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Abstract. We present a detailed study of the ∆-variance as a method to quantify molecular cloud structure.
The ∆-variance was introduced by Stutzki et al. (1998) to analyze the drift behaviour of scalar functions and is
used to characterize the spatial structure of observed molecular cloud images. For fractional Brownian motion
structures (fBm-fractals), characterized by a power law power spectrum and random phases, the ∆-variance allows
to determine the power spectral index β. We present algorithms to determine the ∆-variance for discretely sampled
maps and study the influence of white noise, beam smoothing and the finite spatial extent of the maps. We find
that for images with β > 3, edge effects can bias the structure parameters when determined by means of a Fourier
transform analysis. In contrast, the ∆-variance provides a reliable estimate for the spectral index β, if determined
in the spatial domain. The effects of noise and beam smoothing are analytically represented in a leading order
approximation. This allows to use the ∆-variance of observed maps even at scales where the influence of both
effects becomes significant, allowing to derive the spectral index β over a wider range and thus more reliably than
possible otherwise. The ∆-variance is applied to velocity integrated spectral line maps of several clouds observed
in rotational transitions of 12CO and 13CO. We find that the spatial structure of the emission is well characterized
by a power law power spectrum in all cases. For linear scales larger than ∼0.5 pc the spectral index is remarkably
uniform for the different clouds and transitions observed (2.5 ≤ β ≤ 2.8). Significantly larger values (β >∼ 3) are
found for observations made with higher linear resolution toward the molecular cloud MCLD 123.5+24.9 in the
Polaris Flare, indicating a smoother spatial structure of the emission at small scales (<0.5 pc).

Key words. interstellar medium (ISM): clouds – ISM: structure – ISM: individual objects: polaris flare – turbulence
– methods: data analysis

1. Introduction

Maps of the interstellar medium (ISM) observed in var-
ious tracers (e.g. atomic and molecular line transitions,
infrared and radio continuum emission, dust extinction
maps) show a complex spatial distribution of the emis-
sion with a large intensity contrast. This is observed over
a wide range in linear resolution, from >∼ 50 pc, the ex-
tent of giant molecular clouds (or beyond in case of HI
observations, cf. Stanimirovic et al. 1999), down to sub-
parsec scales (cf. Zimmermann & Stutzki 1992; Langer
et al. 1995; Falgarone & Phillips 1996; Falgarone et al.
1998). Each step towards a higher spatial resolution shows
more details and provides evidence of yet unresolved sub-
structure (cf. Scalo 1990; Falgarone et al. 1991; Stutzki
1999; Williams et al. 2000).

For a detailed understanding of the physical processes
governing molecular cloud structure, and hence the molec-
ular cloud evolution, a quantitative description of the
structure is needed. The quantitative description of the 3-
dimensional density and velocity structure is complicated
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because of the limited information provided by astronom-
ical observations, and cannot be done without additional
assumptions. Under the simplifying assumption of homo-
geneous excitation conditions throughout the cloud, the
integrated intensity observed for an optically thin tracer
gives the density distribution projected onto the plane of
the sky (column density). The line of sight component
of the velocity field is accessible by spectral line observa-
tions. However, neither the 3-dimensional density distri-
bution nor the other two velocity components are observ-
able. Moreover, the assumption of homogeneous excitation
conditions often oversimplifies the situation in molecular
clouds, and a potentially significant complication arises
from optical depth effects. The limited spatial extent of
the observed maps, their finite resolution and the signal-
to-noise ratio are additional obstacles on the way towards
a quantitative characterization of the observed structure.

Nonetheless, a reliable quantification is needed to com-
pare the structure for different clouds (e.g. quiescent, star-
forming), and observed images to images generated using
numerical simulations of physical processes (e.g. magneto-
hydrodynamic turbulence; cf. Padoan et al. 1998; MacLow
& Ossenkopf 2000). This will help to identify the relevant
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processes at the different stages of molecular cloud evolu-
tion, and thus of star formation.

Over the past decades, several methods have been
applied to quantify the structure in observed maps and
simulated data. These include the two-point correlation
function (autocorrelation and structure function, cf. Scalo
1984; Kleiner & Dickman 1984; Perault et al. 1986; Miesch
& Bally 1994), spectral correlation function (Rosolowsky
et al. 1999), power spectrum analysis (cf. Crovisier &
Dickey 1983; Green 1993), and methods to determine
the area perimeter fractal dimension (cf. Beech 1986;
Falgarone et al. 1991; Zimmermann & Stutzki 1993;
Vogelaar & Wakker 1994). A different approach to quan-
tify the structure is the decomposition of the observed
emission into discrete entities (“clumps”) in order to es-
tablish scaling relations for the clumps (e.g. mass-size re-
lation and clump mass spectra; cf. Stutzki & Güsten 1990;
Williams et al. 1994; Kramer et al. 1998; Heyer & Terebey
1998). More recently, Elmegreen & Falgarone (1996) and
Stutzki et al. (1998, hereafter Paper I) established links
between the fractal dimension and the clump mass and
size spectra.

Here, we present a detailed study of the ∆-variance,
introduced in Paper I as a new method to quantify the
drift behaviour of a 2-dimensional intensity distribution,
such as the velocity integrated spectral line maps observed
in CO. For images with a power law power spectrum,
the ∆-variance allows to determine the spectral index β.
Contrary to the power spectrum, the ∆-variance can be
determined purely in the spatial domain. This is of poten-
tial benefit if the size of the observed, discretely sampled
map is smaller than the spatial extent of the emission
for a given rms noise level. In this case, the (discrete)
Fourier transform of the observed map may be a poor
estimate of the Fourier transform of the underlying (con-
tinuous) intensity distribution. The truncation of the in-
tensity distribution due to the finite map size gives rise
to Fourier amplitudes at high spatial frequencies. The im-
plicitly assumed wrap-around periodicity of the discrete
Fourier transform then leads to aliasing, i.e. the high fre-
quency tail of the Fourier transform appears at lower
frequencies.

