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ABSTRACT

Context. The A-variance analysis is arffecient tool to measure the structural scaling behaviour wrétellar turbulence in astro-
nomical maps. It has been applied both to simulations ofsieélar turbulence and to observed molecular cloud mapgaper | we
have proposed essential improvements ofAheriance analysis and tested them on artificial structwigtsknown characteristics.
Aims. In this paper we apply the improvedvariance analysis to simulations of interstellar turbekeand observations of molecular
clouds. We test the new capabilities in practical use ardygtoperties of interstellar turbulence that could not tidressed before.
Methods. We select three example data sets which profit in particoten the improvedi-variance method: i) a hydrodynamic tur-
bulence simulation with prominent density and velocitystures, ii) an observed intensity mapo©ph with irregular boundaries
and variable uncertainties of theffdirent data points, and iii) a map of the turbulent velocitycture in the Polaris Flardfacted by
the intensity dependence of the centroid velocity deteation.

Results. The tests confirm the extended capabilities of the impravagriance analysis. Prominent spatial scales are actyrate
identified and artifacts from a variable reliability of thatd are removed. The analysis of the hydrodynamic simuiatghowed
that the injection of a turbulent velocity structure crasatiee most prominent density structures are produced atla scamewhat
below the injection scale. The new analysis gf@ph continuum map reveals an intermediate stage in the miatetloud evolution
showing both signatures of the typical molecular cloudiagabehaviour and the formation of condensed cores. Whelgsing the
velocity structure of the Polaris Flare we show that a usigepower law connects scales from 0.03 pc to 3 pc. Howevéatequ in
the A-variance spectrum around 5 pc indicates that the visilgelacale velocity gradient is not converted directly intoidulent
cascade here. It is obvious that for any turbulent struafieets of low-number statistics become important at the nigigcale.
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1. Introduction angular average independent of griddirfteets, and from the
insensitivity to edgeféects as discussed by Bensch et al. (2001).
Observations of interstellar clouds show a complex, filatagn In parallel to the structure scaling analysis, clump decomp

structure which can be attributed to turbulence in the gtetiar  Sition algorithms like GAUSSCLUMP (Stutzki & Gusten, 1990
medium (Franco & Carramifiana, 1999; Ossenkopf et al., 20d@und that the clump mass spectrut/dM o M™ of suffi-

Mac Low & Klessen, 2004). To understand the processes gé&ently large molecular cloud data sets also tend to followgr
erning the structure and evolution of the clouds, turbudanod-  12ws over many orders of magnitude with the spectral indigx

els have to be constructed and compared to observatiorsl d@felatively narrow range between 1.7 to 1.9 (Kramer et 8881
Their parameters and implementational details need to be Atfithausen et al., 1998). Stutzki et al. (1998) demonsireiat
justed to fit the observed behaviour. Due to the random nat@&uUmp ensemble with such a mass spectrum and with a power-
of turbulence, simulations will never provide an exact cefrc- law mass-size scaling relation results in a cloud image with

tion of the observed data sets but will only reproduce gdneti€ A-variance scaling index determined by the number-mass
statistical properties like scaling relations. and the mass-size spectral indices. However, it was questio

by e.g. Vazquez-Semadeni et al. (1997); Ballesteroselear&

The most common scaling relation to characterise turbulddc Low (2002) whether the observed mass-size relation re-
structures is the power spectrum of fluctuations, both in- deffects true properties of the underlying structure. It mayea
sity and in velocity. Here, we encourage to use another gyant'eépresent an o_bservatmnql artlfact_. From t_hese resuﬂs)tlw-
the A-variance spectrum, introduced by Stutzki et al. (1998),@s that there is a strong interest in studying the spatéirgr
wavelet-based method to measure the relative amount af-strgehaviour of observed maps of the interstellar medium wa th
tural variation as a function of the size scale. Due to theualut A-variance analysis.
relations between tha-variance spectrum and the radially av- In paper | we have proposed several essential improvements
eraged power-spectrum, tievariance analysis can be considto the original A-variance method. We have investigated the
ered as a very robust method of evaluating the power spectruse of diferent wavelets and calibrated their spatial resolution.
of a structure. The advantages of thevariance result from the Unfortunately, it turns out that it is not possible to defingira
smooth wavelet filter shape, which provides a robust way rior gle optimum wavelet for all purposes becaudedent wavelets
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exhibit a diferent power in the detection of the characteristiand a “Mexican hat” consisting of two Gaussian functions:
structures. A good compromise is given by the Mexican hat fil-
ter with a diameter ratio of 1.5. When the main focus lies @n t 4 ( r? )

measurement of the spectral index, the French hat filter avitl core(r) 712 exp (1/2)2

4)
diameter ratio of about 2.3 is also well suitable. We alscoint
duced a significance function to weight théfdient data points. @(f) exp( r2 ) ~ exp( r2 )]
This allows to analyse observed data where the signal-geno (Vl/2)? (1/2)?

