beam™! and
~4 mly beam™!. At 100 GHz, the source flux is smeared out
and blends in with the minispiral.

4.3.13. IRS 16SW

IRS 16SW has a radial velocity of 460 km s~ (Pfuhl et al. 2014).
The ALMA data indicates that spectra toward its position are
free of strong emission lines except from faint CS(5—4) emission
at —40 kms~!. The emission line map shows that at this veloc-
ity, there is a 0.5” wide valley between two CS(5-4) line emit-
ting regions. There is a possible continuum detection at 340 GHz
and 250 GHz with fluxes of 1 mJy beam™! and 2.5 mJy beam™!,
respectively.

4.3.14. IRS 21

IRS 21 is a dust-enshrouded star (Sanchez-Bermudez et al.
2014) located in the minispiral bar. The ALMA data shows an
emission peak on source in the H368 line at <96 km s~!, which
is consistent with the minispiral flow (e.g., Zhao et al. 2010).
There is also RRL emission to north and south of the source.
Comparably extended CS(5—4) emission at the source position
appears at velocities from —40 to 60 kms™'. The 340 GHz and
250 GHz continuum peaks about 0.1” to the northwest giving
the appearance of a relatively isolated compact source on the
minispiral ridge with a peak flux density 7 mJy beam™' and
10 mJy beam™, respectively. Because of the lower angular res-
olution at 100 GHz the source is smeared out and cannot easily
be identified as a point source within the minispiral. The corre-
sponding region appears to be brighter to the northwest of the
IRS 21 source position.
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4.3.15. IRS 29

IRS 29 and IRS 29NE have radial velocities of —190 kms™
(Paumard et al. 2006) and —100 kms~! (Pfuhl et al. 2014), re-
spectively. The ALMA spectra toward their position show
CS(5-4) and C,H(3-2) line emission at 50 kms~!. In fact, the
molecular emission belongs to the clump between IRS 29 and
IRS 29NE 0.4” northeast of IRS 29. This clump is part of an
emission line ridge (SE-NW cloud) south of IRS 3. There is a
possible weak continuum detection at 340 GHz with a flux of
<2 mly beam~!. At 250 GHz and 100 GHz, no continuum de-
tection can be claimed.

4.3.16. IRS 33

There are a few NIR sources to the west and southwest of
IRS 16SW, which are listed under IRS 33. Here, we con-
sider IRS 33NW, N, (S)E, and SW. Radial velocities are
~100 km s™! for 33N and 214 km s™! for 33E Pfuhl et al. (2014),
Feldmeier-Krause et al. (2015). The spectra toward IRS 33SE
reveal no prominent emission lines. IRS 33SW, N, and NW
show CS(5—4) line emission at —30 kms™'. The maps show that
the CS(5—4) line emission toward IRS 33SW and NW lies at
the bridge or tips of emission clumps not associated with the
sources. As part of the minispiral flow, hydrogen RRL emission
passes 0.1 south of IRS 33N at =330 kms~!. No clear contin-
uum emission can be attributed to the IRS 33 sources. Extended
continuum flux passes though the cluster probably as part of the
minispiral.

4.4. The molecular line ratios

Molecular line ratios allow us to probe the molecular excitation
and abundance. In Table E.1 we list the molecular line ratios for
different molecules for all regions identified in Sect. 2.4 (details
on computation therein). As an overview we roughly summarize
the ratios by regions with similar ratios in Table 4 and sort them
by the general trend of the CS ratios.

We find that all CS/X (X: any other observed molecule) ra-
tios are significantly elevated in the center and the SEW clump,
i.e., more than three times higher than in the friop and single
clumps further out of the center, which are rather related to the
CND. A similar behavior can be seen in the CS(7-6)/HCN(4-3)
intensity ratio map of Montero-Castafio et al. (2009): Around
Sgr A* the intensity ratio, and with it the luminosity ratio due
to the similar frequencies, is about 10 times higher than in the
CND. The C,H/X and SO/X listed in Table 4 appear to be
marginally enhanced by a factor of 1.5 in the center and the SEW
clump. In ratios with C;H, the C,H flux might be overestimated
in the channels —20 and 0 kms~' because of strong side lobe
artefacts. Furthermore, the deviation of the integrated flux ratios
from the channel flux ratios is here about a factor of 2 since the
integrated emission contains both C,H fine structure lines. The
SiO(6-5)/H'3CO* ratio seems to remain constant, slightly de-
creasing toward the center.

The reason for the above described behavior of the line ra-
tios can be manifold. The GC is a region of extreme conditions
in terms of intense IR to UV radiation from the nuclear clus-
ter of massive stars and the X-ray emission from a population
of stellar remnants and the SMBH (e.g., Serabyn & Lacy 1985;
Krabbe et al. 1991; Baganoft etal. 2003; Perez etal. 2015;
Mori et al. 2015). Furthermore, the molecular emission, maybe
itself an infalling CND clump, is located in a turbulent region,
where the three minispiral gas streamers meet and where stellar
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Table 4. Molecular line ratio trends on larger regional scales.

Regions
Ratio Center Edge mHVC Triop SEW CND N&E CNDW V-cloud SEE
CS/CzH 5-7 5,12,20 2-4 _ 1-2 5-7 SEW2 1-3 CND-10 _ _ _
CS/SO 5-154 2 2-3 2-4M 5-8 24 - - -
CS/H*COo* 5-16 5 - 2-4 8-14 - - - -
CS/SiO 5-17 - 2 357 7-9 2-5 - - -
CS/HC;N 6-9 3 - 6-7™ - - - - -
CS/CH;OH(7-6) 4-11 4 - - - - - - -
C,H/SO 1.3-2.1 1.2 - 1.5 1.0-1.6 - - - -
C,H/H"3CO* 1.8-3.0° - - 1.5 2.1-2.6 - - - -
C,H/SiO0 2.2-2.6" - - - 1.1-1.9 - - - -
SO/Si0 1.0-2.4 - - 1.1 1.2-1.7 1.4 - - -
SO/H"CO* 0.7-1.9 - - 1.2 1.7-2.3 - - - -
SiO/H*CO* 0.6-1.7 - - 1.2 1.6 - - - -
H2CO*/HC3;N 1.3-1.9 - - 1.6 - - - - -
H'*CO*/CH;0H(7-6) 1.0-1.6 0.7 - - - - - - -
CS/N,H* - - - 2-4 - 1-7 2-8 - -
CS/CH;OH(8-7) - - - 4-8 - 8 10-15 - -
CSs/B3cs - - - 5-7 28-33 4-8 8-13 - -
N,H*/H*CO* - - - 0.6-1.3 - 1-2 0.8 - -
N,H*/CH;0H(8-7) - - - 1.3-2.5 - 23 1.3-2.1 1.0-1.7 4.0
N,H*/13CS - - - 2.3-25 - 1.9-3.2 1.0-1.6 - 39
BCS/CH;0H(8-7) - — — 0.8 — — 1.1-1.7 — —

Notes. Ratios are obtained from a beam-sized aperture of 0.65” centered onto the average position of all integrated emission line peaks in the
corresponding region. For ratios with N,H*, CH;0H(8—7), and '3CS a beam-sized aperture of 1.5” is used. SiO refers to the J = 65 transition of
SiO. The regions comprise the following clumps (see Fig. A.12) listed in the Table E.1: Center: the bulk of the CA, clumps 1-16, 20; edge: Edge of
the CA, clumps 19, 21, 22; mHVC: high velocity molecular clouds, clumps 24—27; Triop: clumps T1 — T11; SEW: clumps SEW1 — SEW4; CND
N&E: northern and eastern edge of the CND, clumps SEW8 — SEW13, CNDI - CND10; CND W: western CND, clumps CND-W1 — CND-W3;
V-cloud: clumps V1 — V12; SEE: clumps SEB1 — SEB6. (@fations) regions that do not fall into the range of ratios.

winds and gravitational shear impact the environment. Conse-
quently, shocks and magnetic fields may also play an important
role.

In a scenario where the molecular gas is very close to the cen-
ter, one can assume the winds from the stellar cluster to sweep
away a large amount of the gas so that only the densest cores and
a diffuse intercloud medium is left over. This affects the densi-
ties, temperatures, and overall chemistry in a complicated way.