We present algorithms to determine the ∆-variance
both in the Fourier and in the spatial domain and compare
them with respect to their accuracy and reliability using
simulated data. This includes a treatment of the influence
of white noise, the telescope beam size, and the “edge ef-
fects” arising from the finite image size. Because of the
limited number of pixels in typical molecular spectral line
maps (the limited dynamical range in angular resolution),
these effects modify and possibly even dominate the struc-
tural parameters derived (see also Houlahan & Scalo 1990;
Miesch & Bally 1994). We show that the ∆-variance is well
suited to quantify the structure of observed maps because
it is sufficiently robust with respect to these effects.

Section 2 recalls the definition of the ∆-variance and
the relation between the ∆-variance and the power spec-
trum. In Sect. 3 we introduce and compare algorithms

to determine the ∆-variance for discretely sampled maps
in the Fourier domain and in the spatial domain. They
are applied to simulated data to determine their accuracy
and to study the influence of edge effects (Sect. 4). The
∆-variance of noisy data and the influence of the tele-
scope beam are considered in Sect. 5, and the ∆-variance
of observed molecular spectral line images is presented in
Sect. 6. A summary is given in Sect. 7.

2. Definitions and basic relations

The ∆-variance follows the concept of the Allan-variance,
originally introduced by Allan (1966) to study the stability
of atomic clocks (1-dimensional functions). It provides an
extension to functions in higher dimensions and can be
applied to images and 3-dimensional structures. Here, we
recall some basic relations for functions in two dimensions
which are relevant for the following discussion.

Consider a 2-dimensional scalar function s = s(x, y)
with x and y representing continuous Cartesian coordi-
nates. Because we are mainly interested in spatial intensity
distributions we refer to s(x, y) as an “image”. For the sake
of simplicity we assume a vanishing average, 〈s〉x,y ≡ 0.
This is no essential restriction and can always be achieved
by adding a constant. The ∆-variance is defined as the
variance of the convolved image,

σ2
∆(L) =

1
2π
〈(s ∗

⊙
L

)2〉x,y, (1)

where

⊙
L

(r) =


1

π(L/2)2 (r ≤ L
2 )

−1
8π(L/2)2 (L2 < r ≤ 3L

2 )

0 (r > 3L
2 )

,

is an axially symmetric filter function of scale L (denoted
as lag). The “∗” symbol is used as shorthand notation
for convolution, and r = (x2 + y2)1/2. In addition, we
introduce the notation of ∆(L, x, y) = s ∗

⊙
L for the

convolved image.
Other choices for the shape of the filter function are

possible to define a modified ∆-variance, eg. a circular fil-
ter function with different values of the radii, or a square
shaped filter function. Additional information on the non-
isotropic character of images can be obtained by using not
axially-symmetric filter functions. The detailed study of
different filter functions is, however, beyond the scope of
the present paper. We choose the above definition (follow-
ing Paper I) because it is the most simple extension of the
Allan-variance concept to functions in higher dimensions.
It allows a direct comparison to the linear dimensions in
the image: the average distance of a point in the inner area
to a point in the annulus is 1.12L. Thus, the ∆−variance
σ2

∆(L) probes the variation of the intensity s over a length
close to L.

Using Rayleigh’s theorem, Eq. (1) can be written in
the Fourier domain. Here, the ∆-variance is the average
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of the image power spectrum Ps = Ps(kx, ky), weighted by
the power spectrum of the filter function,

σ2
∆(L) =

1
2π

∫∫
Ps |
⊙̃

L
|2 dkxdky. (2)

The integration is done for the 2-dimensional spatial fre-
quency, and the tilde symbol indicates Fourier trans-
formed quantities.

The Allan-variance of a 1-dimensional scalar function
is closely related to the power spectrum (cf. Barnes et al.
1971) and a similar relationship holds for the ∆-variance.
Consider an image s with a power law power spectrum
Ps ∝ k−β for kl ≤ k ≤ kh, where k = (k2

x + k2
y)1/2 (see

Eq. (A.1) in Appendix A). The ∆-variance of s follows
a power law σ2

∆(L) ∝ Ld∆ with d∆ = β − 2 for lags L
within the regime (2πkh)−1 � L � (2πkl)−1. This is
valid for spectral indices 0 ≤ β < 6 (see Paper I for a
more detailed discussion; Appendix A gives a summary
for the 2-dimensional case).

Here, we consider images with indices 2 ≤ β ≤ 4 and
β = 0. This covers the range of indices relevant for images
of the ISM, including those typically found for observed
maps (2 <∼ β <∼ 3; Crovisier & Dickey 1983; Green 1993;
Stanimirovic et al. 1999), and white noise (β = 0), present
in every observation at some level.

3. ∆-variance of discretely sampled, finite maps

3.1. Discretely sampled, finite maps

In the following we set up an algorithm which allows to
determine the ∆-variance for observed maps (observations
at discrete positions with a finite signal-to-noise ratio and
resolution, covering a limited area), providing a reliable
quantification of the underlying 2-dimensional intensity
distribution. We consider s = s(x, y) as the intensity dis-
tribution projected on the plane of the sky with continuous
rectilinear coordinates x, y. Strictly, we have to consider
the intensity distribution s = s(θ, φ) in spherical coor-
dinates θ, φ and invoke the corresponding formalism to
analyze scalar functions in spherical coordinates. This is
done e.g. for the analysis of the cosmic microwave back-
ground fluctuations (cf. Smoot et al. 1992; Wright et al.
1996; Tegmark 1996; Kogut & Hinshaw 1996). However,
except for spatially very extended surveys of nearby giant
molecular cloud complexes and HI surveys, the curvature
of the angular coordinates can be neglected locally.

Single dish observations of the ISM do not give s(x, y),
rather they represent the intensity detected by a telescope
with a beam pattern B = B(x, y), sampled at discrete po-
sitions (we assume a normalization of

∫∫∞
−∞Bdxdy = 1).