ratio is not uniform across the mapped area, but spatially-va

ing. This should allow to distinguish the influence of vateab wherel is the core diameter andis the diameter ratio between
noise from actual small scale structure in the maps. The nefd annulus and the core of the filter. Plotting theariance as a
for such a treatment became very obvious when Ossenkopfignction of the filter sizé then provides a spectrum showing the
Mac Low (2002) used th&-variance analysis to characterisgelative amount of structure in a given map as a function ef th
the velocity structure detected in molecular line obséovastof  strycture size.

the Polaris Flare taken by Falgarone et al. (1998), Bensah et The dfective filter size, given by the average distance of

(2001), and Heithausen & Thaddeus (1990). Comparing\the points in the core and the annulus, deviates from the core di-
variance analysis with the size-linewidth relation, werfddhat 5meteq as

theA-variance of the centroid velocity maps produced wrong re-
sults at scales where the maps do not show any noticeable erhis [ 0.29%v + 0.26 for the French hat
sion. With the introduction of the significance functiorgthew | 0.41v+ 0.46 for the Mexican hat
A-variance analysis should be able to reliably analyse alsb s
data sets. Moreover, the use a weighting function also alloWhus structures with a particular size should show up as prom
to use computational methods like the Fast Fourier Transfonent peaks in tha-variance spectrum at a scadg correspond-
to obtain theA-variance spectrum even for maps with irregulang to that size. Test with artificial data sets in paper | have
boundaries or maps which are only sparsely filled by sigmificashown, however, that the peak positions always falls 10-20 %
values. below the maximum structure size. Taking this systematic o

In paper | we tested the properties of the improved setinto accountwe can nevertheless reliably calibratsphgal
variance analysis using simple artificial data sets. Inpliger resolution of theA-variance analysis.
we will apply it to more realistic data sets, either simwas A major improvement of the new-variance algorithm was
of interstellar turbulence or to actual observational dai&ect. the introduction of a weighting function to the da¥g.{r). This
2 we recapitulate the formalism of the nevavariance analysis simultaneously solved the problems of the edge treatmeiivt of
and summarise the results that we obtained from the apipiicatnite maps and the analysis of data with a variable unceytaint
to the test data sets. In Sect. 3 we apply the analysis to atlydr across the map. The weight function varies between 0 and 1,
namic simulation, to the-Oph dust continuum map by Motte etrepresenting the reliability of the individual data poirasd it
al. (1998) and to the centroid velocity map for the Polara €&l extends beyond the original map size, padding it with zetos a
We discuss the conclusions on their structure in Sect. 4. the boundaries. Instead of the original méf), an extended
map, fpaddedr) = f(r) X Waair) inside the original data area,
. . foadded) = O outside, is analysed. This padded map can be peri-
2. The improved A-variance method o%ica(lily)continued without W>r/ap-aroun¢?ects, SO thgt the fiIteF:
In this section we summarise the main properties of the ifgonvolution can befciently computed in Fourier space involv-
provedA-variance analysis proposed in paper |, focusing on tfieg a fast Fourier transform and a map multiplication.
new points, not covered in the originalvariance definition by ~ To avoid that data points within the padded area or with a
Stutzki et al. (1998). low weighting are counted like normal zero-value data, bst d

The A-variance measures the amount of structure on a giveggarded in the computation of the variance, the filter haseto
scalel in a mapf(r) by filtering the map with a spherically sym-re-normalised at each position in the map in such a way tieat th
metric wavelet of sizé and computing the variance of the thugntegral weights of core and annulus remain unity when ekclu

2(\2 —
e ml2(v? - 1)

®)

filtered map: ing the padded points and when taking the weighting of the nor
5 mal data points into account. Instead of one convolution {§q
a2(l) = <(f(r) . @l(r)) > (1) one has to compute four convolutions
r
where, the average is taken over the area of the map, the $ymBa.oi(r) = fpaddedr) * @(r’)
x stands for a convolution, ar@| describes the filter function I,core
composed of positive inner “core” and a negative annulut) bo B ,
normalised to integral values of unity. Grand) = fpadaedr) * Q(r )
,ann
O0=0n-0On @ Wiodr) = wlr) « (D)
I,core l.ann I.core
We have sftudied the “French hat” filter with constant values iVVI,ann(r) = w(r) @(r') (6)
both parts: vt
@(r) = iz { é Irl < :/g and combine the results while re-normalising with tifieetive
o l vl >/ filter weight for the valid data
4 [1/(v*=1) :l/)2<|rl<vx1/2 G G
r) = — { : (3) Fi(r) = 1.core(T) _ Lanr(l) 7
Q0= =10 M <1721 > vx1/2 0= WodD) ~ Whamd) @
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From the actual filter weight computed for each point in the '

map we can derive a significance function as the product &f bot
normalisation factors

Witot(r) = Wi core(r) Wi.ann(r) (8) 103 7

This provides the actual significance of the data points @ th
convolved map which is used when computingMeariance of “¢
the whole map