4.4.1. Excitation

In the following we speculate on how the molecular line ratios
and in particular the molecular excitation is linked to variations
of the physical properties in the central region.

From the emission lines in band 6, H3CO* is the easiest to
excite with an upper state energy of E,/kp ~ 25 K and a critical
density of n, ~ 3 x 10® cm™3. Despite having the same E,/kg,
C,H requires a density that is twice as high as for H3CO* to
thermalize. CS, the molecule with the strongest emission in the
center, requires a slightly lower density but has an upper state
temperature of 35 K. The transitions of SO and SiO correspond
to energies of ~45 K, where SO thermalizes at densities similar
to the density of H'3CO* but SiO has one of the highest critical
densities in band 6, i.e., 8 x 10° cm™3. The next group of higher
upper state energies comprise CH3;OH (around 70 and 80 K and
densities of 0.6—1 x 10® cm™3) and SiO (at 75 K with the high-
est critical density of the sample, i.e., 2 x 10’ cm™3). Such high
excitation conditions obviously only occur in few regions. The
molecule with the highest upper state energy and found in the
same regions as the former is HCsN with an energy of 165 K.

Because of the similar critical densities of about 5% 10 cm™3

the excitation might be rather determined by the temperature for
CS, C,H, and H'*CO*, which trace the overall emission. In-
deed, non-LTE radiation transfer models of H; and CO in the
cloud toward IRS 3 suggest a temperature and density of Ty =
(300 + 50) K and ny, > 10* cm™ (Goto et al. 2014), which is
consistent with the estimate for a small filling factor ensemble of
irradiated dense clumps and clouds of Goicoechea et al. (2013).
Minispiral dust temperatures of 7y = 150-300 K obtained
from MIR and far-infrared (FIR) dust observations (Gezari et al.
1985; Cotera et al. 1999; Lau et al. 2013) give a lower limit for
the kinetic temperature of the gas there. Compared to this, recent
estimate ranges for CND clumps, especially in the SW lobe, are
Ty ~ 100-500 K, ny, ~ 10*-10% cm= and Ty = 50-90 K
(Mills et al. 2013; Requena-Torres et al. 2012; Lau et al. 2013).

CS can be abundant enough to be affected by radiative trap-
ping so that it appears thermalized at far lower densities, i.e., a
factor of 25 less than the critical density (Shirley 2015). Consid-
ering abundance ratios found in the GC of SiO/H'*CO* ~ 2-3
and CS/H'3CO* ~ 25-70 (Amo-Baladrén et al. 2011) H'3CO*
is expected to be faint. SiO and SO might trace the denser cloud
interior, but not only owing to excitation, as we discuss later in
this section.

Another effect that can skew the level population distribu-
tion of molecules is IR pumping, i.e., the excitation of the low-
est vibrational states and a consequent decay to higher purely
rotational levels than expected for a given collisional excita-
tion rate. Carroll & Goldsmith (1981) found the CS molecule to
be the most efficiently pumped species of those tested in their
study, followed by SiO, and, somewhat less effectively, HCN.
They obtain a minimum dust temperature needed to turn on the
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CS IR pumping of T > 114 K, which results in a maximum
distance from a dust-embedded star (L ~ 10° Ly) at which
pumping still occurs of r < 0.04 pc = 1”. The environment
of Sgr A* comprises several dust-embedded stars. In fact, the
CS emission covers regions at and around IRS 1W, 3, 6, 7, 21,
29, which are known as dust-embedded sources with tempera-
tures of T > 200 K (Gezari et al. 1985; Tanner et al. 2002, 2005;
Moultaka et al. 2004; Viehmann et al. 2006; Pott et al. 2008a,b).

In addition, the 19 um/37um color temperature map from
Lau et al. (2013) shows dust temperatures of 7T = 120—-150 K
within 7 ~ 5” of the minispiral and T = 105-135 K in the
region between IRS 3 and 7. In the case that the CS is indeed
engulfing the minispiral and the stars, the impact of IR pumping
by hot dust on the CS line flux cannot be neglected.

Vibrationally excited HCN has already been detected in the
dense, shielded region in the SW lobe (Mills et al. 2013), where
a possible stellar heating origin is not discernible in the NIR
HST-NICMOS images, which is most likely due to high extinc-
tion. Since the conditions in this clump are sufficient to excite
the vibrational transition of HCN, the conditions in the center
should be ideal. In fact, Goto et al. (2014) had difficulty repro-
ducing the CO excitation ladder observed toward IRS 1W and
IRS 3 by radiative transfer modeling and suspect the IR pump-
ing to affect the level population. Observations of vibrationally
excited molecules (CS, HCN, SiO) in these regions could clarify
the impact of this effect.

4.4.2. Abundance

CS has been found to be the most abundant S-bearing molecule
in edges of PDRs and diffuse ISM (PDR shell tracer; e.g.,
Lucas & Liszt 2002; Goicoechea et al. 2006) because of the
high abundance of ionized sulphur in the gas phase (e.g.,
Lepp et al. 1988). However, in dense clouds sulphur is locked
up in the progenitor molecules depleted onto grains (Charnley
1997; van der Tak et al. 2003) and therefore the CS abundance is
low (e.g., Bergin et al. 2001; Di Francesco et al. 2002). Chemi-
cal modeling by Benz et al. (2007) suggests that the presence
of X-ray emission enhances the gas phase abundances of CS
and SO. However, neither SO appears to be significantly ele-
vated in the center, nor does SiO appear to be elevated for the
assumption of IR pumping conditions. Either X-rays and/or IR
pumping do not play an important role or another effect depletes
these molecules relative to CS. Considering the photodissoci-
ation rates, it becomes evident that SiO and SO are very sen-
sitive to UV radiation and are only outmatched by HC3N. On
the other end of the ladder, H3CO™" is the most UV-resistant
species, followed by C,H and CS at a separation of <2 mag.
CH3OH lies in between the two extremes. Therefore, finding the
emission of the UV-sensitive species rather localized at the CS
peaks might not only relate to excitation effects but also to the
shielding properties of the gas. CS, SO, SiO, and CH3OH are
related to grains. The CH3OH and the progenitor molecules of
CS and SO are formed on grains, which often contain silicates
(i.e., SiO). These molecules or their progenitors can be released
to the gas phase at a molecule specific temperature (evapora-
tion) or by shocks (sputtering). Therefore, while SiO is rather ac-
cepted to be a shock tracer, the other molecules can also indicate
a warmer environment enhancing their abundances, which might
be the case for the region west of IRS 3. This region shows strong
HC;N and CH;OH emission and moderate H'CO* emission,
but faint CS emission. The lack of SiO in this obviously UV-
shielded, warm region suggests a temperature-related excitation
and/or abundance enhancement rather than a shock chemistry.

A68, page 20 of 54

5. Nature of the molecular gas
5.1. Infrared dark clouds and methanol masers

When comparing to the NIR emission in Fig. 10, it is evident that
the large NoH* clouds, i.e., the V cloud and SEE, correspond to
large dark clouds in the foreground of the center absorbing the
NIR radiation. In fact, this is not unexpected; NoH* is mainly de-
stroyed by reactions with CO, which is depleted onto dust grains
at temperatures of 7 < 25 K (Vasyunina et al. 2012) such as
those found in IRDCs. The absence of relatively strong emission
from other molecules suggests a similar fate for them as for CO.
Therefore, these clumps seem to be much cooler than the CND.
A lower temperature limit is given by the freezeout of N, at
Tk ~ 15 K (Vasyunina et al. 2012) prohibiting the formation of
N,H" from it. Nevertheless, the connection between dark clouds
and N,H* emission is not universal as is seen in — among many
more — for example, the region 10" east of Sgr A*, where there is
N,H™*, but no NIR absorbing dust cloud, and in the dark clumps
~30” north of Sgr A*, which do not show N,H* emission. Ob-
viously, the excitation and abundance evolution are more com-
plicated here. Martin et al. (2012) find the velocity centroids of
the V cloud to be at ~0 kms~! in the west and ~60 km s~! in the
east. The velocity centroid of SEE is stated to be at ~10 kms™!
and the line FWHM s are typically around ~20 kms~'. This is
in agreement with our low spectral resolution data. The proxim-
ity of these two clouds in velocity and space to the 20 kms™!
and 50 kms~! GMCs in the southeast and east of the GC rather
suggests a relation to them than to the CND, where N,H* is com-
parably faint.