In order to fully recover the spatial information of the
beam convolved image, the observations are made with
critical (Nyquist) sampling, given by ∆xcrit. = λ/(2D) for
observations with a telescope of diameter D at a wave-
length λ. In practice, a sampling of ∆x ≈ 0.5θmb is of-
ten accepted as “fully sampled”. The observed intensity
is given by the beam convolved intensity distribution,

sB = s ∗ B. Sampled at discrete positions, this gives an
array of intensities I(i, j) = sB(xi, yj) on a regular grid
defined by (xi, yj) = (i∆x, j∆y).

In the following, we assume equidistant spacing in both
coordinates, ∆x = ∆y. The sum of appropriately weighted
δ-peaks at the sampling positions allows us to write I(i, j)
as a function of continuous coordinates,

sB,s(x, y) =
∞∑

i=−∞

∞∑
j=−∞

I(i, j)δ(x− i∆x)δ(y − j∆x)

= sB(x, y)
1

∆x2
III
( x

∆x
,
y

∆x

)
. (3)

Here, the subscript B refers to the beam convolved im-
age, while subscript s indicates the discrete sampling.
The Shah symbol represents the 2-dimensional array of
δ-peaks, III(x, y) =

∑∞
i=−∞

∑∞
j=−∞ δ(x− i)δ(y − j), fol-

lowing the notation of Bracewell (1986). We use this rep-
resentation of the observed map in Sect. 5 to study the
influence of the beam pattern and noise.

The noise is assumed to be completely uncorrelated,
represented by

sn,s(x, y) =
m∑
i=0

n∑
j=0

In(i, j)δ(x− i∆x)δ(y − j∆x), (4)

with 〈In〉i,j = 0 and σ2
n = 〈I2

n〉i,j . This term is added to
the discretely sampled, beam convolved image: sB,s +sn,s.

Observed maps are of finite spatial extent (ignoring
all-sky surveys). For maps with m × n pointings, cov-
ering an area a × b, this corresponds to a multiplica-
tion of the continuous intensity distribution with a 2-
dimensional rectangle-function, shifted by a/2 in x and
b/2 in y, u(xa −

1
2 ,

y
b −

1
2 ) = u(xa −

1
2 ) ·u(yb −

1
2 ), where we

use the definition of u(ξ) = 1 (|ξ| ≤ 1/2) and u(ξ) = 0
(|ξ| > 1/2) for the rectangle-function.

Altogether, the observed image of finite extent, affec-
ted by white noise and the telescope beam reads

sobs = (sB,s + sn,s)u
(
x

a
− 1

2
,
y

b
− 1

2

)
. (5)

The intent of the structure analysis is to obtain informa-
tion on the structure of the original intensity distribu-
tion, s(x, y), by studying sobs(x, y). Thus, the methods
applied have to be sufficiently robust with respect to the
effects introduced by the noise, sampling and the finite
spatial extent of the map. Alternatively, the influence of
these effects have to be determined in order to allow for a
correction.

The finite extent of observed maps, in particular, has
major implications. Discrete Fourier transform implicitly
assumes wrap-around periodicity, artificially introducing
steps in the intensity distribution for maps which do not
trace the full spatial extent of the emission down to zero
intensity. While the beam convolved image sB,s is band
limited, i.e. it has vanishing Fourier amplitudes beyond
an upper frequency cutoff because of the convolution with
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the beam pattern, the observed image sobs is not: the fi-
nite extent of the image (multiplication with a rectan-
gle function) corresponds to a convolution of the Fourier
transform with sinc-functions, ab sinc(a kx) sinc(b ky) =
sin(aπkx)
πkx

sin(bπky)
πky

, and additional phase factors giving the
position of the rectangle in the spatial domain. This in-
troduces power at high frequencies, resulting from the ex-
tended side-lobes of the sinc-function. As a result, the
Fourier transform of the observed map potentially is a
poor estimate of the Fourier transform of the original im-
age s. This is independent of the particular choice of the
filter function used to represent the finite map size. Any
other filter function decaying fast enough within one sam-
pling ∆x will equally introduce distorting high frequency
components in the power spectrum. A quantitative de-
scription of the influence introduced by edge effects is
given in Sect. 4.2.

3.2. Algorithms to determine the ∆-variance for
observed maps

3.2.1. ∆-variance: Fourier domain

In the Fourier domain, the ∆-variance is given by Eq. (2)
and one has to calculate the power spectrum of the ob-
served map. For the numerical code we use the general
discrete FT equations, not the fast FT algorithm, in or-
der to avoid the otherwise necessary interpolation or zero
padding to match the linear dimension of the maps to
2N . The image power spectrum is then multiplied to the
power spectrum of the filter function and the summa-
tion is done for all discrete frequencies to give the ∆-
variance at lag L. This is repeated for different lags L with
2 <∼ (L/∆x) <∼ 0.2 min(n,m), the typical range which can
be used to determine the spectral index β, as shown in
Sect. 4.

3.2.2. ∆-variance: Spatial domain

In order to avoid problems related to the edge effects using
the FT of the image, we consider a second method where
we convolve the observed image and the filter function

⊙
L

in the spatial domain. For Nyquist sampled observations
the beam convolved intensity distribution can be recov-
ered for continuous coordinates by interpolation with the
sinc-function (e.g. Bracewell 1986). The thus interpolated
function is then convolved with the filter function. In gen-
eral, it is not possible to exactly recover the spatial inten-
sity distribution because the map boundaries result in an
intensity distribution which is not band limited. Moreover,
an interpolation using the sinc function is often avoided
because it is numerically too time consuming. Therefore,
we use an approximation to the convolution integral and
demonstrate that this approach provides reliable results.

Numerically, the convolved image at position xi, yj is
determined according

∆(L, i, j) =
∑

k,l∈circ.

α(i− k, j − l)Iobs(k, l)

−
∑

k,l∈ann.

