THz SIS devices and waveguides

AETHER Sub-Task 4.2 & 4.3 KOSMA: University of Cologne

이네 십 Universität zu Köln

THz SIS devices_junctions

- 1.1 THz < f_{RF} < 1.5 THz
- 4.56 mV < h/e . f_{RF} < 6.21 mV
- Practical minimal bias voltage range:
 2.0.5 mV (not usable if incompletely suppressed Shapiro step) + ~ 2.0.3 mV

 \Rightarrow 6.2 mV < V1_{gap} + V2_{gap} < 7.8 mV

At 4.3 K: V_{gap} (Nb)=2.7 mV, V_{BCSgap} (NbTiN) ~ 4.5 mV (Tc=15K), V_{BCSgap} (NbN) ~ 5.0 mV (Tc=16.5K)

THz SIS devices_junction results

- Nb-AIN-NbN : $V1_{gap} + V2_{gap} < 6.2 \text{ mV}$
 - High leakage IV-curve
 - On Si, not on normal conductor for tuning
 - Sum gap less than expected
 - Bad reproducibility
- Tc test samples Nb and NbN too low
 - Sputter machine Vacuum not adequate and worsening => back to leak testing

THz SIS devices_tuning

- f_{RF} > f_{gap}(NbTiN)
- NbN ?
 - High resistivity
 - No good heritage
 - Needs to be epitaxial

⇒Normal conducting tuning

- Calculated coupling
 - < 40%, simple 2 junction tuning</p>
 - E-beam lithography required

KOSMA new E-beam system delivered today

THz Waveguides

Stamped waveguides in CuTe

In house Tooling

4.7 THz waveguide 48 μm x 24 μm

	waveguide		Channel	
	Spec	block	Spec	block
length [µm]	24 +/- 2	23.9	16 + 4 / - 0	17.5
length [µm]	48 +/- 3	49.8	106 + 0 / -5	106
depth [µm]	14 + 1 / - 0	15	5 + 2 / - 1	5

26th Sept. 2013, Oxford (UK)

SEVENTH FRAMEWORK

AETHER Progress meeting

Waveguide wall roughness-Issue?

Comparison Measurements with HEBs at 1.9 THz early 2014

26th Sept. 2013, Oxford (UK)

AETHER Progress meeting

THz Waveguides & Device Assembly

- Devices on thin (2-3µm) Si substrates
 - Assembly plan is part of waveguide design & device design
 - Shifting precision fabrication from workshop to cleanroom (if possible)
 - Blocks as simple as possible
 - > Work Flow (Burrs !)
 - > In house custom tools
 - Small structures by Si etching and subsequent metallization

- Extent the use of beam lead technology

Devices prepared for assembly-before

26th Sept. 2013, Oxford (UK) AETHER Progress meeting

SEVENTH FRAMEWOP

Assembly of Devices (5 THz example)

26th Sept. 2013, Oxford (UK)

AETHER Progress meeting

SEVENTH FRAMEWO

Zoom assembled device

Summary

SIS devices

- Pre-process development 80% done
- Fight sputter machine vacuum
- New E-beam lithography system
- Tuning by normal conducting metals
- THz waveguide blocks
 - Metal waveguides OK
 - Si waveguides---tests early 2014
 - Assembly ! =>
 - Integrate waveguide design and device design
 - Shift precision fab. from workshop to cleanroom