These dark clouds are discussed above along with the triop,
which actually contains a tiny dark cloud, and are also sources of
class I CH3;OH maser emission at 36 and 44 GHz (see Sect. 3.3)
and of CH3OH(8-7) emission. The latter transition can also be
excited to amplified stimulated emission (95 GHz class I maser,
(e.g., Voronkov et al. 2012, and references therein). Indeed, the
CH;OH(8-7) emission peaks at three of the four masers, i.e., the
two 44 GHz masers in the eastern edge of the V cloud and in
the triop and the 36 GHz maser in SEE, where the latter two
are much fainter compared to the first and surrounded by ex-
tended emission. Because of the extremely narrow line widths of
~1-2 kms™! (Yusef-Zadeh et al. 2008; Sjouwerman et al. 2010;
Pihlstrom et al. 2011), the maser nature of CH3OH(8-7) line
emission in these peaks cannot be assessed with our observa-
tions, but the very bright and point source-like emission of the
first peak strongly implies an amplification by a maser process.

Class I methanol masers are believed to be collisionally
pumped and hence tracing shocks, while Class II methanol
masers are pumped by FIR-radiation relating them to star-
forming regions. The 36, 44, and 95 GHz class I masers are
often found together, suggesting the same underlying mate-
rial and conditions, where the 95 GHz line emission is intrin-
sically fainter (e.g., Fontani et al. 2010; McEwen et al. 2014;
Kang et al. 2015). Modeling of the methanol maser transitions
results in the favored conditions for 36 GHz and 44 GHz
maser line emission overlapping with 7y > 50 K and n ~
10°-10° cm™!, where in star-forming regions the 36 GHz masers
occurs in less dense (and cooler gas) than the 44 GHz masers
and vice versa for supernova remnants (SNR; Pratap et al. 2008;
McEwen et al. 2014). On the one hand, the eastern edge of the
V cloud and the SEE region appear not only cold and dense
enough to form stars, but they are also cospatial with bright
SiO emission, that is only surpassed in the southern lobe, which,
among others, could imply an interaction of the SNR Sgr A East
with the 20 km s~! and 50 km s~! — GMCs producing large-scale
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Fig. 10. Schematic view on the central <5 pc. N;H*(1-0) is indicated by green contours of [4, 32] xo (=0.07 Jy beam™ km s~!), CS(5-4) shown
as blue contours of [8, 48] x o (=0.08 Jy beam™' km s~!), and CH;OH(8-7) indicated by white contours of [3, 6, 96] X o (=0.06 Jy beam™! km s1)
on a NIR HST NICMOS (1.87 um) image (HST archive). Red crosses in the triop, SEE, and the V cloud show the class I methanol masers (see

text) and the black cross Sgr A*.

shocks (Sato & Tsuboi 2008; Martin et al. 2012; Moser et al.
2014; Moser et al., in prep.). On the other hand, shocks from
outflows from YSOs are also able to excite the maser. In fact,
the 44 GHz maser in the friop and at the prominent CH3;OH(8—
7) peak in the V cloud as well as the 36 GHz maser in SEE are
located next (r < 0.5”) to a star or weak NIR sources in projec-
tion. Consequently, more observations are needed to understand
and disentangle the conditions and their causes in these mixed
regions better.

5.2. High velocity clouds

Here we consider clouds as high velocity clouds that move faster
than the typical ranges for molecular gas in the CND, i.e., —100
to 100 kms™! (see Figs. 7 and A.9).

Based on SiO(5-4) emission, Yusef-Zadeh et al. (2013) mea-
sure a line center and width of v ~ 148 kms™' and FWHM ~
47 kms™! for clump YZ1-2 and v ~ 136 kms~! and FWHM ~
56 kms~! for clump YZ1. They interpret these properties and
their line transition modeling results of ny, ~ 10°~10° cm=3 and
Tx ~ 100-200 K as an indication of highly embedded protostel-
lar outflows.

In contrast to the earlier data, the SiO clumps YZI1-2
and YZ11 are partly resolved in this observation showing an

elongated structure pointing at each other (see Fig. 6). On the
one hand, the configuration is reminiscent of a double lobed out-
flow from a hypothetical source in the middle of the two SiO
clumps. But such a configuration can be ruled out owing to the
similar velocities. Instead, it could be indeed possible that we
are seeing the single-sided lobes from two independent outflow
sources as suggested by Yusef-Zadeh et al. (2013).

On the other hand, YZ1-2 looks especially like a bound-
ary due to its elongated or filamentary shape closely follow-
ing the NA streamer. In fact, it is located in the region where
the EB, i.e., the minispiral component bridging the NA and the
EA, overlaps with the NA and their proper motions are oppo-
site each other: The NA has an x- and y-velocity components
of vy, ~ —188 kms™! and vs ~ =560 kms~' and the EB shows
vy ~ 32 kms™' and vs ~ 360 kms~' (clumps X13 and K37,
respectively, in Zhao et al. 2009). In addition, the EB covers ra-
dial velocities of ~40—-140 kms~! and shows a velocity compo-
nent at 130 kms~! at the discussed position, whereas the NA
moves with ~20 kms™! in this region (Fig. 11). The main fila-
ment in the EB, apparently connecting the tip with the IRS 1W
region and containing the K37 (Zhao et al. 2009) component, is
about as thick as the YZ1-2 is long. While a heads-on collision
of the NA streamer and the EB filament would surely destroy the
dust grains and molecules at such high velocities, scraping past
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Fig. 11. 130 km s~! channel image of the Ne II line emission cube from
Irons et al. (2012). Ionized emission appears at the high velocity SiO
cloud YZ1-2 southwest of IRS 1W (arbitrary units). SiO(6-5) emission
is shown in green contours as in Fig. 5 and the 250 GHz continuum in
red contours as in Fig. 2.

each other could generate shock velocities in the layers further
inward of the clouds that would be ideal for grain sputtering and
the release or production of gas phase SiO.

Apart from the known SiO clumps YZ1-2 and YZ11, we dis-
cover three more clumps in CS emission at similar velocities
(see Figs. 7 and A.9). One of these clumps seems to be associ-
ated with YZ1-2, showing faint CS emission at the location of
the SiO peak and slightly brighter CS emission 5" northeast of
it, cospatial with faint SiO emission in the same channels. This
extension of YZ1-2 to the northeast parallel to the elongation
of YZ1-2 can also be seen in the SiO data of Yusef-Zadeh et al.
(2013). The other two CS clumps, one between the tip and the
minicavity, the other north of the IRS 6 region in the west-
ern bar, are elongated and in line with each other. The first
clump overlaps in space and velocity with the ionized gas emis-
sion, while the second appears as unassociated as the YZ11
cloud, where no other emission is detected in the correspond-
ing channels. The occurrence of several clumps with similar ve-
locities and FWHM within a radius of 10” suggests a relation
between them that possibly even includes the SiO clumps. They
could be the denser leftovers of a tidally disrupted cloud that is
falling toward the center similar to what has been proposed for
the high negative velocity cloud around —180 kms~! detected
in, for example, OH absorption and NH; emission (Zhao et al.
1995; Karlsson et al. 2003; Donovan et al. 2006). In contrast to
the latter, large-scale emission of the 150 km s~ clumps has
not been detected in previous observations (Wright et al. 2001;
Martin et al. 2012) except from a tentative feature in the channel
maps of Christopher et al. (2005).

5.3. Origin of the molecular gas in the central 20 arcsec

In the following we discuss the nature and possible origin of the
CA gas in light of mainly two hypotheses: the CA gas may be
linked to the triop or to the OH streamer (Fig. 12).

A68, page 22 of 54

General considerations on the CA: the presence of molecular
gas in the central parsec has been indicated by several observa-
tions in the past. Molecular gas is expected to be dissociated into
ionized elements if the conditions are as harsh as they are found
in the very center close to the super massive black hole SgrA*
and well within the cluster of young and hot He-stars. However,
the presence of molecular gas or even ice in the central parsec
has been indicated by several observations in the past. The rea-
son for this lies in the crossing timescale of freshly infalling
or orbiting gas streams through the central stellar cluster. This
timescale is short compared to the dissociation timescale in the
presence of shielding and the cloud clump evaporation timescale
(discussion in Moultaka et al. 2004, 2005, 2015).