α(i− k, j − l)Iobs(k, l), (6)

with 1 ≤ i ≤ m, 1 ≤ j ≤ n, and k, l ∈ IN. In the first
term of the right hand side, the sum is over all posi-
tions inside the circle of radius L/2, centered on (xi, yj).
For the second term, the sum is over positions inside the
annulus of inner and outer radius L/2 and 3L/2. The
α(i − k, j − l) are weighting factors with the normaliza-
tion

∑
circ. α(i − k, j − l) =

∑
ann. α(i − k, j − l) ≡ 1. We

consider two different sets of weighting factors. As a first
option we set α(i− j, k − l) ≡ const. within both parts of
the filter (“POINT” algorithm, see left panel of Fig. 1).
This is equivalent to determining the average intensity of
the emission detected towards the positions (xk, yl) inside
the circle, subtracting the average intensity of the posi-
tions in the annulus. As a second option, the weighting
factors are determined by the (fraction) of the pixel area
which is covered by the respective part of the filter func-
tion, with the pixels being defined as squares (∆x)2 cen-
tered on xi, yj (“PIX” algorithm, right panel of Fig. 1).
The weighting factor is α(i − k, j − l) ∝ (∆x)2 for pixels
entirely inside the circle, and correspondingly smaller if a
fraction of the pixel is outside the circle. The same applies
to the weighting factors of the pixels covered by the annu-
lus. The summation in Eq. (6) is then done for all pixels
which are at least partially covered by the circle or the
annulus, respectively.

For both options (POINT and PIX) the question re-
mains how to treat the positions close to the edge of the
map where the filter function overlaps the map bound-
ary and the convolution integral is only partly known.
One possible option is to exclude those positions, result-
ing in a smaller area of the map to be used with a larger
filter function. The result is then biased because differ-
ent sub-sets of the image are probed by the ∆-variance
at different lags L. In order to avoid this bias we deter-
mine the convolved map for all positions (i, j) of the map
according Eq. (6), including those where the filter func-
tion intersects the map boundary. For the latter positions
we use weighting factors with a modified normalization:∑
k,l α(i−k, j− l) ≡ 1, where the summation is done only

for those k, l which are inside the circle centered on (xi, yj)
and the observed map. The same is done for the positions
covered by the annulus.

The ∆-variance is then computed as the variance of
the thus convolved image,

σ2
∆(L) =

1
2π

1
mn

m∑
i=1

n∑
j=1

[∆(L, i, j)− ∆̄(L)]2, (7)

where ∆̄(L) = 〈∆(L, i, j)〉i,j is the average of the con-
volved map. Note, that the ∆-variance in Eq. (7) includes
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Fig. 1. Convolution of the a discretely sampled map with the cylindric filter function
⊙

L
of linear size L. Illustration of the

“POINT” (left panel) and the “PIX” algorithm (right panel)

the subtraction of the average value, which we have previ-
ously assumed to be zero. This accounts for the fact that
for maps of finite extent and a vanishing average intensity
〈s〉x,y = 0, the average intensity of the the convolved map
∆̄(L) not necessarily vanishes, due to the edge effects.

4. Testing the ∆-variance with simulated data

First results of a ∆-variance analysis of observed molecular
cloud images are presented in Paper I. These studies sug-
gest that the spatial structure of the velocity integrated
spectral line maps is well characterized by a power law
power spectrum with a spectral index β ∼ 2.8 and ran-
domly distributed phases of the Fourier amplitudes. Scalar
functions with this property are also known as fractional
Brownian motion structures (fBm-fractals, cf. Peitgen &
Saupe 1988). Thus, fBm-fractals are ideal test images with
well known properties, providing a realistic representation
of observed molecular cloud images. In particular, they
are useful to calibrate algorithms used to quantify the
structure in observed ISM images (cf. Vogelaar & Wakker
1994).

4.1. Application to fBm-fractals

For a first test of the algorithms, we generate a set of
2-dimensional fBm-fractals with n2 = 512 × 512 pix-
els and a power law power spectral index β between 2
and 4 (Fig. 2). The fBm-fractals are generated by the
Fourier transform of hermitian Fourier amplitudes with
randomly distributed phases, giving real valued images. A
constant offset is added to the resulting maps to obtain
non-negative intensities.

We apply the ∆-variance algorithm in the Fourier do-
main, and both algorithms in the spatial domain (PIX and
POINT). The results for the image with β = 3 are shown
in Fig. 3. Similar results are obtained for the other fBm-
fractals. Note, that large scale trends and edge effects are
absent here, because the fBm-fractals are by construction
wrap-around periodic.

The ∆-variance follows a power law for lags 2 <∼
L/∆x <∼ 100, with a turnover for lags L/∆x larger
than 100 ≈ 0.2n. The turnover results from the low
frequency cutoff in the power spectrum (recall, that the
power law behaviour of the ∆-variance is limited to lags
(2πku)−1 � L � (2πkl)−1). With ku ≈ (∆x)−1 and
kl ≈ (n∆x)−1 for maps with n2 pixels, we conclude that
the ∆-variance can be described by a power law for lags
10 (2 π ku)−1 <∼ L <∼ (2 π kl)−1. A fit to the ∆-variance of
observed images should be restricted to this range.

A linear fit to the ∆-variance determined in the Fourier
domain gives an index of d∆ = 1.00, exactly match-
ing the value expected for the fBm-fractal with β = 3,
d∆ = β − 2 = 1. We obtain an index of 1.05 for the ∆-
variance determined in the spatial domain (POINT and
PIX option), still reasonably close to 1.

Comparing the results in the spatial domain, we find
that the ∆-variance determined using the PIX algorithm
is shifted towards smaller σ2

∆ (however, with the same
power law index d∆). The reason is the numerical con-
volution of the map and the filter function, done for the
PIX option. Here, some of the pixels contribute to both,
the positive and negative sum in Eq. (6), because they
are partially contained in the circle and the annulus of
the filter function. This introduces correlations for the in-
tegrated intensity determined for both parts of the filter
function and effectively lowers the variance of the thus
convolved map. The scaling properties of the ∆-variance,
however, remains unaffected, and it turns out that both
algorithms are reliable methods to determine the spectral
index β. In the following, we limit the discussion to the
POINT method, because of its numerical simplicity.