T T T
Lo

107 /// =

2 ZmaglFi(r) - (F1)?W 10t(r) F S French hat, v=3.0 + 1

oxl) = S W) 9) r French hat, v=1.5 4 ]

map I.tot r Mexican hat, v=3.0 x b

With this generalised concept, thevariance analysiscanbe [ Mexicon hot, v=1.5 ¢ 1
applied to arbitrary data sets. They must be projected amtes 0 —— OEM T ‘wo T

regular grid but they do not need to contain regular bouedas
the corresponding “empty” grid points can be marked withraze ) o
significance. Varying noise or other changes in the databisli Fig-1. A-variance spectra of teprojection of thez-component of the
ity can be expressed in the significance functieg{r). This veloplty field in the hydrodynamlc simulation S02tat 0. Four diter-
applies e.g. to maps where not all points are observed with fi" filter shapes are tested against each other.

same integration time so that they show @atient noise level. In

paper | we used a Welghtlng function given by the inversedoigye only process creating structures in the data set, aief-
RMS and in Sect. 3.2 we will study the impact of the selectio s of self-gravity. In this way we have a data set whicheistb
of the weighting function for observed data. o suited to test the structure recognition by theariance analy-
The only remaining requirement for the applicability of thgjs a5 it should directly detect the scales of the drivirgpss in
A-variance is a diciently large spatial dynamic range in thepe yelocity structure and determine the scaling of theutiery
data. Bensch et al. (2001) had shown that a map has to cobtaiggcade at lower scales. Results for the other simulatiorsod
least 30 pixels in each direction to obtain reasonable &0 qyide any fundamentally flierent results, but are less clear to
of the A-variance spectrum. Numerical tests with noisy data iRjterpret because either the driving scale is closer to tye ef
paper | showed that this critical size needs to be extendeal by, dynamic range or the contained structure is less welkkno
factor of about one over the average data significance inafase Figure 1 shows tha-variance spectra of theprojection of
data with a variable reliability. thezcomponent of the velocity field of the turbulence simulation
computed with four dferent filter functions. We find a clear shift
L between the peak positions measured by tftedint filters. The
3. Applications Mexican hat filter gives systematically larger lags for tlealp
3.1. Hydrodynamic simulations than the French hat and the lag of the peak grows with growing
annulus-to-core diameter ratia, The minimum peak lag, given
In the papers by Mac Low & Ossenkopf (2000), Ossenkopf the French hat with = 1.5, falls at 0.084, the maximum lag,
& Mac Low (2002), and Ossenkopf et al. (2001) we havgiven by the Mexican hat witki = 3, at 0.11.

demonstrated the general applicability of thevariance analy- ~ This behaviour is consistent with the results obtainedHer t
sis to extract characteristic structure sizes and scading from  simple sine wave field in paper I. It can be understood as a re-
(magneto-)hydrodynamic simulations performed with aefri sult of the variable width and the shape of the filters in Feuri
of codes. Here, we need to test whether theariance with space. The broadening of the filter function reduces therasnt
adapted filter functions improves the sensitivity of thisthoel. \which leads in a spectrum with a steep slope at small scatks an
The weighting function is irrelevant in this case becauseddita a shallow slope at large scales to afeetive shift of the peak
do not siifer from noise or another cause of variable reliabilityosition. The steep decay of the French hat filter functian fo
across the data set. large lags leads to a somewhat smaller peak position, bl is a
We have applied the analysis to a variety of simulations prerays accompanied by side lobes of the Bessel function eisié
sented in Ossenkopf et al. (2001), but we present the réseriés artificial secondary peaks at large lags. For the turbulsiroe
only for a single model, the first inertial stage of the snsaidle ylations these secondary peaks are not as pronounced &g for t
driven hydrodynamic turbulence computed by smooth-garticsine wave field, but they are also visible in Fig. 1. For the di-
hydrodynamics (SPH), S02 at= 0. In this simulation the ve- ameter ratios of about 1.5 for the Mexican hat and 2.3 for the
locity field is driven by a Gaussian field of random fluctuationFrench hat, deduced as optimum values in paper I, the peak po-
within a finite wavenumber rangk,= 7...8. This means, that sition falls at about 0.088 in both cases, a value slightlpl&m
the driving process introduces characteristic variatiots the  than the expected average structure size.
velocity structure with the same scale length as used inttite 2  The diferent width of the peak has a direct impact on the
ficial sine wave field used in paper I, but with wavenumbers bgtope of the turbulent structures measured at small lagg Wi
tween 7 and 8. Thus the-variance should measure a peak varihe broad peaks produced by the Mexican hat filter, the slope
ation for scales of A( V2k), i.e. between 0.088 and 0.101 of thés afected down to relatively small scales. As the filter diame-
size of the whole data cube. Selecting a model which is drivégr ratiov constrains the minimum scale which can be resolved,
at small scales guarantees that we can identify a clear peakd clear power law becomes only visible for the French hat fil-
these structures leaving enough dynamic range at smalter &r with v = 1.5. Small diameter ratios are always favourable
larger scales. We select the initial stage of fully evolvedbti- with respect to the dynamic range which can be covered in the
lence in the simulation to make sure that the turbulentdg$ A-variance analysis because of the minimum filter size and the