Summary of previous findings: Geballe et al. (1989) discov-
ered strong CO absorption toward IRS 3 and 7 and even wa-
ter and CO ice absorption is detected in the minispiral and to-
ward the mass losing stars (Moultaka et al. 2004, 2005, 2015).
Furthermore, the presence of molecular gas at and around
Sgr A* is evident in the HCN(4-3) and CS(7-6) maps of
Montero-Castaiio et al. (2009) and the CN map of Martin et al.
(2012). From the up to now largest line study of the cavity,
comprising CO transition lines from J = 4-3 to J = 24-23,
Goicoechea et al. (2013) inferred that the ISM can be described
either by a single, hot (Tx > 1000 K), low-density (ny, <
10* cm™3) component or by multiple rather compact components
at a lower temperature and higher density. The ALMA data dis-
cussed here supports the latter case. In addition, hot gas in the
CA has been detected in several H, transitions in the NIR whose
level populations suggest a strong impact by UV radiation (i.e.,
UV pumping and dissociation, Ciurlo et al. 2016).

Recent NIR and MIR data on the distribution of H,O ice,
hydrocarbons, CO ice, and gaseous CO reveal that molecular
gas and ices are ubiquitous in the whole central minispiral and
around IRS 3, 7, and 29 (Moultaka et al. 2015). The H,O ice
absorption extends over the whole minispiral, whereas the hy-
drocarbons and gaseous CO absorption are rather restricted to
the dust filaments and the stars in the case of CO, but the opti-
cal depth of all three species is large around IRS 3, 7, 29, and
the western part of the bar. Solid CO, which requires even lower
temperatures (7' < 25 K, Vasyunina et al. 2012) than H,O ice to
exist, shows strong absorption only in the dust filaments between
IRS 1W and the minicavity, IRS 21 and in the IRS 2L region, and
faint absorption toward IRS 3, 7, and 29.

The strong absorption features of molecular gas and ice to-
ward IRS 3, 7, and 29 and the western bar are accompanied by
strong IR absorption features of dust grains: Pott et al. (2008b,a)
detected silicate absorption in the spectra of IRS 3 and IRS 7
and they point out that the dust is of interstellar nature and is not
related to the circumstellar regions of IRS 3 and IRS 7. In fact,
there is a silicate dust veil extending between IRS 7 over IRS 3
and IRS 29 across the western part of the bar (Viehmann et al.
2006). This dust could be a likely reservoir for SiO molecules
in the gas phase when these molecules are released into it via
shocks, evaporation, UV, or X-rays. The CS emission at pos-
itive velocities covers the IR absorption regions at IRS 3, 7,
and 29, and partly the western Bar. Although they are strongly
mass-losing stars, the shifts in the peaks of the distributions of
gas and ice and the location of IRS 3 and IRS 7 suggest the
IRS sources play a marginal role in the enrichment of the gas
phase molecules. Only IRS 29 coincides with a CS peak. A re-
lation with the silicate dust appears more likely, but needs to
be probed. The blueshifted CS emission is more puzzling; this
emission coincides with the CO gas and ice absorption in the
dusty region between IRS 1W, IRS 21, and the minicavity, but
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not in the IRS 2L region. On the one hand, the coincidence of the
molecular gas emission with the RRL in projection and velocity,
ie., —40to 0 kms™!, might indicate a common molecular cloud
with a limited ionized surface or an interaction of a molecular
gas streamer, not yet ionized, with the NA. On the other hand,
the ambiguous behavior of CS emission compared to the IR
ice and gas absorptions suggests that the features are rather not
related.

The velocity range of the CA and its possible link to the triop:
from the spectroscopic view, Goto et al. (2014) reported strong
absorption in the higher excitation lines of Hg and CO in the NIR
toward IRS 3 around 50 and 60 kms™!, respectively, and weaker
absorption around 45 kms~!. In contrast to this, the spectrum
of IRS 1W shows only the 45 kms~' component. Similar re-
sults of 50 kms~! were found by Geballe et al. (1989), but at
a much lower spectroscopic and spatial resolution. In their ob-
served spectra, it becomes evident that the IRS 1 region covers
a range of 0—40 km s~!, whereas the broad absorption between
0 and 60 kms™! is not only seen in IRS 3, but also toward the
IRS 6 region and IRS 7. This behavior is recognizable in the
CS emission channel maps (Fig. 7). Martin et al. (2012) report
a velocity component at 46 kms~! for clump 18, which covers
the bulk of the positive velocity CS clumps between IRS 3, 7
and Sgr A* and whose peak is almost cospatial with IRS 7. Fur-
thermore, they determined a second component at —77 km s7L
which is most likely the same component detected in absorp-
tion at =72 kms™' in the lower excitation CO emission IRS 1,
IRS 3, and IRS 16NE (Goto et al. 2014). This is consistent with
the ALMA data showing emission at or nearby these sources in
the —80 to —40 kms~! channels.

The H3 and CO absorption and the sub-mm molecular emis-
sion originate from the same cloud, which is likely located in
front of or around IRS 3 and 7. Moreover, the silicate dust ab-
sorption could take place in the same cloud. Its LOS position
with respect to the minisprial remains unclear, since the LOS
position of IRS 3 and 7 relative to minispiral is not clear. In the
case that the molecular material is not a product of mass ejection
from the evolved stars in the nuclear cluster, this clump might be
linked to the CND. In fact, the velocity range matches the CND
velocities in the triop region, which appears at 40-100 kms™!
and peaks at 60-70 kms~!. In this way our data supports the
suggestion of Goto et al. (2014) who considered the clump to be
an extension of the CND.

Is the CA linked with the OH streamer? another intriguing
aspect is given by Karlsson et al. (2003, 2015), who detect an
additional streamer in OH absorption that has not been noticed
in other molecular lines so far (Fig. 12). The absorption feature
is visible from —30 to 70 kms~! and extends from the center,
where it peaks northwest from Sgr A* at 50 km s~ (“head”), to
the SW lobe and beyond, where it peaks at ~70 kms™! (“tail”).
One can find faint hints of it in the CS(1-0) channel maps of
Liu et al. (2012) and the denser parts are also detected as sin-
gle clumps in, for example, CN (Karlsson et al. 2015). We see
that the ALMA CS emission extends slightly across the west-
ern bar in the same direction as the streamer (Fig. 12). Between
velocities of =30 to 15 kms™! the OH absorption of the head is
centered on Sgr A*. The same is visible for the CS emission.
The OH and CS detected gas also shows an apparent connection
to the southeast around velocities of 0 kms™'.

Karlsson et al. (2015) constrain the streamer head to have
a molecular gas mass of 65 M, based on its extent and the
assumption of an ellipsoidal structure and a density of ny, ~
10° cm™3. Applying the same method for all (deconvolved)
clumps in the CA, we obtain a total gas mass of the CA of

A8 |arcsec]
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A [aresec]

—-10 =15

Fig. 12. Schematic view on the OH streamer in OH emission at
50 kms™!' in green contours with lowest level at ~90 mJy beam™!
(~3.50) and steps of 1o from Karlsson et al. (2015). Black contours
show the 100 GHz continuum emission as in Fig. 2, red contours in-
dicate the CS(5—4) emission as in Fig. 5, and the blue cross indicates
Sgr A*. The shape of the streamer head resembles the distribution of
the CS clumps.

about 5 M. The results match well because the observed OH
transition (1665 and 1667 MHz) is already sensitive to densities
of ~10> cm™3 so that the adopted density is overestimated for
the traced OH gas. A difference in the average densities traced
by the OH transition and the transitions in our data of an or-
der of magnitude is highly likely. This approach for a mass es-
timate is of limited accuracy since the density and structure in
these clumps/cloud are unknown and therefore simplified. How-
ever, the assumption of virialization yields unplausible masses
of several 10° M, per clump and few 10° M, for the whole
CA. The masses of atomic hydrogen inside the cavity (domi-
nated by the minispiral NA) range between 50-300 M, (from
FIR and O1 observations; Telesco et al. 1996; Latvakoski et al.
1999; Jackson et al. 1993), while the molecular gas mass is most
likely only a fraction of this.

