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ABSTRACT

Context. The Allan variance is a standard technique to characterise the stability cifagmopic instruments used in astronomical
observations. The period for switching between source and refererasurement is often derived from the Allan minimum time.
However, various methods are applied to compute the Allan variancespesnd to use its characteristics in the setup of astronomical
observations.

Aims. \We propose a new approach for the computation of the Allan variancpectremeter data combining the advantages of
the two existing methods into a unified scheme. Using the Allan variance gpeuate derive the optimum strategy for symmetric
observing schemes minimising the total uncertainty of the data resultingr&rdiometric and drift noise.

Methods. The unified Allan variance computation scheme is designed to trace totakr@md spectroscopic fluctuations within the
same framework. The method includes an explicit error estimate bothddndividual Allan variance spectra and for the derived
stability time. A new definition of the instrument stability time allows to characterigértstrument even in the case of a fluctuation
spectrum shallower thary 1, as measured for the total power fluctuations in high-electron-mobilitgistors.

Results. A first analysis of test measurements for the HIFI instrument showsgtiia fluctuations represent the main cause of
instrumental instabilities leading to a largdfdiences between the stability times relevant for measurements aimingetaate
determination of the continuum level and for purely spectroscopic mea&nts. Fast switching loops are needed for a reliable
determination of the continuum level, while most spectroscopic measntsiten be set up in such a way that baseline residuals due
to spectroscopic drifts remain hidden in the radiometric noise. We find dimeer impact of the binning of spectrometer channels
on the resulting noise and the Allan time deviating from the description in the exisi@oretical frameworks.

Key words. Methods: data analysis — Methods: statistical — Instrumentation: speagiogr

1. Introduction acterises the instrument stability so that the preciougming

time is dficiently used in regular astronomical observations. The
All radio-astronomical measurements aféeated by instabili- technique developed here can be applied in the same way to any
ties of the gain, the transmission function, and the intespa-  ground-based telescope when the instability of the atrrersdh
tem noise changing the absolute scale of the measured slgnalincluded in the measurement by looking at the blank sky tiinou
compensate for these drifts, one switches between thenastro the atmosphere.
ical source and a reference signal — a known internal catibra  An optimum algorithm for the computation of the Allan vari-

or a point on the blank sky — one a timescale short compareddifce spectrum should fulfil four requirements:
the instabilities. Only the dierence signal is used then (see e.qg.
Kraus, 1980; Rohlfs & Wilson, 1986). — detect and characterise all instabilities and their specéari-

Because of the overheads introduced by switching, the op- 20N across the measured frequency range .
timum strategy is not switching as fast as possible, butchwit gﬂiuently use the measurgd data_ to extract a maximum of
ing as fast as necessary to suppress the drift noise. Thetef ~ Information from a limited time series .
characteristic timescales of the instabilities have to basared. ~ .prO\."d? 3 measure for .the uncertainty of the analysis jtself
This can be done in terms of the Allan variance (Allan, 1966), I.€. Include an error estimate . .
a powerful technigue to determine the stability of genemdla- be fast to allow the use of the Allan variance analysis as part
astronomical equipment, in particular for systems coimgjsbf of a quick-look analysis of measured data
heterodyne receivers and spectrometer backends (e.gKalaie At present, two dferent algorithms are widely used to com-
2000). The Allan variance spectrum can be computed from agifte the Allan variance which fulfil the requirements stated
suficiently long time series of spectrometer dumps taken at fixgdoye only partially. The spectroscopic Allan variancepeas
!nst.rgmental settings, provided that the integration_s:rfmthe posed by Schieder et al. (1985) (see also Kooi et al., 2000),
individual dumps are small compared to all instabilities. uses only one or two arbitrarily selected channels to measur
When designing the observing modes for HIFI, the hetetal-power or spectroscopic fluctuations, thus neglgdaitarge
erodyne instrument of the Herschel Space Observatory, to dmount of the measured information. The baseline Allan-vari
launched in 2008 (de Graauw & Helmich, 2000), we had to dance, as proposed by Siebertz (1998) (see also Schieder et al
velop a reliable Allan variance computation method that-cha&000), considers all variations across the spectromaeieit, ig-
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nores total-power drifts and it allows no identification @bp- pass using two reference measurements, obtained fromathk bl
lematic channel ranges within the spectrum. sky and one or two thermal calibration sources (Kutner & hllic
Here, we propose a new scheme which unifies tifierdint 1981), to deduce the actual input signal. To make the stabili
approaches into a single mathematical description andsfthie analysis directly applicable to astronomical measuremehe
four requirements to a large extent. The request for a campleame normalisation should be used instead of working with ra
characterisation of the spectral behaviour of the possilsia- backend count rates. However, a full astronomical calidnas
bilities will be translated into the need for a computatidrine neither practical nor necessary. The bandpass can be &pprox
Allan variance independently for each backend channehab tmated by the average signal level obtained in the measutemen
channel by channel variations can be detected, the influgihcecorrected by the zero level of the instrument. A useful ndkma
standing wave instabilities becomes visible, and regidng-o sation of the spectra is thus provided by
stabilities across the IF band can be identified.
The request for anfigcient data use is fulfilled by actually . ) = Gi(tk) — 7 )
using the data from all spectrometer channels and by takiﬁ(glk (Ci(tk) — z)x
into account all possible statistically independent samgsl of ] )
the temporal behaviour in the analysis. Thiicient data use Wherez is the zero level of channeland the temporal aver-
helps to shorten the actual time needed for the measurerhen®@e of each channel is used to normalise the signal levebof th
the data. Although a complete characterisation of theinsen- channel. This normalisation is also used in the baselinarAll
tal stability requires very long time series of measuremehie Variance analysis by Siebertz (1998). It results in an appro
derivation of the Allan variance minimum and the drift indzix Mate equivalence of all backend channels so thi&rinces in
fluctuations at time scales in the order of the Allan minimurieir mutual behaviour appear on the same scale. All variati
time can be obtained already from a measurement that laigts g€ seen relative to the signal level so that they can be c@upa
about three Allan minimum times. Focusing on these two quagiectly to calibration errors and the radiometric noisele
tities being the actually limiting factors for the planniagd the
calibration of astronomical observations allows to dragngt
icant conclusions also from reasonably short time serfess t
saving observing time. Most fluctuations in the amplifiers or other components of the
Even if the time series of measurements is too short to guaignal path lead to variations which are constant acrossttloée
antee a complete statistical invariance of the data, we edmed bandpass. Observations which do not switch between sondce a
an explicit error estimate for the Allan variance from theiee reference on a time scale short compared to the correspgpndin
ing statistics of the data taking. With the new definition loé t fluctuations will show some baselindtfgets in the calibrated
Allan time proposed here this also provides a direct medsure data. However, most astronomical heterodyne observations
the error of the Allan stability time. The request for a fasple- not intended to obtain an accurate continuum level but fer th
mentation is fulfilled by the proposed convolution schenwrs fmeasurement of lines on top of a constant baseline whiclpis ty
the measured data, either in the ordinary time domain oren titally taken to be zero. In this case, only fluctuations which
Fourier domain. not dfect all channels in the same way result in a degradation
In Sect. 2 we discuss the influence offdient data normali- of the calibrated astronomical data. Spectroscopic fltictus
sation schemes. Sect. 3 summarises our algorithm for thelacthange the mutual response betweeffiedent channels, often
Allan variance computation including the error estimatectS seen as ripples or steps in the baseline.
4 discusses the best definition of a stability time and thece The astronomical observations thus call for twdfatent
of the binning of spectrometer data and Sect. 5 uses theseskinds of instrument stabilities, a total power stabilitydamspec-
to derive the optimum observing strategy for all symmetse atroscopic stability. Two dferent types of Allan variance anal-
tronomical observing schemes. The implications for asytrime yses are required. The total power Allan variance has tetrac
schemes like on-the-fly mappings will be discussed in a s¢parall instrumental variations. It is computed directly frohetnor-
paper. Sect. 6 summarises our results. malised spectra as given in Eq. (1). The spectroscopic AHan
ance measures only instabilities deviating from a comman ga
) variation across the whole band. In the original definitibthe
2. Data handling spectroscopic Allan variance by Schieder et al. (1985) ithis
accomplished by considering thefegrence signal between two
channels andj. This approach, however, fars from the arbi-
To perform an instrumental stability analysis a time sedés trariness of the selection of these channels and the infylitysi
spectral dumps has to be taken consisting of spectromatet cdo distinguish the contributions from either of the chasndb
ratesc;(tx), where the indexdenotes the channel number acrosavoid these problems, we propose to use the average over the
the backend and; gives the time for the spectral dump withwhole backend to subtract the continuum level fluctuativves.
index k. The existing Allan variance analysis tools always agxtend Eq. (1) by this dlierence for the spectroscopic Allan vari-
sume that the readout dead time for an individual data dumpaisce computation:
negligible relative to the integration time between two gsm
Depending on the instrumental operation, this assumptiap m Gi(tk) — 7 _< Ci(tk) — 7 >
(Ci(tk) — 2/,