lag
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Fig. 2. A-variance spectra of the density structure created by tloeitye  Fig. 3. A-variance spectra of the firent rectangular projection maps
field from Fig.1, measured with fourf@iérent filter functions. and of the full three-dimensional data cube of theomponent of the
velocity field in simulation S02 at= 0. The analysis used the French
hat filter with a annulus-to-core diameter ratie: 2.3

constraint that the overall filter must always remain smathe
pared to the analysed map. For the French hat with3.0 and
the Mexican hat witlv = 1.5 the remaining dynamic range is justOssenkopf (2000) using the “traditionatvariance filter with
marginally sificient to reliably determine the spectral index. Wehe diameter ratio = 3.0. We will repeat it here for the velocity
find slopes between 2.8 and 3.1 corresponding to power sppecstructure as the direct carrier of turbulent energy using oh
indices¢ = 4.8...5.1. This is much larger than the Kolmogorovmore sensitive filter functions.
index of = 3.67 indicating that the scaling at small scales is Figure 3 shows tha-variance spectra of threcomponent of
not determined by a self-similar turbulent cascade, buthigy tthe hydrodynamic simulation introduced above, computet wi
numerical viscosity in these simulations damping smallescaa French hat filter witlv = 2.3. The three broken lines show the
structures. For simulations driven at large scales regulti a A-variance spectra computed for the threfestent orthogonal
larger dynamic range below the peak, we find a limited inkrtiprojections of the velocity data cube. The solid curve shihes
range with a slope of about two, corresponding te 4 which spectrum computed for the 3-D structure but rescale as if com
is consistent with a cascade of Burger’s turbulence (Osgeink puted in 2-D by a factor proportional to the lag, to compessat
& Mac Low, 2002; Ossenkopf et al., 2001, see). for the diferent exponents of th&-variance depending on the

In a second step we investigate how the turbulent velocitymensionality of the considered space, and shifted by @fac
scaling translates into the creation of turbulent densityamce- /4, to account for the average reduction of a random structure
ments. Figure 2 shows th&-variance spectra of the densitysize when projected from 3-D onto a plane. The solid linesthu
structure seen in the same step of the simulation using the saepresents our best knowledge on the velocity structureaygt
filters as applied to the velocity structure. We find the sayse s present in the simulations, while the broken lines repreges-
tematic deviations between the results seen Iffgdint filters sible observer’s views onto that structure.
but a generic shift of the peak position to shorter lags byctofa We find a considerable variation between thesariance
0.75-0.8 with respect to the peaks of the velocity structlie spectra seen in the fiérent directions, giving a feeling for the
slope of the turbulent density structure at small scalesi@-s statistical uncertainty when measuring the scaling intlen
lower by 10+ 0.05. For the mutual comparison between densigimulations. Nevertheless, both the peak position and the expo-
and velocity structure, the selection of the filter is thuslgvant nent at small lags agree between all three curves. Compared t
as long as the same filter is applied in both cases. the full 3-D structure, there is, however, a systematid sffithe

We see that injesting energy at a particular scale does pelak to somewhat larger lags and a slight reduction of thgeslo
create density enhancements at that scale, but rather atea st small lags. For the 3-D structure the peak is seen at a lag of
smaller by a factor 0.75-0.8. This shift has not been notieed about 0.075, which is about 20 % smaller than the expectéde sca
fore by Mac Low & Ossenkopf (2000) as only the systematior the maximum variation, while the peak for the projection
tests of the filter functions provided enough sensitivityhwie-  falls between 0.081 and 0.092, i.e. only 10 % below the the ex-
spect to a reliable scale detection. It seems that the mbués- pected scale. In the 2-D projections, the peak is alwaysdamoa
cade builds up density fluctuations at all scales below the drand the slope at small lags is always somewhat shallowetasim
ing scale, but that those density enhancements act theessav to the impact of broader filter functions. It is important ttice,
points of an éicient energy conversion between the scales crgrat the corresponding plots for the turbulent densitycstme,
ating new density structures so that dominant density sdalls  showing a shallower scaling at small lags, exhibit a verydjoo
somewhat below the initial scale. match between tha-variance spectra computed in 2-D and in

Finally we need to address the significance of the measu®, i.e. neither a shift of the peak norfidirent slopes at small
structure size and the scaling indices with respect to the raags.
dom fluctuations always present in turbulence simulations a  This seems to indicate that the turbulent velocity cascade
with respect to the relation between the three-dimensi@B) does not behave fully isotropic. A similaffect would be ex-
structure and the two-dimensional (2-D) projections whigh

can measure in astronomical observations. For turbulemt de ! The computational uncertainty given by the finite size of data
sity structures this comparison has been done by Mac Lowsgt was discussed in detail by Bensch et al. (2001).
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pected for grid-based hydrodynamic simulations where the d
sipation is strong between neighbouring cells in ®aey-, and

zdirections. However, the simulations studied here useSRtr or 800
code which should not show any intrinsic anisotropy. Theseau
for the anisotropy of the turbulent velocity scaling is ttsasfar 5L 600
unknown. r .
= P s 400 3
) . ) o O S <
3.2. Maps with variable noise < [ é