The OH streamer seems to be a viable explanation at least
for the redshifted emission in the center. The observed OH
transition traces the rather diffuse material, so that the tidally
stretched tail is only tentatively detected by the high density trac-
ers (e.g., HCN, HCO®, CS) toward higher density clumps within
the streamer, which then appear to be unrelated at first sight. The
density of the head of the OH streamer seems to be higher than
that of the tail gas. Either the head is the dense core of the ini-
tial cloud or the gas is compressed by stellar winds and other
gas streamers, or, most likely, it is a mixture of both. Several
CS emission peaks within the region between IRS 3, IRS 7 and
Sgr A* are cospatial with SiO emission peaks, which could indi-
cate shocks, although a significant impact of the X-ray and UV
radiation field in the gas phase SiO cannot be ruled out.

The blueshifted molecular gas in the center could be part
of the OH-streamer orbit. Such a case raises several questions
on the trajectory of the clump, the eccentricity, and the periapse
distance of the orbit, and intimately related to this, the excitation
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and lack of ionization. Furthermore, the streamer could interact
with the NA, which could entrain the streamer toward the cen-
ter. On the one hand, this would explain the coincidence in pro-
jected location and velocity. On the other hand, no blueshifted
SiO emission is detected in the NA except from the SiO maser
stars, but this could be due to an insufficient S/N. The integrated
CS emission in the blueshifted peaks in the center is only half as
bright as in the redshifted peaks. If the SiO emission scales ac-
cordingly, it might be too weak to be detected in this observation.
In a case where the OH streamer is interacting with, but not en-
trained by the NA, the gas might be slowed down enough to form
a disk feeding the central 10” (0.4 pc) and might be even related
to the counterclockwise disk (Paumard et al. 2006; Bartko et al.
2009, 2010; Lu et al. 2009).

In order to understand the dynamical processes and the re-
lations between the sources in the center, proper motions are
mandatory to complete the picture. Based on few data sets within
a total time range of ~15 yr, Zhao et al. (2009, 2010) established
a plausible 3D model of the minispiral streamers as Keplerian or-
bits around Sgr A*. A similar campaign needs to be conducted
for the molecular gas in the CND and the cavity.

6. Summary

The interferometer ALMA was used to observe Sgr A* and its
environment at 100, 250, and 340 GHz with a spatial resolution
of 0.5-1.5" and a spectral resolution of 15-50 km s~1. We found,
in addition to the continuum in the three bands, 11 molecular line
transitions and 5 RRL transitions as well as many interesting
regions and features. The main results are summarized in the
following.

Continuum and RRL emission: the minspiral is well detected in
its whole extent in the 100 GHz continuum and the H39« emis-
sion yielding an almost uniform electron temperature around
T. ~ 6000 K. The 250 and 340 GHz continuum emission trace
the minispiral filaments and IRS sources at an up to now un-
precedented resolution (<0.75”) in the sub-mm domain. The
spectral index of Sgr A* is ~0.5 at 100-250 GHz and ~0.0 at
230-340 GHz. The compact and high S/N regions in the cen-
ter show spectral indices around —0.1 implying Bremsstrahlung
emission, while indications that dust emission gain importance
for the continuum emission is seen in the NA and EA in the form
of a positive spectral index.

Molecular line emission: the most striking result from this data
is the for the first time resolved view on sub-mm molecular line
emission of the inner 20”. It shows a clumpy distribution in CS
line emission with the bulk of the emission at positive veloci-
ties and in a region confined by the minispiral NA, bar, and the
sources IRS 3 and 7. Although partly spatially overlapping with
the RRL emission at the same negative velocities, the relation
to the minispiral remains unclear. Other molecules, such as SO,
Si0, and H'3CO*, are confined to the CS emission peaks. It is
possibly an infalling clump, as suggested by earlier OH observa-
tion, which might consist of denser cloud cores embedded in dif-
fuse gas. The CA of clouds shows three times higher CS/X (X:
any other observed molecule) luminosity ratios than the CND,
suggesting a combination of higher excitation, by a temperature
gradient and/or IR-pumping, and abundance enhancement due to
UV and/or X-ray emission. We conclude that the association is
closer to the center than the CND is.
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We find emission at unexpectedly high velocities. Between
100 and 200 kms~!, we detect few SiO and CS clumps, where
the first group has previously been interpreted as outflows
from YSO. Nevertheless, the common velocity ranges around
150 kms~! might also hint at a connection between SiO and
the CS clumps, such as coming from another infalling tidally
sheared cloud.

Moreover, we identify two further intriguing regions. One of
them is the triop in the northwest of the center and located in the
CND. It is detected in almost all molecules observed previously
and the ALMA observations presented here resolve its filamen-
tary structure for the first time. The fact that it harbors a class I
methanol maser and the detection of transitions with high upper
state energies (e.g., HC3N(26-25), T, ~ 160 K) point at the pos-
sibility of hot core conditions and early stages of star formation.

The other region is the northwestern tip of the CND SE. It
shows higher CS/X ratios than the CND, but not as high as the
center. The molecular species detected appear to form a layered
structure perpendicular to sightline to the center. Seemingly, it
becomes affected by the radiation and or the winds from the nu-
clear stellar cluster.

Outside the CND, we find the traditionally quiescent gas
tracer NoH* coinciding with the largest IRDCs in the field.
Methanol emission is found at and around previously detected
methanol class I masers, which are assumed to be evoked by
large-scale shocks from the Sgr A East shell. Since dark clouds
are likely to contain prestellar cores, these clouds make another
ideal candidate to investigate the earliest stages of star formation.

Outlook: the observation yielded a collection of interesting re-
gions with properties distinct from the majority of CND clouds,
which deserve further investigation.

Our data clearly show a trend of more extreme conditions for
the molecular emission toward the center. In order to constrain
the density and temperature distribution, the excitation ladder
of specific tracers (e.g., density) has to be probed by observa-
tions of several transitions per molecule spanning a wide range
of J levels. In addition, the distribution of vibrationally excited
CS, SiO, or HCN emission needs to be tested to infer the ef-
fect of IR pumping on the excitation. Observation of atomic line
emission could mark the transition or link from molecular gas
to ionized gas and helps to understand the relations between the
features. For all of this, a higher spectral resolution than given
in this observation is mandatory. In the long term, a better con-
straint on the distance of the molecular and neutral clouds to
Sgr A* and their fate can be obtained when studying the proper
motions.

The presence of, for example, CH30H, HC3;N, and H,CO
in the warmer triop and the colder IRDCs calls for observations
of more complex hydrocarbons, and maybe deuterated species,
which are characteristic for the temperature and density depen-
dent core chemistry. The assessment of their properties might
give hints about the open questions on (recent) star formation in
this turbulent region.

The observations discussed have already proven the high ca-
pabilities of ALMA in early science cycle 0 so that we can look
forward to full array observations of the GC with ALMA.

Acknowledgements. This paper is based on the following ALMA data:
ADS/JAO.ALMA#2011.0.00887.S. ALMA is a partnership of ESO (represent-
ing its member states), NSF (USA) and NINS (Japan), together with NRC
(Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in
cooperation with the Republic of Chile. The Joint ALMA Observatory is op-
erated by ESO, AUI/NRAO, and NAOJ. Furthermore, the paper makes use of
observations made with ESO Telescopes at the La Silla Paranal Observatory



L. Moser et al.: Molecular gas in the vicinity of Sgr A* seen with ALMA

under programme IDs 089.B-0145 and 085.C-0047 and of observations made
with the NASA/ESA Hubble Space Telescope, obtained from the data archive
at the Space Telescope Science Institute. STScl is operated by the Association
of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-
26555. This work was supported in part by the Deutsche Forschungsgemein-
schaft (DFG) via the Cologne Bonn Graduate School (BCGS), the Max Planck
Society through the International Max Planck Research School (IMPRS) for As-
tronomy and Astrophysics, as well as special funds through the University of
Cologne and SFB 956 — Conditions and Impact of Star Formation. L. Moser is
funded by the SFB 956. L. Moser, B. Shahzamanian, and A. Borkar are members
of the IMPRS.