be violated in some cases and we will discuss theceof dead () = (Ci(te) — Z )k

times below. We have to assume, however, that every measure-

mentc;(tx) cover the same integration time. This spectroscopic normalisation corresponds to the aciion
The spectrum of counts per chaniebn any source is al- of a zero-order baseline in the Allan variance method pregos

ways dominated by the system bandpass of the instrumenbwhiy Siebertz (1998). For long time series, the resulting spec

is rarely flat but strongly varying across the spectromedgids. scopic Allan variance spectra are also equivalent to theagee

Astronomical data are thus calibrated with respect to thigdb of two-channel Allan variance spectra taken over all refeee

2.2. Spectroscopic versus total power normalisation

2.1. Normalisation across spectrometers

()
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To include these féects a second spectroscopic normalisation
needs to be used where the average over all channel&qg.

e 1 (2) is computed for the full spectrometer. Examples arergive
I in Sect. 4. In case of s$iicient overlap between the subbands,
dynamic platforming can be corrected, however, in the data r
duction process so that we can stick to the stability ansifigsi
the individual subbands.

Altogether, each stability measurement characterises two
kinds of instabilities. When performing the analysis at tioe-n
malised data given by Eq. (1) we measure the total power sta-
bility. This result has to be used when setting up obsematio
which aim for a determination of the continuum level like mea
surements of absorption lines. With the spectroscopiaadiy
> malised data from Eq. (2) we measure the spectroscopid-stabi
0 1000 2000 3000 4000 ity, that can be used for observations which do not aim for an

cnonnel accurate determination of the continuum level, e.g. olztemns
of molecular emission lines. The spectroscopic stabilityagis
exceeds the total power stability leading to moficeent ob-
serving schemes, so that one has to find a compromise between
70002 the need for an accurate continuum level and the request for a
high observing ficiency.

P = S e '! platforming, i.e. a mutual drift of the gain between the sarnis.
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3.1. Convolution schemes

The computation of the Allan variance consists of a convatut

500 [
- —0.002 of the signal data; (tx) from Eqgs. (1) or (2) by a Haar wavelet of

sizeL
Begs o | _ 1L for —L<t<0
0 1000 2000 3000 4000 I-LIL —J -1/L forO<t<L 3)
chonnel 0 everywhere else

Fig. 1. Time series of spectrometer data where either the total-power

normalisation (Eq. 1, upper plot) or the spectroscopic normalisatigihd the computation of the variance of the convolved sigAal
(Eqg. 2, lower plot) is applied. The data were taken in stability mea-

surements of the HIFI band 6 IF chain in V-polarisation using the wide; _fa _ 2
band spectrometer (WBS, Schieder et al., 2000) in June 2007. Tee ifai (L) = <(S(tk) T - <S(tk) ¥ I-L“->k) >k 4)

WBS subbands covering the available IF bandwidth are plotted in a row
like one big spectrometer. Plotting the Allan variancei(L) as a function of the filter size
shows the variation of the signal on the scale of the tempagal
L. Computing the Allan variance by actually convolving thradi
channelsj, except for the small contribution from the considseries by thé],-filter function for each time step can be consid-
ered channelitself to the average which is not used in the tWogreq a waste of computing time, because neighbouring values
channel spectroscopic Allan variance. , _in the convolved time series are no longer statisticallyejeh-
Fig. 1 demonstrates the two normalisations by plotting tinyent. Only for points separated by a lag larger than the it

series of spectrometer dasgti) both for the total power and | the result of the convolution is independent. A moficéent
the spectroscopic approach. It is clearly visible that nvasia-

tions occur equally in all channels so that they are mairgipleé ' Please, note that the original definition of the Allan variance is
in the total power data. However, we also see sonfierdintial smaller by a factor /2. We omit this factor to allow a direct compar-
variations in terms of gain changes across the full band arid v ison to the drift error in observations.
able standing wave features showing up as weak structuties in > The variance definition used here is
spectroscopically normalised plot. 1

HIFI and a number of other receivers use array spectrog® = <(xk - <Xk>k)2>k == Z(xk — (X)?
eters to cover a large bandwidth by combining several sub- N
spectrometers with a smaller bandwidth into one large atmay
these array spectrometers, théatient subbands will see par-
tially different signal chains so that they may show fdedént 1 N
stability behaviour. Each subband has to be charactenshd i 02angas= N_1 Z(Xk - (X))
vidually. Thus all averages over the channielgere computed k=1
only within the spectrometer subbands. In this way, we pi®Vi to; small numbers\. It has, however, the advantage that it is indepen-
the stability numbers relevant for individual narrow lin@e  gent of the exact way of sampling a given continuous distribution, mea-
disregard, however, the spectral purity of the full baselifihis suring only the internal properties of the distribution, as long as the
may show steps between thdtdrent subbands due to dynamisampling is dense enough.