Maps with variable noise are obtained e.g. in observatiatts w =~ _s[ SER SR ]
detector arrays showing a pixel-to-pixel variation of teastiv- i s AR ]
ity. They are produced in single-pixel observations whenifa d [ e Lhagps S ]
in the receiver sensitivity or the atmospheric conditionarges -1or g R TR 7
the noise in the data during the measurement and they resmit f r ' ' ]
mosaicing observations with variable integration timesiftier- TR
ent regions of the field. All these cases can be analysednmster 15
of the improvedA-variance as long as the spatial distribution of

the noise across the map is well known so that a correspondiig 4. 1.3 mm continuum map gf Oph taken by Motte et al. (1998).
significance map can be defined which is used to weight the dike intensity is normalised to a 1%eam. In contrast to Motte et al.
ferent points in the\-variance analysis. Then thevariance is We plot the intensity on a linear scale because the structoatysis
able to distinguish between small scale noise contribstione- by means of the\-variance measures only this linear behaviour. For

gions with a high noise level and real small scale structimres?@ better contrast of the picture the intensity scale is @ated here at
regions with a low noise level 1000 mJypeam whereas the map contains a few points with intensities

. . up to 1700 mJfpeam in the brightest core.
As a challenging example of a data set where a variable noise

is produced by the observation offirent points of the map with
varying integration time we use the 1.3 mm continuum map of
o Oph obtained by Motte et al. (1998). It is the result of a mo-
saicing observation where affieient use of the array receiver is
given by several observations of the source witfiedent orien-
tations of the array. The combination of these observatioeis 50
results in a poorer coverage of the outer regions of the sourc L
compared to the central regions in terms of the total integra i
tion time spent on each point. If the source is covered intota Of
with Ny Observations, we can characterise the integration time 3
at each point by the number of coverages including this point
1 < N < Nnmax WhereNmax < Niot. As the noise at each pointis  ~
inversely proportional to the square root of the integratime, i
we can use the value ofN as a measure for the data reliability _ o[
across the map. i
In addition to the variable noise the map has highly irregula [T ~ ]
boundaries. Figure 4 shows the intensity map. In contratsteto 15 10 5 0 -5 ~10 15
original publication we show the intensity with equididtaon- Ao ]
tours on a linear scale because the linear scale presengates . . . , . .
a beterfeelng for the siruclure that s measurable by mok 55,527 o weihtsfor the tensiy map fom g ¢ aiven by the
statistical method like tha-variance analysis. To emphasise the
irregular noise behaviour we plot one contour at 20 fH3Y¥

beam, which is below the noise level in the outer parts of thtations use the filter truncation outside of the area whate

map and above the noise level in the inner parts. Conseguerfhye been taken. The irregular boundaries make it impestibl

this contour shows partly real structure and partly artfistruc- ~qnstruct a useful periodic continuation here.

ture _from the noise. Fig_ure 5 contains the corresponding@hap  The A-variance spectrum computed without weights seems

significance values defined as the square root of the numbegpf,dicate a wide range of scales with a power law behaviour

integrations at each poin/N, thus measuring the inverse noisérom about 0.2to 2 whereas theA-variance spectrum com-

RMS. puted with the full weights shows a steepening starting & 0.
To demonstrate the influence of the significance weightirty7. Bensch et al. (2001) have shown, however, that such a be-

we show in Fig. 6 theA-variance spectra computed for the haviour is exactly to be expected from the finite beam of the ob

Oph map using three fierent weighting functions. The lowerservations. The data are given at a resolution ¢fadrid the cor-

spectrum is generated when the weights are ignored, i.el\simresponding beam smearing is known to steepemtivariance

set to unity at all valid data points. The upper graph is poedu spectrum up to scales of about one arcminute. This stegpenin

when the full weighting function from Fig. 5 is used. The incan be modelled theoretically using the analytic expressior

termediate curve follows when we introduce and upper limit the beam convolution from Bensch et al.. In fact, Mxeariance

the weighting function motivated by the idea that above a cespectrum computed from theOph map with full weights can

tain significance limit a further reduction of the noise ledees be fitted by a single power law structure with= 0.68 from

not improve the structure characterisation any more. Ath€o < 0.2’ up to about 2and a convolution function of a TS HPBW