References

Amo-Baladrén, M. A., Martin-Pintado, J., & Martin, S. 2011, A&A, 526, A54

Baganoff, F. K., Maeda, Y., Morris, M., et al. 2003, ApJ, 591, 891

Bartko, H., Martins, F,, Fritz, T. K., et al. 2009, ApJ, 697, 1741

Bartko, H., Martins, F,, Trippe, S., et al. 2010, ApJ, 708, 834

Benz, A. O., Stiuber, P., Bourke, T. L., et al. 2007, A&A, 475, 549

Bergin, E. A., Ciardi, D. R., Lada, C.J., Alves, J., & Lada, E. A. 2001, ApJ, 557,
209

Bower, G. C., Markoff, S., Dexter, J., et al. 2015, ApJ, 802, 69

Carroll, T. J., & Goldsmith, P. F. 1981, AplJ, 245, 891

Charnley, S. B. 1997, ApJ, 481, 396

Christopher, M. H., Scoville, N. Z., Stolovy, S. R., & Yun, M. S. 2005, ApJ, 622,
346

Ciurlo, A., Paumard, T., Rouan, D., & Clénet, Y. 2016, A&A, 594, A113

Coil, A. L., & Ho, P. T. P. 1999, ApJ, 513, 752

Coil, A. L., & Ho, P. T. P. 2000, ApJ, 533, 245

Cotera, A., Morris, M., Ghez, A. M., et al. 1999, in The Central Parsecs of the
Galaxy, eds. H. Falcke, A. Cotera, W. J. Duschl, F. Melia, & M. J. Rieke, ASP
Conf. Ser., 186, 240

Di Francesco, J., Hogerheijde, M. R., Welch, W. J., & Bergin, E. A. 2002, AJ,
124, 2749

Donovan, J. L., Herrnstein, R. M., & Ho, P. T. P. 2006, ApJ, 647, 1159

Eckart, A., Moultaka, J., Viehmann, T., Straubmeier, C., & Mouawad, N. 2004,
ApJ, 602, 760

Eckart, A., Garcfa-Marin, M., Vogel, S. N, et al. 2012, A&A, 537, A52

Eckart, A., Muzié, K., Yazici, S., et al. 2013, A&A, 551, A18

Eisenhauer, F., Schodel, R., Genzel, R., et al. 2003, ApJ, 597, L121

Falcke, H., Goss, W. M., Matsuo, H., et al. 1998, ApJ, 499, 731

Feldmeier-Krause, A., Neumayer, N., Schodel, R., et al. 2015, A&A, 584, A2

Fontani, F., Cesaroni, R., & Furuya, R. S. 2010, A&A, 517, A56

Geballe, T. R., Baas, F., & Wade, R. 1989, A&A, 208, 255

Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T. 2000, MNRAS, 317,
348

Gezari, D. Y., Shu, P, Lamb, G., et al. 1985, ApJ, 299, 1007

Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044

Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009a, ApJ, 707, L114

Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009b, ApJ, 692, 1075

Goicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A, 456, 565

Goicoechea, J. R., Etxaluze, M., Cernicharo, J., et al. 2013, ApJ, 769, L13

Gordon, M. A., & Walmsley, C. M. 1990, Apl, 365, 606

Goto, M., Geballe, T. R., Indriolo, N., et al. 2014, Ap]J, 786, 96

Guesten, R., Genzel, R., Wright, M. C. H., et al. 1987, ApJ, 318, 124

Horrobin, M., Eisenhauer, F., Tecza, M., et al. 2004, Astron. Nachr., 325, 88

Irons, W. T., Lacy, J. H., & Richter, M. J. 2012, ApJ, 755, 90

Jackson, J. M., Geis, N., Genzel, R., et al. 1993, ApJ, 402, 173

Kang, H., Kim, K.-T., Byun, D.-Y., Lee, S., & Park, Y.-S. 2015, ApJS, 221, 6

Karlsson, R., Sjouwerman, L. O., Sandqvist, A., & Whiteoak, J. B. 2003, A&A,
403, 1011

Karlsson, R., Sandqvist, A., Fathi, K., & Martin, S. 2015, A&A, 582, A118

Krabbe, A., Genzel, R., Drapatz, S., & Rotaciuc, V. 1991, ApJ, 382, L19

Krabbe, A., Genzel, R., Eckart, A., et al. 1995, ApJ, 447, L95

Kunneriath, D., Eckart, A., Vogel, S. N., et al. 2012a, A&A, 538, A127

Kunneriath, D., Eckart, A., Vogel, S. N., et al. 2012b, J. Phys. Conf. Ser., 372,
012063

Latvakoski, H. M., Stacey, G. J., Gull, G. E., & Hayward, T. L. 1999, ApJ, 511,
761

Lau, R. M., Herter, T. L., Morris, M. R., Becklin, E. E., & Adams, J. D. 2013,
Apl, 775, 37

Lepp, S., Dalgarno, A., van Dishoeck, E. F., & Black, J. H. 1988, ApJ, 329, 418

Li, J., An, T., Shen, Z.-Q., & Miyazaki, A. 2010, ApJ, 720, L56

Liu, H. B., Hsieh, P-Y., Ho, P. T. P, et al. 2012, ApJ, 756, 195

Lo, K. Y., & Claussen, M. J. 1983, Nature, 306, 647

Lu, J. R., Ghez, A. M., Hornstein, S. D., et al. 2009, ApJ, 690, 1463

Lucas, R., & Liszt, H. S. 2002, A&A, 384, 1054

Marr, J. M., Wright, M. C. H., & Backer, D. C. 1993, ApJ, 411, 667

Marrone, D. P. 2006, Ph.D. Thesis, Harvard University

Marrone, D. P.,, Moran, J. M., Zhao, J.-H., & Rao, R. 2006a, ApJ, 640, 308

Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2006b, J. Phys. Conf. Ser.,
54,354

Martin, S., Martin-Pintado, J., Montero-Castafio, M., Ho, P. T. P., & Blundell, R.
2012, A&A, 539, A29

McEwen, B. C., Pihlstrom, Y. M., & Sjouwerman, L. O. 2014, ApJ, 793, 133

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in
Astronomical Data Analysis Software and Systems XVI, eds. R. A. Shaw,
F. Hill, & D. J. Bell, ASP Conf. Ser., 376, 127

Mezger, P. G., & Henderson, A. P. 1967, Apl, 147, 471

Mills, E. A. C., Giisten, R., Requena-Torres, M. A., & Morris, M. R. 2013, ApJ,
779, 47

Montero-Castaiio, M., Herrnstein, R. M., & Ho, P. T. P. 2009, ApJ, 695, 1477

Mori, K., Hailey, C. J., Krivonos, R, et al. 2015, ApJ, 814, 94

Moser, L., Eckart, A., Borkar, A., et al. 2014, in IAU Symp. 303, eds. L. O.
Sjouwerman, C. C. Lang, & J. Ott, 86

Moultaka, J., Eckart, A., Viehmann, T., et al. 2004, A&A, 425, 529

Moultaka, J., Eckart, A., Schodel, R., Viehmann, T., & Najarro, F. 2005, A&A,
443,163

Moultaka, J., Eckart, A., & Muzi¢, K. 2015, ApJ, 806, 202

Muzi¢, K., Eckart, A., Schodel, R., Meyer, L., & Zensus, A. 2007, A&A, 469,
993

Nayakshin, S., Cuadra, J., & Springel, V. 2007, MNRAS, 379, 21

Paumard, T., Maillard, J.-P., & Morris, M. 2004, A&A, 426, 81

Paumard, T., Genzel, R., Martins, F., et al. 2006, ApJ, 643, 1011

Perez, K., Hailey, C. J., Bauer, F. E., et al. 2015, Nature, 520, 646

Perger, M., Moultaka, J., Eckart, A., et al. 2008, A&A, 478, 127

Pfuhl, O., Alexander, T., Gillessen, S., et al. 2014, ApJ, 782, 101

Pihlstrom, Y. M., Sjouwerman, L. O., & Fish, V. L. 2011, ApJ, 739, L21

Pott, J.-U., Eckart, A., Glindemann, A., et al. 2008a, A&A, 487, 413

Pott, J.-U., Eckart, A., Glindemann, A., et al. 2008b, A&A, 480, 115

Pratap, P., Shute, P. A., Keane, T. C., Battersby, C., & Sterling, S. 2008, AJ, 135,
1718