This deviates from the ordinary variance definition
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method is thus to compute the convolution integral only fieeifi are not covered by full intervals of sizd 2The discrete sam-

settings separated by the filter size (Schieder et al., 198bg¢n pling approach necessarily ignores an arbitrary fractibthe

we chose filter length to be an integer multiple of the step sizalata at the beginning or end of the time series when the time se

At = t,1 — t, i.e. L = | x At, we can use the average over gies does do not match multiple integers of the filter sizdsTh

reduced number of points to compute the Allan variance is obviously a small gect for small filters, but leads to a notice-
able dtect for large filters. Moreover, the selection of the start

o3 (L) = ((Si(K) = Si(K + 1) - (Si(K) - Si(K + )x)?),  (5) framek, for the convolution is arbitrary. By shifting this through
one filter length, dterent results are obtained for the Allan vari-

with ance in case of a finite statistics in the time series of ddts.i$
demonstrated in Fig. 2a. For each filter lagve have computed
p (Kvka-1 the result of Eq. (5) when shifting the start frarkethrough
Si(K) = + Z s (k) (6)  the full filter length 2. We find a large scatter in particular for
k=Kl+ky large lags, i.e. a noticeable uncertainty of the result deimg

. . n the arbitrary selection of this start frame. We can compar
Compared to the full convolution (Eg. 4) this corresponds is with the result from the full convolution of the time &exin

counting only points separated lyin the convolved function Fig. 2b. The Allan variance from the full convolution proe&la

5 (t) "1, when computing the variance. Each data point of tNfery smooth curve while the data from any particulaampling
signal contributes twice — once in the positive and once én ”(shown in Fig. 2b fok; = 1) show a considerable scatter around

negative term for the binned signal. this curve. Nevertheless, almost all values fall within $itetis-
tical error bars computed from the finite size of the dataeseri
107 ——— ——— —— below.

We can conclude that the brute-force approach of the full
convolution of the time series with the filter function prdes
the best results by not neglecting any data and guarantteihg
r . 1 every feature in the spectrum is covered by an appropriate fil
. ter setting. This results in smooth curves of the Allan vac@&
spectra facilitating a fit and interpretation even by theetubdye.
Using today’s computer technology, the convolution is fifrac
" cally possible by means of a Fast-Fourier transform for spec
1, || trometer time series of up to a few thousand steps. For longer
.l|l”|”” l

LI e
Lo

1077

On

time series, the numerically simpler approach of the discre
sampling can be used. The sampling in stepd ddtill pro-
vides reliable data within the statistical uncertaintydrdmt to
the Allan variance analysis, however, the noticeable drers
o C C for large lags always have to be taken into account.

lag [s]

3.2. Error estimate

To compute the statistical uncertainty of the Allan variane
concentrate on this intrinsic uncertainty of the methode®mg
the error propagation of possible uncertainties of the noreas
data into the Allan variance values.

The statistical error results from the sampling error when
scanning a continuous distributidift) by takingN data values
at discrete randomly selected poiltsit is well known that the
uncertainty in the determination of the average value otma-
pled distribution is given by a Poisson counting error aral th
variance of the distribution

(f = <(H)*n
N

Equivalently, one can derive the uncertainty of the meabkure
Fig. 2. Spectroscopic Allan variance spectrum computed by discretariance of the distribution caused by the discrete samalm
sampling of the time series in steps of the lafpr all possible start-

ing pointsl; in the time series (upper plot) compared to the spectrum \/

1077

Oa

107
x  Sampling with L

& Complete convolution

§(fyk = (7)

| L M| P
10 100 1000

lag [s]

((F = (Ey)y = ((F = (F))2)2

computed by full convolution of the time series with thg-wavelet S((F = (F)x)Pk

(lower plot). The crosses in the lower plot represent the result from the N

L-sampled computation fdg; = 1. The error bars shown for the re-

sults from the full convolution integral are determined by the statistical = (f - <f>t)2>t Kur -1 (8)
uncertainty due to the finite number of data points (see Sect. 3.2). N

whereKur denotes the kurtosis of the distribution, characteris-
One disadvantage of this method is the loss of informatiang its fourth moment. Gaussian distributions exhibit at&sis
from points at the beginning or the end of the time series Wwhiwalue of 3. Exponential distributions shasgur = 6. Thus the
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relative accuracy of the measured variance of a distribufier 25
pends mainly on the number of points used to sample the-distri
bution. The kurtosis measuring the relative strength ofatimgys
of the distribution weighs this counting error by a factoadéw. 2.0
It is obvious that these principles apply as well to the de-
termination of the Allan variance. As discussed above eé&ch d
tribution of filter-convolved data values can only be sardpite = 1.5
steps ofL to obtain statistically independent values. If the datg
represent a random series, even sampling in time steps- corke
sponds to a random sampling of the distribution of data walue 1.0
so that the equation above can be applied. This assumptian is
always fulfilled in the measurement of drift processes bistiit
general justified when s$iiciently long time series are measured. °-°[
Thus we can estimate the statistical error of the Allan vexga
for a time series with the lengtk x L by

0.0l

<Z4 (L)>k _ <22 (L)>2 6] 1000 ZO?SOWG‘ 3000 4000
6ai,i(L)=\/ e ©)
with i ]
Zik(L) = st) = T — (st = Tk (10) ]

These error bars were plotted in Fig. 2. When comparing the -ocooe
plots in Fig. 2, it is remarkable that the scatter obtainedevh <
varyingk; gives a very good match to the statistical uncertainty =
shown as error bars of the convolved data.

—0.0015 1

3.3. How to characterise a full spectrometer?

All computations so far were restricted to a time series of ar ~ -o.002s ‘ ‘ ‘ ‘

bitrary data, i.e. an individual spectrometer charindlut they ’ 1o ol " o
ignored that a full instrument consists of thousands of spae

eter channels which are partially, but not completely iralep Fig. 3. Channel-by channel total-power Allan variance spectra for the
dent. test measurement described in Fig. 1 (upper plot). The colour coding

The first approach to characterise the full spectrometéeis $Shows the logarithm of the Allan variance. The lower plot shows the
computation of the Allan variance channel by channel andithe difference of two spectra obtained by averaging over two adjacent 500s
sualisation of the result in a three-dimensional plot. Tt of Mervals
such a channel-by channel analysis is demonstrated in fier up

part of Fig. 3 showing the total-power Allan variance in 1098gingie haseline can never provide all the information cioeth
rithmic units for the HIFI test measurement from Fig. 1. 'Iéhrein the channel-by-channel Allan variance plot.

subbands of the wide band spectrometer cover the full spactr For the derivation of constraints for the observin
. ; S g strateg
their boundaries are visible at channels 860 and 2708. Vielgle it seems plausible to characterise the whole instrumenhby t

see that the instability of the system is dominated by a ki'ndq[i:operties of the worst, i.e. most instable channel. Thiges