1 q-200
P I
-0 -15

Ao [']
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Fig.6. A-variance spectra of the 1.3 mmOph map computed us- Fig. 7. A-variance for thep Oph continuum map with the full weighting
ing three dfferent weighting functions. Either all observational weggh function plotted with error bars indicating the statisticacertainty of
are ignored, they are completely taken into account, or misigbove the measurement. The connecting line represents the pawdit to
VN = 20 are set to this maximum level. the spectrum including the beam convolutidifieet. The point at the
smallest lag cannot be fitted by the first order approximaifdhe beam
shape (see Bensch et al. 2001).
beam (see Fig. 7). The fitted exponent of 0.68 falls into thgea
measured in molecular line observations of molecular doud
covering exponents between 0.5 and 1.3 (Bensch et al., 20@Hsponds to the typical size of the cores identified by Matte e
Elmegreen & Scalo, 2004; Falgarone et al., 2004). In contraagl.. The contribution of significant structures is contidug to
the two lower curves cannot be fitted in the same way. Theg?, i.e. 0.3-0.4 pc. This scale agrees with the size of the frge
spectra would lead to the conclusion of a surplus of smalescadentified core. Above about $he A-variance spectrum decays
structure relative to a power law scaling relation. Suchatike with « = —2 indicating a lack of further correlated structure at
surplus of structure at small scales is hard to explain asilév larger scales. Itis not clear whether the subtraction gdacale
require additional driving processes at these scales ongren- emission unavoidable in the used observing mode has removed
sating the known dissipation of turbulence by ambipoldiiudi some large scale correlation which is present in the cloud bu
sion and molecular viscosity (Klessen et al., 2000). Gedicihal cannot be detected from the map.
collapse is not able to create these structures; it alwfgsta At small lags the spectrum indicates no separation between
the whole A-variance spectrum, not only the small-scale tathe scales where “cores” and “clumps” (condensations) dere
(Ossenkopf et al., 2001). A surplus of small scale strucisirefined by Motte et al.. The fit in Fig. 7 shows that at scales from
also in contrast to the analysis of Motte et al. (1998) whafbu 0.2 to 2, i.e. within a dynamic range of a factor ten, the spec-
a relative lack of small structures in terms of a flatter clumgss trum is described by a single power-law smoothed by the ebser
spectrum for small clumps. vational beam. Tha-variance spectrum suggests that the same
Thus we conclude from the scaling behaviour that the fylirocesses drive the formation of the somewhat larger “Cores
weighting of intensity maps by their inverse noise RMS ressuland the somewhat smaller condensations. The break in te spe
in the most reliable\-variance spectra. With this weighting therum at 0.4, that seems to suggest a change in the scaling law
A-variance is able to distinguish insignificant small-scsiteic-  of the observed structure, is only produced by the beam smear
ture, dominating the lowest contour in Fig. 4, from signifita ing and is quantitatively in agreement with a continuatibthe
structures which are intuitively better presented by thet@ors power law observed at larger scales down to at least Ut
chosen in the original plot by Motte et al.. The increase ef thunderlying structure can be described by a perfect a power la
absolute value of thé-variance at large lags when using thén contradiction to the clump mass spectrum studied by Mettte
weighting function is explained by the relative increaseh® al. who found a significant turn-down at a mass of about:p
contribution of the bright cores in the map when virtuallgwe- This difference is even more intriguing because of the opposite
ing the map size by weighting the outer parts by lower signifsituation in molecular line studies of the Polaris Flare mwettbe
cance values. clump mass spectrum shows a perfect power law (Heithausen et
To get a feeling for the reliability of the flerent pointsin the al., 1998) but theA-variance spectrum shows a steepening to-
A-variance spectrum we plot in Fig. 7 tievariance spectrum wards small scales (Bensch et al. 2001, see also Ossenkopf et
including the error bars. The error bars arise from thestati al. 2000). From the theoretical modelling of the transiatid
cal uncertainty of the measurement of the average varianae ia clump spectrum into a corresponding power spectral inflex o
filtered map (Bensch et al. 2001). Due to the lower number ah fBm by Stutzki et al. (1998), we would expect a fixed relatio
statistically independent points in maps convolved witargér between the measured clump mass spectrum and the correspond
filter the A-variance is always most uncertain at the largest lagag A-variance spectrum in both cases. However, our examples
In spite of the large error bars, the general scaling beliaian violate this relation. The mass-size relation of the clummas
be accurately traced. The solid line shows the fit to the dsiteju be dfected by optical depthfiects and a large part of the ob-
a power-law description of the structure scaling and thev@on servationally identified clumps may result from the supsipo
lution by a 1% beam. tion of different structures along the line of sight, not well sepa-
In the A-variance spectrum one can clearly see that the donated in velocity space (Ballesteros-Paredes & Mac Low2200
inating structure has a scale of about’2i2. 0.1 pc. This cor- Ossenkopf, 2003). Further systematic studies are negetssar
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understand the actual physical processes interrelatagtthc-
ture size spectra and the clump mass spectra.

We can compare the new results with the outcome of pre-
vious A-variance analyses, because all previous conclusions on
the slopes of thé\-variance spectra remain valid. The néw
variance method has improved our ability to precisely detec
prominent scales, it has calibrated the absolute scale# and
creased the statistical significance of the spectra by gakani-
able data reliability and edgdfects into account, but none of
these points should significantlyfact the general scaling be-
haviour measured in our previous papers. pl@ph map shows
a behaviour which is intermediate between that observed e.g
by Bensch et al. (2001) in molecular molecular lines, wheee w
find a power lanA-variance spectrum at small scales and a domi-
nance of large scale structure, and the spectrum measurtbe fo
1.3 mm continuum map of Serpens (Testi & Sargent, 1998) anal-
ysed by Ossenkopf et al. (2001), where small cores domihate t
spectrum resulting in a steep decay at large scales. |o-@gh
map we find both #ects in one spectrum. The dense cores rep-

resent the dominating size scale but we can clearly resbke t ] ] )
scaling of significant structure at smaller scales. Fig.8. Map of velocity centroids measured in the CO 1-0 map of
e Polaris Flare taken with the CfA 1.4 m telescope (Hegkau&