Reid, M. J., Menten, K. M., Trippe, S., Ott, T., & Genzel, R. 2007, ApJ, 659, 378

Requena-Torres, M. A., Giisten, R., Weil}, A., et al. 2012, A&A, 542, L.21

Roberts, D. A., & Goss, W. M. 1993, ApJS, 86, 133

Roberts, D. A., Yusef-Zadeh, F., & Goss, W. M. 1996, AplJ, 459, 627

Sanchez-Bermudez, J., Schodel, R., Alberdi, A., et al. 2014, A&A, 567, A21

Sato, M. T., & Tsuboi, M. 2008, J. Phys. Conf. Ser., 131, 012033

Schodel, R., Ott, T., Genzel, R., et al. 2002, Nature, 419, 694

Schaier, F. L., van der Tak, F. E. S., van Dishoeck, E. F.,, & Black, J. H. 2005,
A&A, 432, 369

Schwarz, U. J., Bregman, J. D., & van Gorkom, J. H. 1989, A&A, 215, 33

Serabyn, E., & Lacy, J. H. 1985, ApJ, 293, 445

Serabyn, E., Lacy, J. H., & Achtermann, J. M. 1991, ApJ, 378, 557

Shirley, Y. L. 2015, PASP, 127, 299

Sjouwerman, L. O., Pihlstrom, Y. M., & Fish, V. L. 2010, ApJ, 710, L111

Steiner, J. E., Menezes, R. B., & Amorim, D. 2013, MNRAS, 431, 2789

Tanner, A., Ghez, A. M., Morris, M., et al. 2002, ApJ, 575, 860

Tanner, A., Ghez, A. M., Morris, M. R., & Christou, J. C. 2005, ApJ, 624, 742

Telesco, C. M., Davidson, J. A., & Werner, M. W. 1996, Apl, 456, 541

van der Tak, F. F. S., Boonman, A. M. S., Braakman, R., & van Dishoeck, E. F.
2003, A&A, 412, 133

Vasyunina, T., Vasyunin, A. L., Herbst, E., & Linz, H. 2012, ApJ, 751, 105

Viehmann, T., Eckart, A., Schodel, R., Pott, J.-U., & Moultaka, J. 2006, ApJ,
642, 861

Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., et al. 2012, in IAU Symp. 287,
eds. R. S. Booth, W. H. T. Vlemmings, & E. M. L. Humphreys, 433

Wright, M. C. H., Coil, A. L., McGary, R. S., Ho, P. T. P., & Harris, A. L. 2001,
ApJ, 551, 254

Yusef-Zadeh, F., & Morris, M. 1991, ApJ, 371, L59

Yusef-Zadeh, F., Stolovy, S. R., Burton, M., Wardle, M., & Ashley, M. C. B.
2001, ApJ, 560, 749

Yusef-Zadeh, F., Braatz, J., Wardle, M., & Roberts, D. 2008, ApJ, 683, L147

Yusef-Zadeh, F., Royster, M., Wardle, M., et al. 2013, ApJ, 767, L32

Zhao, J.-H., Goss, W. M., & Ho, P. T. P. 1995, AplJ, 450, 122

Zhao, J.-H., Morris, M. R., Goss, W. M., & An, T. 2009, ApJ, 699, 186

Zhao, J.-H., Blundell, R., Moran, J. M., et al. 2010, ApJ, 723, 1097

A68, page 25 of 54


http://linker.aanda.org/10.1051/0004-6361/201628385/1
http://linker.aanda.org/10.1051/0004-6361/201628385/2
http://linker.aanda.org/10.1051/0004-6361/201628385/3
http://linker.aanda.org/10.1051/0004-6361/201628385/4
http://linker.aanda.org/10.1051/0004-6361/201628385/5
http://linker.aanda.org/10.1051/0004-6361/201628385/6
http://linker.aanda.org/10.1051/0004-6361/201628385/6
http://linker.aanda.org/10.1051/0004-6361/201628385/7
http://linker.aanda.org/10.1051/0004-6361/201628385/8
http://linker.aanda.org/10.1051/0004-6361/201628385/9
http://linker.aanda.org/10.1051/0004-6361/201628385/10
http://linker.aanda.org/10.1051/0004-6361/201628385/10
http://linker.aanda.org/10.1051/0004-6361/201628385/11
http://linker.aanda.org/10.1051/0004-6361/201628385/12
http://linker.aanda.org/10.1051/0004-6361/201628385/13
http://linker.aanda.org/10.1051/0004-6361/201628385/14
http://linker.aanda.org/10.1051/0004-6361/201628385/14
http://linker.aanda.org/10.1051/0004-6361/201628385/15
http://linker.aanda.org/10.1051/0004-6361/201628385/15
http://linker.aanda.org/10.1051/0004-6361/201628385/16
http://linker.aanda.org/10.1051/0004-6361/201628385/17
http://linker.aanda.org/10.1051/0004-6361/201628385/18
http://linker.aanda.org/10.1051/0004-6361/201628385/19
http://linker.aanda.org/10.1051/0004-6361/201628385/20
http://linker.aanda.org/10.1051/0004-6361/201628385/21
http://linker.aanda.org/10.1051/0004-6361/201628385/22
http://linker.aanda.org/10.1051/0004-6361/201628385/23
http://linker.aanda.org/10.1051/0004-6361/201628385/24
http://linker.aanda.org/10.1051/0004-6361/201628385/25
http://linker.aanda.org/10.1051/0004-6361/201628385/25
http://linker.aanda.org/10.1051/0004-6361/201628385/26
http://linker.aanda.org/10.1051/0004-6361/201628385/27
http://linker.aanda.org/10.1051/0004-6361/201628385/28
http://linker.aanda.org/10.1051/0004-6361/201628385/29
http://linker.aanda.org/10.1051/0004-6361/201628385/30
http://linker.aanda.org/10.1051/0004-6361/201628385/31
http://linker.aanda.org/10.1051/0004-6361/201628385/32
http://linker.aanda.org/10.1051/0004-6361/201628385/33
http://linker.aanda.org/10.1051/0004-6361/201628385/34
http://linker.aanda.org/10.1051/0004-6361/201628385/35
http://linker.aanda.org/10.1051/0004-6361/201628385/36
http://linker.aanda.org/10.1051/0004-6361/201628385/37
http://linker.aanda.org/10.1051/0004-6361/201628385/38
http://linker.aanda.org/10.1051/0004-6361/201628385/39
http://linker.aanda.org/10.1051/0004-6361/201628385/39
http://linker.aanda.org/10.1051/0004-6361/201628385/40
http://linker.aanda.org/10.1051/0004-6361/201628385/41
http://linker.aanda.org/10.1051/0004-6361/201628385/42
http://linker.aanda.org/10.1051/0004-6361/201628385/43
http://linker.aanda.org/10.1051/0004-6361/201628385/44
http://linker.aanda.org/10.1051/0004-6361/201628385/44
http://linker.aanda.org/10.1051/0004-6361/201628385/45
http://linker.aanda.org/10.1051/0004-6361/201628385/45
http://linker.aanda.org/10.1051/0004-6361/201628385/46
http://linker.aanda.org/10.1051/0004-6361/201628385/47
http://linker.aanda.org/10.1051/0004-6361/201628385/48
http://linker.aanda.org/10.1051/0004-6361/201628385/49
http://linker.aanda.org/10.1051/0004-6361/201628385/50
http://linker.aanda.org/10.1051/0004-6361/201628385/51
http://linker.aanda.org/10.1051/0004-6361/201628385/52
http://linker.aanda.org/10.1051/0004-6361/201628385/53
http://linker.aanda.org/10.1051/0004-6361/201628385/55
http://linker.aanda.org/10.1051/0004-6361/201628385/56
http://linker.aanda.org/10.1051/0004-6361/201628385/56
http://linker.aanda.org/10.1051/0004-6361/201628385/57
http://linker.aanda.org/10.1051/0004-6361/201628385/58
http://linker.aanda.org/10.1051/0004-6361/201628385/60
http://linker.aanda.org/10.1051/0004-6361/201628385/61
http://linker.aanda.org/10.1051/0004-6361/201628385/61
http://linker.aanda.org/10.1051/0004-6361/201628385/62
http://linker.aanda.org/10.1051/0004-6361/201628385/63
http://linker.aanda.org/10.1051/0004-6361/201628385/65
http://linker.aanda.org/10.1051/0004-6361/201628385/66
http://linker.aanda.org/10.1051/0004-6361/201628385/66
http://linker.aanda.org/10.1051/0004-6361/201628385/67
http://linker.aanda.org/10.1051/0004-6361/201628385/68
http://linker.aanda.org/10.1051/0004-6361/201628385/68
http://linker.aanda.org/10.1051/0004-6361/201628385/69
http://linker.aanda.org/10.1051/0004-6361/201628385/70
http://linker.aanda.org/10.1051/0004-6361/201628385/71
http://linker.aanda.org/10.1051/0004-6361/201628385/72
http://linker.aanda.org/10.1051/0004-6361/201628385/73
http://linker.aanda.org/10.1051/0004-6361/201628385/74
http://linker.aanda.org/10.1051/0004-6361/201628385/75
http://linker.aanda.org/10.1051/0004-6361/201628385/76
http://linker.aanda.org/10.1051/0004-6361/201628385/77
http://linker.aanda.org/10.1051/0004-6361/201628385/78
http://linker.aanda.org/10.1051/0004-6361/201628385/78
http://linker.aanda.org/10.1051/0004-6361/201628385/79
http://linker.aanda.org/10.1051/0004-6361/201628385/80
http://linker.aanda.org/10.1051/0004-6361/201628385/81
http://linker.aanda.org/10.1051/0004-6361/201628385/82
http://linker.aanda.org/10.1051/0004-6361/201628385/83
http://linker.aanda.org/10.1051/0004-6361/201628385/84
http://linker.aanda.org/10.1051/0004-6361/201628385/85
http://linker.aanda.org/10.1051/0004-6361/201628385/86
http://linker.aanda.org/10.1051/0004-6361/201628385/87
http://linker.aanda.org/10.1051/0004-6361/201628385/88
http://linker.aanda.org/10.1051/0004-6361/201628385/89
http://linker.aanda.org/10.1051/0004-6361/201628385/90
http://linker.aanda.org/10.1051/0004-6361/201628385/91
http://linker.aanda.org/10.1051/0004-6361/201628385/92
http://linker.aanda.org/10.1051/0004-6361/201628385/93
http://linker.aanda.org/10.1051/0004-6361/201628385/94
http://linker.aanda.org/10.1051/0004-6361/201628385/95
http://linker.aanda.org/10.1051/0004-6361/201628385/96
http://linker.aanda.org/10.1051/0004-6361/201628385/97
http://linker.aanda.org/10.1051/0004-6361/201628385/98
http://linker.aanda.org/10.1051/0004-6361/201628385/98
http://linker.aanda.org/10.1051/0004-6361/201628385/100
http://linker.aanda.org/10.1051/0004-6361/201628385/101
http://linker.aanda.org/10.1051/0004-6361/201628385/102
http://linker.aanda.org/10.1051/0004-6361/201628385/103
http://linker.aanda.org/10.1051/0004-6361/201628385/104
http://linker.aanda.org/10.1051/0004-6361/201628385/105
http://linker.aanda.org/10.1051/0004-6361/201628385/106
http://linker.aanda.org/10.1051/0004-6361/201628385/107