ﬁ?aﬂd'ng'\ﬁye pattern s”upefrlmposeq on ﬁ Iargtla-scalsyt;bn ost reliable approach also applicable to observationsexthe
igher stabilities at smaller frequencies (channel nusjb&ie ,o.qrement in all channels is equally important, e.g. én fr

find a pattern of alternating regions of stable and unstaté@< ,ancy surveys of rich emission spectra with hundreds eslin

nels. This can be mterprgted In terms of the ba;ellne of piam per spectrum. However, it does not take into account thatistm
spectra. The lower plot in Fig. 1 shows thdfdience of two

btained b X di 500 s il observations the observed lines cover only a very smalflifrac
spectra obtained by averaging over two adjacent 500 S BIERIV ¢ o \hole spectrometer output whereas bad channelsgre ty

We_recognise_ akind of standing-.wav_e baseline diSthtidh wi ically concentrated towards the edges of the IF band. Then, a
period matching the features visible in the Allan variangecs average Allan variance spectrum is more appropriate.

tra. The amplitude is clearly correlated with the absolutie One can consider threeftirent ways of averaging. When

of the Allan variance. . - . starting from the channel-by-channel Allan variance asialgn
From this plot it is obvious that variations of the 'nStrumenaverage Allan variance spectrum is given by

tal behaviour across the spectrometer have to be considérisd
provides the full information, but has the practical disaubages 2
that a surface plot is more filicult to interpreted by eye than oall) = <<(3(tk) M - <3(tk) * |'|_|L>k) >k>i (11)

a two-dimensional plot, that it is not possible to includéin

mation about the error bars in the plot, and that for the adptinmThis approach corresponds to averaging the Allan varigoee-s
sation of the observing strategy we have to anyway reduce tham obtained from two channels following the method by
result to a few numbers. To get a rough feeling for the speBehieder et al. (1985) over all pairs of channels.

tral behaviour one can also look at théfdience baseline plot, A second possible approach is used by the baseline Allan
however, the corresponding interval has to be selectettarbi variance method by Siebertz (1998). The variance within the
ily, missing most of the statistics of the measurement, abah convolved spectrum for each time step is considered and in a
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the the bandpass normalisation and the spectroscopic fiorma
sation of the signasi(tx) discussed in Sect. 2.1. The bandpass
normalisation guarantees that the averégy)), of any chan-
neli is identical to the global averags (ix)),; whereas the spec-
troscopic normalisation leads guarantees the idefsi(ik)); =
(s(t)); for each time step. For spectroscopically normalised
data, the convolution with the Allan filter hardly changes #v-

‘\‘ erage of the individual spectrés (ty) = '_|_|,_)i ~ (S(ty) = '_|_|,_>k,i

for each time step but for the individual channels, the convolu-
tion leads to fsets of(s(tx) * '_|_|L>k from the global average

P when they have dierent trends not cancelling out. For spec-
Chonnel average IO troscopically normalised data andfciently long time series

o Grand average ' ] where all drifts are statistically cancelled out, all theseraging
108 L L L methods should provide the same results.

1 10 100 1000
time lag

T
o
/
L

Allan variance

Maximum L o

Baseline average g

T
x
%
i
&

Fig. 4. Comparison of the four possible ways to characterise a full spec- | E
trometer band by a single Allan variance spectrum. Spectroscopically
normalised data from the central subband shown in Fig. 1 have beeno-°g
used. The results when averaging the baseline Allan variance plots and
when determining the variance relative to the grand average including
simultaneously the channel scale and the time scale are so close that the
curves are hardly distinguishable by eye.

~
<
=}

second step the average over all time steps is performedaive c
write this as Sub—band 3

Sub-band 2

2
o—i(L) = <<(3(tk) * I-I_“_ - <3(tk) * I-|-|L>i) >> (12) x  Sub-band 1 |
ilk & Full spectrometer
This kind of averaging is not able to monitor total-powerivar %" E— }‘o e ‘M‘)O T oo
ations because they enter the dgf) = '_|_||_ in the same way log [s]

aS(S(tk) * I-I_IL>i so that they are subtracted and removed fromg. 5. Average total power Allan variance spectra for théetent WBS
the Allan variance spectrum. Therefore, it can only meathae subbands computed for the time series of data presented in Fig. 1.
spectroscopic Allan variance of an instrument.

The third option is to determine the variance relative to the

grand average of the normalised and convolved spectra frem t . FOr the practical application the method should be chosen
whole data field which is most adequate to the need of astronomical observa-

, tions to control the drift error in measured data. Basically
spectroscopic observations are interested in the shapeiudle

Ui(L) - <(S(tk) ¥ rl—‘L B <S(tk) ¥ rl-“->k,i) >k, (13) sgectrum V\FI)hiCh is more than a bunch of independzﬁt channel
! data. Drift errors, showing up as irregular baseline disins,

The result for the spectroscopically normalised time sasfe can result in a clear degradation of the scientific value ef th
the HIFI test measurement shown in Fig. 1 are demonstratecdmta even if the magnitude of the distortions does not exceed
Fig. 4. At all time lags below 100 s theftkrent averages showthe radiometric noise in the data. To take the mutual relatio
identical Allan variance spectra with a slope-df characteristic drift contributions across the spectrum into account weeltav
for white radiometric noise. In contrast, the selectiorhefivorst use the average of the baseline Allan variance or the Allain va
channel shows that this experiences some additional fliiohsa ance relative to the grand average. Because the baseliar All
even at the scale of 1 s and a drift noise growing to the anggituvariance is not able to characterise total power drifts voppse
of the radiometric noise already after 20 s. Consequenéyijd to always use the "grand average” method. It combines the ad-
always very short stability times if one has to guaranteettr vantage of the baseline Allan variance method reflectingtie
drift contribution remains small for each individual chahriThe server’s view on spectroscopic data with the possibilitanal-
vast majority of all spectrometer channels behaves mucle mgse the drift behaviour of an instrument including totaiveo
stable. variations. However, we want to stress again that the ckerrac

Comparing the average of the baseline Allan variance witbation of the instrument by a single Allan variance speutis
the Allan variance using the grand average in th&edénce only justified if an inspection of a plot like Fig. 3 has provéat
shows very similar spectra which are hardly to distinguigh no strong deviations of the drift behaviour across the spett
eye, i.e. the variation of the convolved data relative tceerage eter occur.
over the spectrum at a given time step is almost identicdiéo t  An intermediate level of analysis can be provided for array-
variation relative to the global average. In contrast, erage spectrometers, like the HIFI-WBS, by characterising eaetsp
of the channel Allan variance spectra is always smallerrgela trometer subband individually (see Sect. 2.2). Fig. 5 shihgs
lags, i.e. the variation of the convolved data relative wdkier- resulting total-power Allan variance spectra for the HI&bd-
age in the corresponding channel is always smaller tharettie vratory measurement already used for demonstration in Fig. 3
ation relative to the global average. This can be underdiood The solid line represents the limit of pure radiometric rois