Taking all facts from the scaling behaviour and the cIumT‘!i‘h ; ; ; : .
. . - addeus, 1990). For all points with an integrated intgrisdow 0.65
size detection together we conclude that an appropriat@cha K km/s a reasonable determination of the centroid velocity waman

terisation of the map in terms of &variance spectrum is only gjpje 5o that the average velocity of the cloud (-2.97Rmas assigned
obtained when weighting the intensity maps by the invers&noihere. The axes are labelled relative to the zero positidr=af23628,
RMS. Otherwise a variable noise in the spectra always temdst= 24°93 in Galactic coordinates.

mimic small scale structure which might be taken for real.

3.3. Velocity centroid maps

The situation is more dicult in the analysis of maps represent-
ing other quantities than intensities. Then the weightimgcfion
given by the inverse noise RMS of the observation is not nreces
sarily a good measure for the significance of the data. Weystud
one such example here.

Investigating the velocity structure in the Polaris Flare
molecular cloud, Ossenkopf & Mac Low (2002) applied the or-
dinary A-variance analysis to maps of centroid velocities in CO
line data. The scaling behaviour of the velocity field meadun
terms of theA-variance spectrum was compared to model sim-
ulations of interstellar turbulence. The data sets werergly
three nested CO maps taken witlffdient telescopes atftérent
resolutions. The maps taken at high resolutions with theNRA
30 m telescope (Falgarone et al., 1998) and the KOSMA 3 m
telescope (Bensch et al. 2001) covered only regions with suf
ficiently bright emission so that a reliable determinatidrie
line centroid velocities was possible at all points. Thetaad
A-variance spectra derived for these two maps showed a eonfiig. 9. CO 1-0 intensity map corresponding to the velocity centroap
uous power law spectrum with a slight steepening towards tineFig. 8. The intensities provide a measure for the signifiesof the
smallest lags. centroid velocities.

In contrast, the map at the largest scale taken with the CfA
1.2 m telescope (Heithausen & Thaddeus, 1990) contains many
data points where no emission above the noise limit was dest emission. When the ordinary-variance counts their cen-
tected. Moreover, it was flicult to obtain a reliable determi- troid velocity with the same weight as that from points in the
nation of the centroid velocities in regions where the limen- actual molecular cloud the “empty regions” statisticaligienthe
sities exceeded the noise RMS only by a factor of a few (seariations in the regions with significant values. The \aitiack
Ossenkopf & Mac Low 2002). The resultimgvariance spec- of large-scale velocity variations in thievariance spectrum is
trum did not show a continuation of the power law behaviodhus due to the missing significance weighting.
from the two maps on smaller scales, but turned essentiatly fi The knowledge on the reliability of the centroid veloci-
This is in contradiction to an eye inspection of the centro@p ties coming from the corresponding line intensities hasdo b
plotted in Fig. 8 showing a large scale velocity gradientakhi taken into account using the improvedvariance analysis.
should appear as well as large scale structure imthrariance Unfortunately, it is not obvious how the significance of tleme
spectrum. The corresponding map of line integrated intieissi troid velocities is related to the line intensities. We héested
plotted in Fig. 9, shows that the map contains large regidtts w weighting functions based on three assumption$he signifi-

JT dv [K km/s]
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w‘oof o weights ignored 1 shear motions into the turbulent cascade but that the tmbul
[ x w=1 for l>0.65 K km/s ] cascade starts at somewhat smaller scales. This pointsd®wa
LA welg for 1p=0.65-1.3 K km/s 1 shock producing the large scale gradient which is convémted
Pt wele for 1p=0.65-2.6 K km/s 1 turbulent energy only at the scale of previously existingity
o [T e w2 km/s fluctuations in the cloud and excludes Galactic rotationhas t
Q T weleo for 1ip>0.65 K km/s main driving force.
£ oo _
PERE 4. Conclusions
i In paper | we have proposed two essential improvements of the
A-variance analysis. Here, we have tested their actual impac
I when applied to data sets characterising interstellautarize.
oo | T_he first improyem_ent was the in_troduction of a weighting
T o T, T oo function for each pixel in the map. This allows to study d&ts s