A&A 603, A68 (2017)

Appendix A: Additional images
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Fig. A.1. Left: uv coverage in a single channel at 250 GHz. Right: dirty beam for the 250 GHz continuum. Color scale shows the intensity or
sensitivity normalized to 1.0 and is clipped to 0.1 to show the side lobe structure. First side lobe maximum and minimum are at 0.12 and -0.05,
respectively, and located in the inner 5. White contour outline the CS(5—4) (solid) and 250 GHz continuum (dashed) primary beam at 10%

sensitivity (FOV10).
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Fig. A.2. Recombination line (RRL) emission images of the inner <3 pc. Left:

H33p with the 250 GHz continuum contours as in Fig. 2.
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the levels of [6, 12, 24, 48, 96, 144, 192, 384, 1920, 4800] x o (=0.5 mJy beam™') show the 100 GHz continuum emission.
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Fig. A.5. Triop in the light of molecular line, RRL and continuum emission. Top row (from left to right): CS(5—4), HC3N(27-26), H'3CO*(3-2),
and SiO(6-5) (all as in Fig. 5). Middle row (from left to right): SO(7-6), C;H(3-2), and CH;OH(7-6) (all as in Fig. 5), and CH;OH(7-6) when
not corrected for primary beam (PB) with PB contours of 10% (outmost ring segment) to 60% (lower left corner), to show the full extend of the
emission within the triop. Bottom (from left to right): 3CS(2-1), N,H*(1-0), and CH;0H(8-7) (all as in Fig. 4), and H39« (all as in Fig. 3).
Contours show the CS(5—4) emission (as in Fig. 5), except from the top outer left, which shows contours of the 100 GHz continuum emission as

in Fig. 2.
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Fig. A.7. Molecular line emission images of the inner 20" (as in Fig. 5) compared to the 250 GHz continuum emission in contours (as in Fig. 2).
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Fig. A.8. Molecular line emission images of the inner 20” (as in Fig. 5) compared to the CS(5—4) emission in contours (as in Fig. 5). Top row
(from left to right): HC3N(27-26), H'3CO*(3-2), SiO(6-5), and SO(7-6). Bottom row (from left to right): C;H(3-2), CH;0H(7-6), and two times
SiO(8-7). The image at the bottom right corner shows SiO(6-5) contours at [2, 4, 8, 12, 16]xo" (= 0.08 Jy beam™! km s~!) for comparison.
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Fig. A.9. Velocity fields (moment 1) images for CS(5—4) for the inner 40” (left) and 20" (middle) for the velocity range as in Table 2 with gray
and black contours showing the CS(5—4) emission as in Fig. 5 and the 250 GHz emission as in Fig. 2, respectively. Right: velocity field image
of the HVCs overlayed with the emission of CS(5-4) in black contours at the levels of [4, 8, 12] x o (=0.08 Jy beam™' km s7!) integrated over
103-198 kms™! and of SiO(6-5) in green contours at the levels of [2, 4, 8, 12, 16] x o (=0.08 Jy beam™' km s~') integrated over 66—-191 kms~'.
Gray contours show the 250 GHz emission as in the previous panels.
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Fig. A.10. Continuum emission images of the inner <3 pc. Top: between 100 and 250 GHz (inner 40”) tapered to a resolution of 1.5”. From left to
right: spectral index with contours of [-0.75, 0.5, -0.375, -0.25, -0.125, 0, 0.25, 0.5, 1, 1.5], error of the spectral index with contours of [2.068,
2.073, 2.1, 2.4] x 0.1, and spectral index overlayed with error contours. Bottom: between 250 and 340 GHz (inner 20”) tapered to a resolution of
0.65”. From left to right: spectral index with contours of [-2, -1, -0.5, 0, 0.5, 1, 2], error of the spectral index with contours of [4.6, 4.7, 4.9, 5.5]
% 0.1, and spectral index overlayed with error contours
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Fig. A.11. Images of the electron temperature distribution in the inner <1.6 pc. Top: based on H39« (inner 40”) and tapered to a resolution of 1.5”.
From left to right: T. with contours of [4, 6, 8, 10] x 1000 K, AT, with contours of 5, 10, and 20%, and T, overlayed with AT, contours. Bottom:
based on H51p (inner 20”) and tapered to a resolution of 1.5”. From left to right: T, with contours of [4, 6, 8, 10] x 1000 K, AT, with contours of
5, 10, and 20%, and T, overlayed with AT, contours.
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Fig. A.13. Finding charts for the stars and filaments Paumard et al.
(2006), Viehmann et al. (2006), Muzi¢ et al. (2007) mentioned in this
work, demonstrated for the inner 10” (0.4 pc) on a NIR L (3.8 um)
emission image (Sabha, priv. comm., here: arbitrary units).

Fig. A.12. Finding charts for the clumps in the inner 40" (1.6 pc) based
on the CS(5-4) emission.
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