V. Ossenkopf: A unified Allan variance computation scheme 7

| 2 It describes the actual impact of the drift noise for an asino-

ical observation. This is demonstrated in Fig. 6 for the spec
scopic channel-by-channel Allan variance of the data frogn F
1. We find some regions where the drift contribution seem&to b
negative, indicated by the white contours. This is due tddoe
that the fluctuation bandwidth is not completely constanbss
the spectrometer and when subtracting the radiometri@riors
s an average fluctuation bandwidth, we create slightly negati
\ < numbers for channels that have a fluctuation bandwidth that i
} eventually slightly larger than the average. THieet is always
“ less than a few percent, so that we neglect it here. We resegni
’ again the pattern of standing-wave like drift contribuiphut a
‘ lack of the large scale gradient that was visible in the tptater
-1 Allan variance from Fig. 3. The drift noise is strongly vdnia
T across the spectrometer. At= 300s it hardly exceeds the ra-
i iy — diometric noise in the most stable regions while it exceedy i
0 1000 203;)0””8‘ 3000 4000 a factor> 100 in the most unstable regions of the spectrum.
We can use the knowledge on the shape of the radiometric
Fig. 6. Channel-by-channel spectroscopic Allan variance spectra rejgyise contribution to derive the instrumental stabilitycafrom
tive to the radiometric noise level for the average fluctuation bandwi perfect measurements not covering a continuous timesseri
of 2.1 MHz and and reduced by the radiometric noise. The white Cojjy o gnectrometer readout adds a significant dead timesastw
tours indicate parts of the spectrum where the variations drop below the,
average radiometric noise level. The data from Fig. 1 are used so {] ividual integrations, Eq. (14) does not hold any moresose
the figure can be compared to the Allan variance plot in Fig. 3. the radiometric noise is determined by the fractioh. afsed for
the integrationlin; = L — Lgeag While the drift is still determined
by the total time lag between two measuremeéntg/e can cor-
rect for these dead times as long as the Allan variance atr#ite fi
lag o-A(Ll, Lint1) is still purely radiometric or if we know the
evel of the radiometric noise from independent compurestidf

The trend of the lower stability towards higher sublyahdnnel
number is clearly recovered. For the full spectrometer waiob |
a kind of intermediate behaviour. Comparing the plot with.Fi

4 shows that the total-power Allan variance valueffesufrom we scale the radiometric contribution by the fadtgg/L, we ob-
much stronger drift contributions than the spectroscopic®r- 5 again a self-consistent Allan variance spectrum, oeipe
malised values with a noticeable drift already at very siaajé. only on the filter size.:

At all time lags below 100s, the spectrum shows a typicaleslop
of about-0.3. This is in agreement with stability measuremenisa (L) = o4 (L, Lint) — 074 (L1, Lint.1) X Laeag/L (16)

of the high electron mobility transistors used in the reeeam- This corrected spectrum can be used in the same wa:

i AT o y as the spec
plifiers (Whyborn, 2003), indicating that the total-powetslity ., fom perfecpt measurements to derive the Allan time. P
of the overall system is mainly determined by their gain fiaet

tions.
4.2. Definition of the stability time

4. Interpretation of Allan variance spectra The Allan time is used to quantify the lag at which the Allan
variance spectrums changes from being dominated by ratiome
ric noise to being dominated by the instrumental drift. Titze t
The Allan variance always contains a superposition of radiditional definition uses the minimum of the Allan variancesp
metric and drift fluctuations. They can be separated based tewim. At smaller lags the fluctuations are dominated by the ra
their different spectral characteristics. Fluctuations withy 1 diometric noise that drops with the integration time givertte
power spectrum show up in the Allan variancel&s! spectra Allan filter size, at larger lags the drift terms dominateutéag
(Schieder & Kramer, 2001). The superposition of white radidn an increase of the fluctuations with filter size. This ajpptg
metric noise ¢ = 0) and a power law drift noise with an arbitraryhowever, is only applicable if the drift follows a usual spat

4.1. Comparison to radiometric noise

spectral exponernt gives an Allan variance spectrum characteristics with an index > 1. Otherwise no minimum is

5 formed. Figure 5) showed an example withla® dependence

oa(l) = =— + AL"? (14) ofthe Allan variance corresponding to af£7 characteristics of
BriL the fluctuations and we have seen numerous other examples wit

Here, B, is the fluctuation bandwidth per backend channel de-drift behaviour close to/f noise leading to a very flat Allan

termined by the power spectrum of the noise (Kraus, 1980) avariance spectrum.

A characterises the amplitude of the instrumental drift. The use of the Allan minimum timg, thus has two disad-
Subtracting the radiometric noise contributiory,(B- L), vantages:

from the Allan variance spectrum isolates the drift contrib i) for drift noise shallower than/if the Allan variance has no

tions. Moreover, it is useful to normalise the drift contriion by  minimum although it is still a good measure for the stabiity

the radiometric noise because all observations will aindfia  the system.

where the error due to instrumental drifts is small compaeed ii) a small uncertainty in the spectral index of the drift fuonti

the radiometric error of the observation and the radiometrise can lead to large shifts of the minimum making it veryfidult

is easily estimated by any astronomer. We obtain the nosetli to derive an accurate error estimate for the Allan minimunreti

drift Allan variance as from the statistical uncertainty of the Allan variance.
Be L B A Therefore, we propose another definition of the Allan ttipe
2 FI o2 F R - .
T anit(L) = all)-1=——-L°" (15) Dbased on the normalisation discussed abtjyés the lag where
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the drift contribution to the total uncertainty equals the radio- —_ Subbond 1 6
metric contribution, i.e. o-i)driﬁ(t;\) = 1. This means that df, i \’%\-\-\-‘t\.‘}\_ cub—bong 2 x|
the total Allan variance amounts to twice the radiometritaAl RN Sub-band 3
variance. For a drift noise following g 1? spectral dependence, °7'F N Sub—band 4 3
the new Allan timet, agrees with the Allan minimum timz. r ‘*’@»(\:‘\ from ACE - 1
The new Allan time definition has two practical disadvan- - S approximation  ——
tages compared to the Allan minimum time: . i “'\‘ ]
i) Itis easier to determine the minimum of the Allan variance by | h |
the naked eye than determining the point where it deviates by " \«\X 1

factor 2 from the radiometric line. ‘

i) Because most existing measurements characterise the-instr 1o-¢ \\
ment stability by the Allan minimum time, a comparison with
their results requires an additional translation step. (Efegion
between both Allan times can be computed from Eq. (14) as

) = (@ - DMty (17)

o
Ll

L . | >
10 100
Av [channels]