We have also studied the ∆-variance of the 1-
dimensional projection of fBm-fractals. With the 1-
dimensional projection being a zero-cut in the Fourier do-
main, the projected image has the same power spectral
index β as the original image. The ∆-variance of the 1-
dimensional projections follows a power law with a spec-
tral index of d∆ = β − 1 (Paper I). This is confirmed for
the projections of the fBm-fractals shown in Fig. 2, us-
ing an algorithm which determines the ∆-variance in the
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Fig. 2. 2-dimensional fBm-fractals with 512 × 512 pixels and a power law power spectral index β between 2.0 and 4.0. An
identical phase distribution is used for the images

Fourier domain. Thus, for images with wrap-around sym-
metry, it is possible to determine the spectral index β by
studying their 1-dimensional projections.

4.2. Finite size and edge effects

4.2.1. Theoretical considerations for 2-dimensional
fBm-fractals

Generally, observed images are not wrap-around periodic.
For a quantitative treatment of the thus introduced edge
effects we assume an image with a power law power spec-
trum, Ps ∝ k−β, and neglect the influence of the beam pat-
tern, sky and instrumental noise for the moment (sB = s
and sn,s = 0 in Eq. (5)). The power spectrum of the
observed map then reads

Psobs ∝ k−β ∗ a b sinc2(a kx) sinc2(b ky)
∗ [III(kx∆x, ky∆y)]2, (8)

where we have used that III(x) is its own Fourier
transform.

The convolution of the power spectrum Ps ∝ k−β with
the sinc-function has major implications for images with
β > 2. Here, the power spectrum of the tapered image de-
cays with Psobs ∝ k−2 in leading order approximation for
large spatial frequencies k, because of the ∝ k−2 depen-
dency of the squared sinc-function. Only for images with
a spectral index β ≤ 2, the k−β behaviour of the power
spectrum is preserved for large k. In addition, oscillations
are introduced for the sinc2-convolved power spectrum,
because of the close cancellation of the squared sin-wave
when averaged over an image of finite spatial extent.

Thus, for images with a power law power spectral index
larger than 2, we expect a systematic deviation of the
spectral index obtained for a sub-set, and thus for the

Fig. 3. ∆-variance computed for a fBm-fractal with β = 3.0.
The results obtained with the algorithm in the Fourier do-
main (filled squares) and the algorithms in the spatial domain
(POINT, empty triangles, and PIX, filled triangles) are com-
pared. The theory of fBm-fractals predicts a power law index
of d∆ = β − 2 = 1 for the ∆-variance

power spectrum of any observed map which does not trace
the full spatial extent of the emission.

4.2.2. Simulations of finite size effects

It is not possible to exactly determine the modifications
in the power spectrum introduced by the edge effects.
We therefore use numerical simulations for a quantita-
tive estimate. We consider sub-sets with n × n pixels
(n = 32, 64, 128) of larger 512 × 512 fBm-fractals. The
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Fig. 4. Index d∆ of the ∆-variance, determined for sub-sets of
fBm-fractals (the results for 64 × 64 sub-sets of fBm-fractals
with 512×512 pixels are shown). The marker gives the sample
average index d∆ of 10 sub-sets. The sample rms is indicated as
error bar. The results obtained with the ∆-variance algorithm
in the Fourier domain (dark) and the spatial domain (grey
symbols) are compared. The dashed line indicates the relation
d∆ = β − 2 for fBm-fractals

∆-variance is determined in the Fourier domain and in
the spatial domain. To get an error estimate, we generate
a sample of 10 fBm-fractals, each with the same spec-
tral index β but different initial seeds for the phases. We
randomly pick one n × n sub-set from each fBm-fractal
and determine the power law index d∆ of its ∆-variance.
The sample average index is used as best estimate for
d∆, and the sample rms as an estimate for its accuracy.
This is done for fBm-fractals with β = 2.0, 2.5, 3.0, 3.5 and
4.0. Figure 4 shows the resulting power law indices d∆ for
sub-sets with n = 64.

The sample average index d∆ obtained from the ∆-
variance in the spatial domain follows a linear relation
with the spectral index β. However, they are slightly larger
(by <∼ 0.1) than expected from the relation d∆ = β − 2.
This is marginally significant, because the sample rms
typically is 0.10 (0.15 for β = 4).

For the ∆-variance determined in the Fourier domain,
the sample average indices closely follow the relation
d∆ = β − 2 only for β ≤ 3. For larger β, the sample
average is significantly smaller and the individual indices
d∆ scatter over a wider range, indicated by the larger er-
ror bar. Similar results are obtained for larger (n = 128)
and smaller (n = 32) sub-sets. This confirms the results
from the previous section, where we have seen that edge
effects are significant for maps covering only a fraction
of a spatially extended emission. The simulations demon-
strate that the difference is small for 2.0 ≤ β ≤ 3.0 and
significant for β > 3.

Fig. 5. Power law index d∆ of the ∆-variance, determined for
sub-sets (n×n pixels) of larger fBm-fractals (512× 512 pixels;
β = 3). The ∆-variance is determined in the spatial domain,
using the POINT algorithm. For each n, a sample of 10 sub-
sets is studied. The sample rms of the d∆ is given as error bar.
The horizontal line (d∆ = 1) indicates the value expected for
a fBm-fractal with β = 3

We conclude that Fourier transform of the sub-set does
not provide a reliable estimate for the Fourier transform
of the underlying (continuous) intensity distribution, and
thus that Fourier transform algorithm should be avoided
for the analysis of observed maps if they do not cover the
full spatial extent of the emission.

4.2.3. Accuracy of the power law index for sub-sets of
different size

In order to study the accuracy for sub-maps of different
size n× n, we repeat the above simulations varying n be-
tween 16 and 206. We consider a sample of 10 sub-sets,
picked from fBm-fractals with β = 3. The index d∆ is de-
termined using the ∆-variance algorithm for the spatial
domain. Figure 5 shows the sample average index d∆ as a
function of the sub-set size n.