log [°] with a variable data reliability across the map and to sieult
neously solve boundary problems even for maps with irregula
Joundaries. Maps with a variable data reliability are evathy
obtained in most observations, either due to a local or adeahp
variability of the detector sensitivity or the atmosphereoe to
different integration times spent forfidirent points of a map. By
. o ) ) applying the improved-variance analysis to observed data we
cance of the centroid velocities is determined by the irtegl find that only the use of a significance function to weight ttie d
line intensities at each poini) The zero value of the weight- ferent data points allows to distinguish the influence ofatale
ing function corresponds to a minimum intensity of 0.65 K/&m noise from actual small scale structure in the maps. In tla an
which means that at least 10 velocity channels show an int§Ris of intensity maps the weighting function is best predd
sity above the noise RM$ii) Integrated intensities above someyy the inverse RMS in the data points. The situation is more
limit do not further increase the significance of the cemn-  complex for derived quantities, like centroid velocitiesthout
locities. The weighting function is unity at all points withrger g simple analytic relation between the uncertainty of thentjty
intensities. and the observational noise. Here, in general two threstezld
Figure 10 shows the resultingvariance spectra of the cen-be defined — a lower threshold below which all data have to be
troid map when weighting functions with fiirent upper in- ignored and an upper threshold above which the significahce o
tensity thresholds are applied. For an easy comparisoneto the data is not further improved by decreasing the noisettfeor
previous results we also include the graph obtained withagéntroid velocities this means that the integrated linerisities
any weighting. The introduction of the weighting functios r between the two boundaries may serve as weighting function.
sults in a completely dierent A-variance spectrum at large  The second improvement of thevariance analysis is its op-
lags. Whereas the previous computation showed a flat spgmisation with respect to the shape of the wavelet used 1o fil
trum we find now a strong increase of the spectrum abdve ger the observed maps. The application dfetient filters in the
Unfortunately, the results give only rough guidelines fug se- analysis of hydrodynamic simulations confirmed the resolf
lection of the optimum weighting function. The best conéinu paper I, that a Mexican hat filter with a diameter ratie 1.5 is
tion of the A-variance spectra from the smaller scales providegell suited to resolve prominent structure scales and tosomea
by the KOSMA map is obtained when the upper intensity limthe slope of the turbulent cascade, however, it turned atthie
corresponds to four times the lower limit. The two curvesigsi impact of the detailed shape of thevariance filter is less sig-
only a narrow dynamic intensity range for the weighting funaificant for realistic data than for the artificial test dated in
tion are still heavily influenced by observational noiseblsas paper I. The turbulent structure is well resolved for a wieteas
increased\-variance values at small lags. On the other hand itfigters as long as one consistent filter shape is used thraugho
not clear whether the complete suppression of the ndiseten the full analysis of a data set. Comparing the density and ve-
the two curves with the largest upper limits is realistictrsat we |ocity structure of the simulations shows a small but sigaifit
conclude that in this example the significance of the cesitret  shift between the scale of the most prominent velocity stmes,
locities does not further increase for integrated inté@sibove created by the energy injection, and the most prominentiyens
2.6 Kknys. Nevertheless, a final answer to this question still hgguctures produced by the velocity field.
to come from a theoretical model for the quantitative impzict ~ Applying the new method to the example of the dust emis-
the observational noise on the noise in centroid velocities  sion map ofo Oph by Motte et al. (1998) shows that the spatial
In spite of the uncertainty of the noise contribution at dmascaling behaviour there can be described perfectly by a powe
lags, we can draw new essential conclusions on the velodiyv interconnecting the range of small clumps and more massi
structure of the Polaris Flare from thevariance spectrum. The cores. The method can reproduce the size of the dominarg core
power law scaling behaviour of the velocity structure dietdc and we find no indication for large scale correlation betwiben
previously only for smaller sizes is now continued up to asal clumps and cores in the data. Therariance spectrum shows no
of 1.3, i.e. 3-4 pc. A single power law with an exponent 0.9 break in the scaling behaviour between cores and condensati
can be used to cover the length scale range of about a fadiocontrast to the mass spectrum derived by Motte et al. (1998
100. TheA-variance spectrum also shows a plateau around Zhe reason for the ffierent behaviour of the two measures has
i.e. 5 pc, indicating the relative deficiency of motions oatth to be topic of a future investigation.
scale. Above 3the A-variance spectrum rises again tracing the In the example of the analysis of the velocity structure & th
global velocity gradient visible in Fig. 8. This behavioadi- Polaris Flare we show that the power law scaling behaviour es
cates that the large scale gradient is not converted diregtl tablished by Ossenkopf & Mac Low (2002) for the small scales

Fig. 10. A-variance spectra of the Polaris Flare velocity centroms-c
puted with diferent weighting functions characterising the significan
of the velocities at each point.
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is continued to large scales. However, a plateau intiariance
spectrum around 5 pc indicates that the existing large seale
locity gradient is not converted directly into a turbuleascade.

A possible explanation for this behaviour is the existentca o
shock producing the large scale gradient which is convénted
turbulent energy only at the scale of the individual den8itg-
tuations in the cloud. This scenario would be consistertt thi¢
affiliation of the molecular cloud to a large H | supershell by
Meyerdierks et al. (1991).

Combining the results from the turbulence simulation with
the analysis of the Polaris Flare velocity structure inttisahat a
large scale velocity field does not automatically produaesig
structures at those scales, but that a full turbulence desoav-
ering density and velocity fluctuations evolves predomilyaat
seeds of primordially existing density fluctuations, whicly
have been produced by previous velocity fields at largeescal
When interpreting turbulent structures in interstellasuds it
has to be taken into account that close to the scale of the en-
ergy injection a statistical analysis of the turbulent eafscis
always dfected by low number statistics as few density “seeds”
may dominate the shape of the scaling relations there. Abigli
statistics is only given at smaller scales.
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