Hoyveve;r, we can easily compute the uncertainty of the ngw 7. spectroscopic Allan variance &t= 5 s for stability measure-
Allan timet, using the uncertainty of the Allan variance (Ed. 9nents of the HIFI WBS (V-polarisation) as a function of the channel

by binning width. The dierence between the four WBS subbands is too
, 2 small to be visible by eye. The dash-dotted line shows the theoretical
oty _ i 6O—A(L) (18) curve computed from the measured autocorrelation function following

t. o] o2 (L) Schieder & Kramer (2001). Th dashed line represents the simple ap-
proximation with an additive constant.
This error remains finite even in case gfflnoise whereas it

diverges for the traditional Allan minimum time. wide band spectrometer when applying a varying channel bin-

ning to the data. The dash-dotted line represents the ciwga g
4.3. Binning of spectra by Eq. (19) using laboratory data for the ACF measured by trac
ing a tunable narrow line source. We find a good agreement be-

In the astronomical data analysis it is common to use thegeer yyeen the theoretical curve and the measured Allan varidatze
of several channels of a spectrometer to reduce the obseTaht showing that we deal with pure radiometric noise at shors,lag

noise if the fixed resolution of the spectrometer is highenth , ; 5 deviation by up to 10 % at;, ~ 3...7. The reason for this
the resolution needed to deduce physical parameters frem {faiation is not clear. An imperfect line source used whea-me
observed spectra. An example are observations of the [1Gd] | suring the ACF might lead to an overestimateggffor higher
at 1.9 THz with the HIFI-WBS where the astronomer asks forg ot cost ofg,, resulting in this kind of deviation. Taking the
frequency resolution of about 1 k) corresponding t0 6.3 MHZ vy ;e error bars of the Allan variance (Sect. 3.2) and thien

while the native spectrometer resolution is 1.1 MHz. Iti®&e 5| yariation of the fluctuation bandwidth across a spectrtam
mon misconception to assume that the noise in the spectra \@ect. 4.1) into account this small deviation can be coraplet
drop by a factory1/11 if the 11 channels are co-added that PrGieglected in the following.

vide the éfective resolution of 6.3 MHz. , To quantitatively describe the observed behaviour of the flu
For a correct treatment, the correlation between neighboyistion bandwidth it is possible to use an even simpler appro

ing channels has to be taken into account. The spectral-CoffRation consisting just of a linear dependence and an additi
lation of the noise leads to a fluctuation bandwidth th&lets ., nstant for the native fluctuation bandwidth:

from the channel spacing. If the autocorrelation functid@ir)
of the spectrometer is known, th&ective fluctuation bandwidth Bri(Noin) = Bri(1) + (Nbin — 1)Avchanner (20)
can be computed as a function of the binning widi fol- - 1pis s shown as the dashed line in Fig. 7. We find again a

lowing the formalism provided in Appendix A of Schieder &small deviation at intermediate bin sizes, but an overalsos-

Kramer (2001): able agreement, so that we can use this approximation for fas
1+23% 1 Om computations.
Bri(Nbin) = NbinAvchanne — (19) With known fluctuation bandwidth for a particular channel
1+2300 7 (1= m/(bin = 1)] Gm binning we can compute the corresponding Allan time by de-

whereAvehanmeidenotes the channel spacing apgrepresent the termining the ratio between drift noise and reduced radtdme
values of the ACF at discrete channel shiftsOne can see that Noise. It is usually assumed (Schieder & Kramer, 2001; Kooi
the native fluctuation bandwidth of the Spectromet%rn (: 1) et al, 2006) that the blnn_lng Only reduces the radlom_elDISEEl
always exceeds the channel spacing by the symmetricadly inghile the instrumental drift itself is notfiected. Resolving Eq.
grated autocorrelation function, for the HIFI WBS thisisetéa  (14) fort), gives
of almost three. The ACF has typically only a few non-vamghi 1a
codficientsgn, so that for large binning widthBg approaches ¢ — (i) (21)
NpinAvehannet CONsequently, binning does not reduce the radio- ABg
metric noise likev1l/ny, relative to the noise at the native resypqing that the Allan time shifts to smaller lags when iasre
olgtlon, but in the Ilmltlng case of large bin widths the reis ing the fluctuation bandwidth by
still about a factor V3 higher.

In Fig. 7 we show this behaviour by computing the Allan, Br(1) \7,
variance for short lags in a stability measurement of thel Hi (Moin) = (BFI(nbin)) () (22)
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This relation is identical to the corresponding relation tioe ook meosured &
traditional Allan minimum time (Schieder & Kramer, 2001). i Tpo extropolated  x ]
Taens €xtrapolated 4
L best fit to data + i
107°F I
£ no binning ¢ 3 f b
[ 3—channels binning  x ] $ %
[ x 11—channels binning ] > ¢ *x
10’7; © 51—channels binning 3 ; WOO; 4 N X 7:
E 251—=channels bimﬂﬂ O E L ¢ ¢ X x x ]
107 E r * 1
E | >
r ] 3 4 B
L ] 3
i &»_\ i 3 $
1oL S i 10 . R . R R
E E 1 10 100 1000
C ] Av [channels]
r 1 Fig. 9. Allan stability timet, as a function of binning width for the
107 T —— stability measurements shown in the lower plot of Fig. 8. The red di-
! 10 ‘ “’?] 1000 10000 amonds show the values measured from the individual Allan variance
To-5F B N = spectra. The blue crosses and green triangles show the theoretically ex-
§ no binning o ] pected behaviour for constant drift contributions usifiganda from
[ 3—channels binning i the original (non-binned) data or from the data with the largest binning
r 11—channels binning 1 width. The best fit to the measured data gitjes: 220 s andr = 1.4.
51—channels binning 1
107k o 251—channels binning 0O i
F . ] Altogether, this turns Eq. (22) very questionable. Analgsi
we T 1 the system tests of the HIFI instrument irffdrent configura-
° i tions we noticed deviations in both directions, cases withng)
shallow noise, cases with narrow standing waves easily sup-
10tE P asactt] E pressed by binning, and cases with a complete cancelltizat,
s N ] ing to an Allan time independent from the binning width. Hina
[ p— M ] we always performed the Allan variance analysis for a nurober
- e os easss . binning widths. The result for the HIFI band 3a measurements
10 i o L used in Fig. 8 is shown in Fig. 9. Together with the measured
1 10 100 1000 values oft, (nyin) we show the values that would be obtained
o [¢] from Eq. (22) using the Allan time and spectral drift fogent

Fig. 8. Spectroscopic Allan variance spectra characterising the stabilitymeasured for the first point (no binning) and the last point
of subband 2 of the HIFI wide band spectrometer using a stable no{sgi, = 235) in the plot. Both extrapolations overestimate the
source (upper plot) and using the whole system (HIFI band 3a, lowallan stability time at other binning widths. We can, howgve
plot) for five different channel binnings. obtain a fit to the data using Eq. (22) by combining the infor-
mation from all binning widths. This is shown as violet cress
C\é/hich provide a very good match to the measured values. By
using two diferent values for the exponest one for the drift
slope at a particular binning width and one to charactetise t
change oft, with the binning size, we can thus provide a full
d characterisation of the instrumental stability with anwaecy of
typically some ten percent.