For n ≥ 64, the sample average of the indices is ∼1.1,
with a rms of typically ∼0.1. The accuracy degrades to-
wards smaller n (the rms increases to ∼0.25 for n = 32)
and steeply increases for maps with n < 32. No reliable
results are obtained for sub-sets with n ≤ 24. For the lat-
ter, the ∆-variance of at least 3 sub-sets does not follow
a simple power law and the indices of the remaining sub-
sets scatter over a wide range, resulting in a rms > 0.3.
We conclude that maps with at least 32 × 32 pixels are
needed for a reasonable ∆-variance analysis.

Eye inspection of the results show that the ∆-variance
typically follows a power law for lags 2 <∼ L/∆x <∼ 0.2n,
with only few exceptions (typically, 1 out of 10). For n =
24, this translates to a range 2 <∼ L/∆ <∼ 6 with only 2 to 3
independent measurements of the ∆-variance. This is too
small to obtain the power spectral index with a reasonable
accuracy and confirms our result that maps with at least
32× 32 pixels are needed for an analysis.

Tests for fBm-fractals with different indices β =
2.0, 2.5, 3.5, 4.0 show that the sample rms index depends
only weakly on β, typically being 0.10 for n ≥ 64 and 0.20
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Table 1. Spectral index β = d∆ + 2, determined for a sample of 10 sub-sets of fBm-images. Prior to the ∆-variance analysis,
large scale trends were removed with the subtraction of a bilinear surface, I(x, y) = a x + b y + c xy + d, or a planar surface,
I(x, y) = a x+ b y+d, fitted to the image (with a, b, c, d being the parameters to be fitted). Alternatively, a symmetrized version
of the maps is considered. The results obtained for the original maps are given in the last row

method power law power spectral index β of fBm-fractal

2.0 2.5 3.0 3.5 4.0

bilinear surface 2.10 ± 0.05 2.63± 0.10 3.07 ± 0.08 3.59± 0.14 3.95 ± 0.14

planar surface 2.12 ± 0.06 2.62± 0.08 3.10 ± 0.11 3.52± 0.22 4.03 ± 0.15

symmetrized 2.11 ± 0.16 2.66± 0.09 3.17 ± 0.12 3.60± 0.20 4.13 ± 0.19

unmodified 2.05 ± 0.14 2.66± 0.08 3.18 ± 0.12 3.65± 0.25 4.11 ± 0.15

for n = 32. The exception is β = 4 where the accuracy
varies between 0.15 (n ≥ 64) and 0.25 (n = 32).

4.2.4. Subtraction of large scale trends

Here, we investigate ways to further reduce the influence
of the edge effects by subtracting large-scale, systematic
trends. These large-scale trends can appear because of the
particular size and position of a the map covering a frac-
tion of a spatially more extended intensity distribution.
Structure which is random on larger scales can appear
as a systematic trend in the sub-map, for instance, as a
gradient.

In all previous computations a bilinear surface is fitted
and subtracted from the sub-maps prior to the ∆-variance
analysis. This is now repeated using a planar surface in-
stead. Alternatively, we generate a symmetrized version
of the map with its mirror images along the x and y-axis
added. Table 1 compares the results to those obtained for
the original maps.

Generally, the results obtained with the different meth-
ods do not substantially differ from each other. The sam-
ple average indices agree within the rms. However, the
results obtained with a prior fit and subtraction of a bi-
linear surface and a planar surface are slightly closer to
the d∆ expected for the original fBm-fractal, and we use
these two options for the analysis of observed data.

5. Influence of white noise and the telescope
beam

The influence of noise and the telescope beam pattern
modify the spatial structure of the observed emission pre-
dominantly at small linear scales, close to the sampling
for fully sampled observations. While the beam convo-
lution artificially introduces correlations, the noise effec-
tively reduces existing ones. As a result, the ∆-variance
of fBm-fractals deviates from the expected power law be-
haviour toward smaller lags. In general, an exact correc-
tion for both effects is not possible. For images with a
power law power spectrum, however, their influence can be
approximated.

5.1. ∆-variance of images with a finite signal-to-noise
ratio

In order to give an example, we added white noise to the
fBm-fractal shown in Fig. 2 (β = 3). The resulting im-
age is shown in the upper panel of Fig. 6. The signal-to-
noise ratio is S/N = 1.6, where we use the definition of
S/N = σβ/σn = (〈(sβ−s̄β)2〉/〈s2

n〉)1/2, the ratio of the rms
of the fBm-fractal and the rms of the white noise. Note,
that this is different from the S/N -ratio used for observed
data, commonly defined as the ratio between the maxi-
mum (or some other representative value of the intensity
in the map) to the rms noise of the signal-free pixels. For
simulated data generated by a stochastic process, the in-
tensity maximum depends on the number of pixels in the
map and thus is not useful for a definition of the S/N -
ratio.

The lower panel of Fig. 6 shows the ∆-variance of the
same fBm-fractal at different noise levels. The white noise
becomes increasingly important towards smaller scales,
resulting in a larger ∆-variance. For S/N -ratios <∼10,
the ∆-variance exhibits a turnover, approaching the L−2

behaviour of pure white noise.
For a quantification we consider images sβ with a

power law power spectrum Psβ (k) = Psβ ,0 k
−β , and white

noise with a flat power spectrum Psn(k) = Psn,0 k
0, kl ≤

k ≤ kh. The constants P0,sβ and P0,sn are determined by
the integral over the power spectrum, σ2

β =
∫∫
Psβ dkxdky

and σ2
n =

∫∫
Psn dkxdky. The power spectrum of the noisy

image s = sβ + sn is then approximated by

Ps ≈ Psβ + Psn = P0,sβk
−β + P0,sn . (9)

Note that the cross terms containing the product of the
fBm-fractal and the white noise Fourier transform are ne-
glected. For images of infinite spatial extent they vanish
on average, because the phases of the Fourier transform
are uncorrelated.