Figure 8 shows the impact of binning on the Allan varian
spectra for data taken in a stability test of the spectron{ate
per plot) and for a test of the full system including mixegdb
oscillator, and IF amplifier chain (lower plot). We show tipes-
troscopic Allan variance spectra for fourfldirent binnings an
the native resolution. The data characterising the speaeter
only perfectly follow the theoretical assumption of a cemst
drift contribution. Changing the binning width only chasgae
radiometric noise so that Eq. (22) applies.

For the whole system, however, we find a significant chan@ehieder & Kramer (2001) used the Allan-variance minimum to
of the drift contribution with the binning width, indicatinthat derive constraints for the optimum timing of astronomidader-
the assumption of a constant drift term is in general notiegpl vations. They considered drift contributions with the tvpes-
ble. We notice two fiects: tral indicesa = 2,3 bracketing the behaviour often observed
i) the system is féected by some spectrally correlated fluctuan spectroscopic Allan variance measurements. In the aisaly
tions, like the instable standing wave patterns discusséatds, of numerous HIFI stability measurements, we noticed, hawnev
which are reduced by spectral binning. This leads to a rémluct that a major fraction of total-power Allan variance speciral
of the drift term and consequently to an increasg, @fiin) rela-  still a significant portion of spectroscopic Allan variarggec-
tive to the value predicted by Eq. (22). tra is dominated by shallower noise spectra, often closg fo 1
ii) the overall system is alwaydfacted by some /If noise. noise (see e.g. Fig. 5). Thus we repeat their computatiothéor
When steeper drift noise and the radiometric contributisufs general case of arbitrary noise spectral indices, alsyagpthe
ficiently reduced by binning, the/T noise starts to dominate thenew Allan time definition discussed above. Correspondingeq
Allan variance. This reduces the Allan time relative to théue tions for the Allan minimum time were also derived by Schiede
predicted by Eq. (22). (priv. comm.).

5. Optimisation of the observations
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Many observing modes are symmetric in the sense that equaf’ a

time intervals are spent on the astronomical source anden th [l d=0.1
reference. These are beam-switch observations, movihgreit — f| d=0.2

the telescope or a fast chopping mirror between source dnd re 43 4=05
erence, and frequency-switch observations. To compelisate o g=10 _
ear drifts, the most appropriate observing scheme congfsts ! 64=2.0
reference-source-source-reference sequences, withtegran 3 [\ d=3.0
tion time T for each source phase, the same tifn the ref- % 3 .

erence phases, and a dead tifgén between. S R

By using the information about the instrumental drift ob-
tained from the Allan variance spectrum, in particular tHiam
time t, and the spectral index of the drift it is possible to 2
compute the average drift error in eaclffeience measurement
Sk — R«, whereSy is the integrated signal over thh source
phase andry is the integrated signal during thieh reference |

RS e R ? ¥ o i =3
EEEEEEEEE S R N NN N

phase. The total uncertainty of the astronomical measureinie 0 1 2 3 4 5
then characterised by the variance x

) ) F_ig. 10.Tc_)tal nois_e in_beam-svx_/itch observa_tions c_onsis_ting of radiqmet-
0T, Ta) = <(Sk - R« — (S —Row) >k (23)  ric and drift contributions relative to the radiometric noise from an ideal

instrument as a function of the relative chop phase lergithe difer-
Following the formalism provided by Schieder & Kramelent curves representftiérent relative dead times per cycle. A spectral
(2001) we can derive this variance normalised to the averagédexa = 0.7 is used for the drift noise.
signal level from Eq. (14)

o2 (T, Tq) 2 Tideal/(S) = 2/ VBritior, @s a function of the integration time
5 = (24) per cycle relative to the Allan timg for different relative dead

(9 Br T times. We find the same general shape of the curve as shown by
(2T + Tp)** = 2(T + Tg)**t + T3t — 2T**1  Schieder & Kramer (2001) for a drift spectral index of 2, with
A 2(2 — 2)T2 high noise for short integration times due to the overheauhfr

the dead time, an elevated noise for large integration tidues

The first term describes the radiometric noise which does netthe instrumental drift and a minimum defining the optimum
depend on the dead time. The second term is the drift noise. fftegration time. However, for the shallow drift index, thnén-
Ta = 0 we return to the known relation (14) for the Allan variima are much wider than the corresponding minima computed
ance with no dead time between subsequent data dumps. q. (86Schieder & Kramer (2001).
holds for all spectral indices between 0 and 3 except far= 1
where a logarithmic divergence occurs leading to a somewhat, .
different functional description.

SubstitutingA by t, using Eq. (21) and normalising all times
relative to the Allan time gives 2.0

Bpixd) 2

(25)

(97 Brty s
y 1 N (2X + d)a+1 _ 2(X + d)zwrl + da+l _ 2Xa+l j
X 2(2" - 2)x2 o

with x = T/t), andd = Tgy/t,. The use of the traditional Allan
minimum time in this equation would add a factof(d@ — 1) to
the drift term. Fore = 2 anda = 3 one can then reproduce the °°
numbers obtained by Schieder & Kramer (2001).

The optimum observing mode is characterised by a mini-_ v o L
mum total noise, composed of radiometric and drift noise, ob ", 1 5
tained in a given observing tintg;. Summing up théy /(2T + d
Tg) source-reference pairs fitting in the total observing time
obtain the total noise of the observation as

DS L L B I O B B B B

w

Fig. 11. The optimum phase length depending on the relative overhead
from the dead time for dierent spectral indices of the instrumental

o2xd) _ 4x+2d (26) drift
(2 Bt
We can use this plot to compute optimum cycle times from
a+l _ a+l a+1l _ v+1
(} + (2x+d) 2(x + d) 2+ d 2x ) t, in this case even if the Allan variance spectrum shows no
X 2(2r - 2)x minimum. We obtain the optimum integration time per cycle as

(see Eq. 7). The behaviour of this total noise is shown in Fi function of the instrumental dead time and the spectraind

10 for a drift spectral index of 0.7 corresponding to the ltotaO! the drift contributions by

power measurements demonstrated in Sect. 4.1. We plot the _ 2 atle o, a+l

standard deviation of the noise relative to the radiometoise ~°* tA’AverOt’{( X+ d)T ex—d) + (x+ d)™d

of an ideal instrument having no dead times, i.e. relative to —2(x + d)**}(2x + d)(ax + d) — d**(x + d)
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xa@x+d)-d - -2dx (7 Cf T o,

— o=0.4
. . a=0.8
where roof{} denotes the root of the expression with respect to P
X. . a=186 e
Fig. 11 shows this optimum integration time providing the i _ -
minimum total noise as a function of the dead time per cycle A T T
for a set of diferent spectral drift indices. For spectral indices a=2.8 T

between 1.5 and 3 the curves hardly depend on the exact alug os
«. When the dead time exceeds half the Allan time the optimuen
integration time saturates also at about half the Allan tiFo
shallow fluctuation spectra, however, the optimum intégnat
time increases strongly with the dead time so that it carlyeasi 2
exceed the Allan time for long dead times and spectral irsdice
a < 1.

This effect somewhat relaxes the constraints for planning ob- , £~~~
servations aimed at an accurate measurement of the comtinuu 1 5
level. Although the total-power Allan timé, is usually very d

short, the corresponding spectral index of the fluctuatiGe®f- gy 13, Total noise RMS in a chopped observations relative to the ra-

ten very shallowg ~ 1, allowing cycle times which exceed thegiometric noise from an ideal instrumentioop X VBrtei/(2(S)), for
Allan time so that the frequency for switching between seurghe optimum phase length as a function of the relative dead time per
and reference can be lower than the pure Allan time suggestscycle.

|
|
Q
Il
N
o
X \
TN PN R A SR R e

W

instrument, 2 vBgtior, for the optimum cycle as a function of
the spectral index of the instrumental drift and relativadie
time. For dead times exceeding about half the Allan time the
drift contribution has the smallest impact for very shallogise
spectra whereas steep spectra naturally create driftibotitms

that grow quickly in time. The figure gives a direct measurre fo
the dficiency gain that can be obtained by constructing a faster
chopper mechanics or a faster moving telescope to minirhese t
dead time relative to the Allan time.

We can apply exactly the same approach to determine the
timing in second order observing loops set up to correctitesi
als from the simple dierencing measurements. A typical exam-
ple are dual beam-switch measurement where a choppingrmirro
switches quickly between source and reference, but where th
difference spectrum contains some standing wave residuals due
d to the diferent optical paths between the two mirror positions,

o that a second loop is used to periodically move the whole
elescope so that the assignment of the two mirror positions
source and reference is reversed. Adding ffedénces from the
two telescope positions then removes the baseline resichiks

If the observations are set up with an optimum cycle lengthaintaining the signal. To determine the period for thestabpe
we can use Eq. (27) to compare the expected drift noise frommaotions, we have to consider the stability of the baselipple
observation with the radiometric noise. This ratio is eiaéfor i.e. the stability of the dference spectra. We call this second-
the observer because it characterises the amplitude efsgit order or diferential stability, because first order instabilities will
baseline distortions due to instrumental fluctuationstiredao be removed already by the quick reference cycles. All compu-
the white noise in the spectra. It is a measure for size ofipostions used so far can be applied in the same way to determine
ble baseline ripples which might be visible in the noisedise the period of the second-order loop if the Allan variancelyana
determining the quality of the observations. Figure 12 shthe sis is not applied to continuous measurements, butferdntial
total noise relative to the radiometric contribution foethpti- measurements switching between source and reference where
mum cycle length, i.exoropt/(S) X VBritiot/(4 + 2d/X). In case the normalised dierence spectrum is used fg(tc). However,
of shallow drift spectra we notice a major drift contributial- it is clear that the switching will introduce some dead tifrses
ready for relatively small dead times whereas steep fluictuat that the radiometric contribution has to be corrected aithg
spectra result in an almost linear growth of the drift cdnttion Eq. (16). In our HIFI tests, we found a very good second order
with dead time. However, as long as the dead time is smalktability for dual-beam switch measurements under mostieon
than about three Allan times, the total noise is increaseléds/ tions, so that we could often only derive lower limits for dié
than a factor 2, i.e. the drift contribution can still be héddin ferential Allan time. The second-order stability is corsably
the radiometric noise of the baseline. worse for frequency-switch measurements following theesam

Finally we can use Eq. (27) in astronomical time estimateszheme.
to provide the user with realistic numbers for the total data The formalism described above has been implemented in
certainty obtainable in a given observing time. Figure 1@xsh HSPOT, the Herschel observation planning tool, for the HIFI
the total noise relative to the radiometric noise from araideinstrument guaranteeing an optimum setup of the obsenstio

0/0(tin)

Fig. 12. Total noise relative to the radiometric noise for the optimu
phase length as a function of the relative dead time per cycle.
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and providing a realistic estimate for the quality of theediditat instability imprint. Thus we obtain a reduced spectroscaa-

can be obtained in a given observing time. We have to strebsity as second-order byproduct of the gain fluctuationsdér

however, that it is applicable in the same way for ground thasegood conditions we measured spectroscopic Allan timessekce

telescopes provided that stability measurements arernpaefb ing 100 s at 2 MHz fluctuation bandwidth. When removing first

for typical atmospheric conditions to obtain estimatestfae order drifts by diference measurements, théfeliential Allan

Allan time and the drift exponent. variance of the resulting flerence spectra measures higher-
order instabilities. They result in spectroscopic Allangs of up

) to a few hundred seconds governing the period of second-orde

6. Conclusions observational loops.

It turns out that spectroscopic binning removes part of the
fluctuations seen in the Allan variance spectra, but it eogan
We propose a new scheme for the computation of the Allan vattie relative contribution of the underlying/fL noise always
ance of a time series of spectrometer data. It combines the present in the gain fluctuations. Consequently, the impawte
vantages of the spectroscopic Allan variance by Schiedal. etning on the Allan time cannot be predicted just from the mea-
(1985) with the advantages of the baseline Allan variance byred Allan variance spectrum at the native resolution @fith
Siebertz (1998) so that the same formalism can be used to as#dument. It needs to be measured but can be fitted by two inde-
yse the stability of an instrument with respect to total-poifluc- pendent parameters.
tuations and with respect to spectroscopic fluctuations. The HIFI experiences can be used in the same way for

We give two possible implementations for the algorithm tground based telescope when the impact of the atmosphere is
compute the Allan variance spectra whiclffeli in the required included in the Allan variance measurements, i.e. if thbikta
computing power and the subjective “smoothness” of theltresumeasurements are performed towards a celestial OFF puositio
ing spectra although being both accurate within the achievaFluctuations of the atmospheric transmission will agdiiect
uncertainty of the total Allan variance analysis. Althouglis mainly the total-power stability, but leave a characterispec-
usually required to characterise an instrument by a singlils troscopic pattern in case of narrow absorption featuresén t
ity number, we show that the use of an average is not alwagsnsidered spectral range. In case of a well-known shapgeeof t
justified, but has to be checked in each case by visualisiag thansmission function, an appropriate atmospheric moelg. (
channel-by channel Allan variance. For astronomical appli Pardo et al., 2004) may be used to correct for this spectpisco
tions we propose the “grand average” subtraction scheme pirgstability.
viding numbers most relevant for astronomical line obsiona.

By introducing a new definition of the instrument stabilityAcknowledgements. | want to thank Rudolf Schieder, Jacob Kooi, and Oliver
time we can to characterise the instrument also in cas¢ bf J“j’,frievr\gsfgijgggﬁgzegg t'ﬂéhSLﬁoénrgﬁiagg’nosFag'gog"_any usehduisions. This
noise or shallower fluctuation spectra at the cost of notddin
rectly comparable to the traditional Allan minimum time.ikts
this stability time we compute the optimum observing styate References
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