The assumption of white noise is appropriate for most
of the observed radio spectral line maps. However, the
results do not significantly change if we consider non-
uniform noise instead, where the rms is a function of the
position in the map (e.g. scaling with some function of the
observed intensity, such as the square root of the inten-
sity, applicable if Shot-noise dominates). The crucial point
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Fig. 6. fBm-fractal with white noise added (top). The fBm-
fractal is the one shown in Fig. 2 with β = 3. The bottom panel
shows the ∆-variance of the same fBm-fractal at different noise
levels. The broken line indicates σ2

∆(L) ∝ L−2, the ∆-variance
of pure white noise. Note, that we define the signal-to-noise
ratio as the rms of the fBm-fractal to the rms of the white
noise, σβ/σn

is that the phases of the image and noise Fourier trans-
form are completely uncorrelated. In this case we can as-
sume that the contribution of the cross terms in the power
spectrum Ps vanish on average, and thus that it can be
neglected for the ∆-variance.

For discretely sampled maps of finite spatial extent,
however, the cross terms may not exactly cancel. This
applies even if we assume pure white noise. The power
spectrum then follows Eq. (9) only on average, with ad-
ditional random fluctuations due to the near cancellation
of the cross terms. Similar fluctuations are present in the
∆-variance.

From Eq. (2) it is evident that calculating the ∆-
variance is a linear operation on the power spectrum. The
∆-variance of the noisy image is therefore approximated
by

σ2
∆(L) ≈ a1L

β−2 + a2L
−2, (10)

Fig. 7. Top panel: fBm-fractal (β = 3), convolved with a
Gaussian beam of HPBW twice the sampling. The correspond-
ing ∆-variance is shown by the dark triangles in the bot-
tom panel. The ∆-variance of the original fBm-fractal is given
by grey squares, and the approximation deduced for the ∆-
variance of the beam convolved image is indicated by the
broken line

for lags (2πkh)−1 � L � (2πkl)−1. The constants are
given by a1 = σ2

βcβ(2πkl)β−2 and a2 = σ2
n

9
4π3 k

−2
h , with

the cβ from Table A1 in Appendix A.

5.2. Influence of the finite telescope beam

For a quantitative treatment we consider a telescope beam
of Gaussian profile and HPBW θmb. The beam convolved
image is then given by

sB = sβ ∗
(

4 ln 2
πθ2

mb

)
exp

[
−4 ln 2

(
x2 + y2

θ2
mb

)]
. (11)

A beam convolved fBm-fractal (β = 3) is shown as an
example in the upper panel of Fig. 7, where the HPBW
of the Gaussian is twice the sampling. In the lower panel,
the ∆-variance of the original and the convolved image are
compared. Clearly, the influence of the finite beam size is
noticeable for lags up to (L/∆x) ∼ 8, and a linear fit to
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the ∆-variance has to be limited to larger lags. This might
be a problem for observed maps because of their limited
dynamical range in linear resolution, often little more than
one decade. A quantitative description is therefore highly
desirable in order to extend the fit to smaller lags, and to
evaluate the ∆-variance for smaller maps.

The power spectrum of the beam convolved fBm-
fractal is

PB(k) ∝ k−β exp
[
−π

2θ2
B

2 ln 2
k2

]
.

Series expansion for the Gaussian gives

PB(k) ∝ k−β − π2θ2
B

2 ln 2
k−β+2 +O(k−β+4) + · · · (12)

For small k, the influence of the beam is approximated
by an additive term ∝ k−β+2. An approximation to the
∆-variance of the beam convolved image for large lags
L� θmb(8 ln 2)−1/2 is then given by (Appendix B),

σ′2∆(L) ≈ σ2
∆(L)

[
1−Kβ

(
L

θmb

)−2
]
, (13)

where σ2
∆(L) = σ2

βcβ(2πklL)β−2 is the ∆-variance of the
original image and [1+Kβ(L/θmb)−2] gives a leading order
correction for the influence of the Gaussian beam. Kβ is
a function of the index β and the low (high) frequency
cutoff, kl, kh (Appendix B). This approximation is shown
in the lower panel of Fig. 7 by the broken line.

Additional correction using higher order terms of the
series expansion in Eq. (12) is not possible. The next term
is ∝ k−β+4, and for the 2 ≤ β ≤ 4 considered here, this
term has an exponent between −2 and 0. The correspond-
ing ∆-variance does no longer follow a power law.

6. Application to observations

6.1. Observed CO spectral line maps

We applied the ∆-variance algorithm to a sample of 10
spectral line maps, observed in the rotational transitions
of CO. The data set contains 5 maps made with differ-
ent angular resolution toward the Polaris Flare, a high
latitude translucent cloud close to the North Celestial
Pole. It is a quiescent cloud with no embedded stars or
ongoing star formation (see, however, Heithausen 1999).
The distance estimates range from 100 pc to 250 pc (cf.
Heithausen & Thaddeus 1990; Zagury et al. 1999). Here,
we adopt a distance of d = 150 pc. The Polaris Flare
data set includes the survey of the entire cloud complex
in the 12CO J = 1 → 0 transition (angular resolution of
8.7 arcmin; Heithausen & Thaddeus 1990). For one of the
cores, MCLD 123.5+24.9, observations were made with
the KOSMA 3 m (Bensch 1998) and the FCRAO 14 m
telescope (at 2.2 and 0.78 arcmin resolution). In addition,
CO observations made at very high angular resolution
(0.35 and 0.175 arcmin) are available with the maps of

the IRAM key-project “small-scale structure of pre-star-
forming regions” (Falgarone et al. 1998). Taken together,
the observed maps cover more than three decades in linear
resolution, from ∼50 pc to ∼0.008 pc (Table 2).

In addition, we applied the ∆-variance to molecular
cloud surveys made with the AT&T Bell Labs 7 m tele-
scope in the 13CO J = 1 → 0 transition. They are pro-
vided by J. Bally (priv. comm.; see also Bally et al. 1987,
Bally et al. 1989, and Miesch & Bally 1994). A summary of
the observations and the results of the ∆-variance analysis
are given in Table 3.

6.2. ∆-variance analysis of the velocity integrated
maps

Prior to the ∆-variance analysis, a bilinear surface is fitted
and subtracted from those maps which do not cover the
full extent of the emission (the MCLD 123.5+24.9 maps
made with the KOSMA and IRAM telescope). The ∆-
variance is determined using the POINT algorithm and
the accuracy is estimated as the statistical error,

∆(σ2
∆(L)) =

〈(
[∆(L, k, l)− ∆̄(L)]2 − σ2

∆(L)
)2〉

k,l
, (14)

represented in Figs. 9 and 10 by error bars. Here, k and
l sample positions separated by L (1 ≤ k ≤ m

L and
1 ≤ l ≤ n

L ) to obtain a set of independent intensities
of the squared convolved map, (∆(L, k, l)− ∆̄(L))2. This
gives an upper limit to the actual error because the varia-
tions in the convolved map only partly result from the lim-
ited accuracy, but also reflect source intrinsic properties.
However, it provides the correct relative accuracy of the
∆-variance at different lags, and thus the proper weight-
ing for the fit. The accuracy of the ∆-variance is better at
smaller lags because of the larger number of independent
positions available in the convolved map. For larger lags,
a larger fraction of the convolved map is affected by edge
effects, and the variation of the intensity in the convolved
map (Eq. (14)) provides a reasonable upper limit to the
error.

According to the equation deduced in Sect. 5 for the
∆-variance of beam convolved, noisy images we applied a
three-parameter χ2-fit to the resulting ∆-variance,

σ2
∆(L) = a1 (1−Kβ(L/θmb)−2)Lβ−2 + a2 L

−2, (15)

where a1, a2 and β = d∆ + 2 are the parameters to be fit-
ted. Kβ includes integrals of Bessel functions. Therefore,
it is not possible to write Kβ in a closed form and we use
the second order polynomial Kβ ≈ 3.9159 − 1.2437 β +
0.1189 β2 as an approximation. This is obtained from
a fit to 20 values of Kβ, evaluated numerically for β
between 2.1 and 3.9, and the additional assumption of
1−(kl/kh)4−β

1−(kl/kh)β−2 ≈ 1.
The thus obtained spectral indices β are given in the

second last column of Tables 2 and 3. The error is the
standard deviation of the fit parameter β, with the error
due to the finite size of the map (Sect. 4.2.3) added in
quadrature.
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Fig. 8. Velocity integrated spectral line maps of the rotational transition 12CO J = 1 → 0, 12CO J = 2 → 1 and 13CO
J = 1 → 0, observed towards the Polaris Flare, and one of its cores, MCLD 123.5+24.9. The transition and the telescope are
indicated at the top of each panel. The line intensity is given in main beam brightness temperature, Tmb. Iso-intensity levels
are shown from 2 to 8 in steps of 2 (CfA map), 1 to 11 by 2 (KOSMA), 1 to 4 by 1 (FCRAO), 5 to 17 by 2 (IRAM, 12CO
J = 1→ 0), 3 to 11 by 2 (IRAM, 12CO J = 2→ 1), in units of K km s−1

6.3. Results

The power spectral indices obtained for the large surveys
(CfA map of the Polaris Flare and the Bell 7 m surveys)
cover a remarkably narrow range, between 2.5 and 2.8.
The only exception is the 13CO J = 1 → 0 map of
Perseus/NGC 1333 with a steeper index of β = 3.07±0.10.
The maps observed with higher angular resolution toward
MCLD 123.5+24.9 give significantly larger indices β > 3.
This indicates that the spatial structure of the intensity
distribution is smoother at linear scales <∼ 0.5 pc. The re-
sult obtained for the Perseus/NGC 1333 13CO J = 1→ 0
map fits into this picture. The distance to the cloud is
350 pc, smaller than for any of the other clouds in the Bell
Labs sample. This allows to probe smaller linear scales
than accessible with the other maps.

Note, that a ∆-variance of the 12CO J = 1 → 0
maps made with the CfA 1.2 m and the IRAM 30 m

telescope are also presented in Paper I, giving β = 2.77
and β = 2.76. For this analysis we used the FT algorithm
to determine the ∆-variance. While the index β of the
CfA map is in close agreement with the result obtained
here, the index determined in Paper I for the IRAM map
is significantly smaller. We attribute this to the influence
of edge effects, which are obviously relevant for the IRAM
maps.

In order to demonstrate the influence of white noise
and beam smearing, the ∆-variance of the beam con-
volved image without the contribution of the white noise
is marked by dashed lines in Fig. 9. The difference be-
tween the dashed and the solid lines illustrates the influ-
ence of the white noise and the divergence of the dashed
line from a straight line (not shown) indicates the influ-
ence of the beam smearing. Both, the white noise and
beam smearing, significantly modify the ∆-variance. For
instance, if we neglect them by fitting a straight line to the
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Table 2. Observations of CO rotational transitions made towards the Polaris Flare and MCLD 123.5+24.9. The ∆-variance
analysis is done for the velocity integrated maps. The results are given in both last columns

telescope transition telescope map: sampling σβ/σn
1 β = d∆ + 2 fit range

HPBW # pixels lag L [pc]

CfA 1.2 m 12CO J = 1→ 0 8.7′ 92× 128 8′ 7.97 2.61 ± 0.16 0.75–6.0

KOSMA 3 m 12CO J = 2→ 1 2.2′ 48× 62 1′ 6.44 3.05 ± 0.22 0.13–0.6

FCRAO 14 m 13CO J = 1→ 0 0.78′ 160 × 108 0.367′ 6.74 3.22 ± 0.15 0.06–0.48

IRAM 30 m 12CO J = 1→ 0 0.35′ 48× 64 0.125′ 6.31 3.29 ± 0.22 0.02–0.07

IRAM 30 m 12CO J = 2→ 1 0.175′ 48× 64 0.125′ 3.34 3.25 ± 0.23 0.02–0.07

1 Ratio of the rms intensity of velocity integrated line maps, integrated over the line (σβ) and over (the same amount of)
signal-free channels (σn).

Table 3. Surveys of the 13CO J = 1→ 0 transition towards molecular cloud complexes, made with the Bell Labs 7 m telescope
(Bally 1998, priv. comm.). The HPBW of the 7 m telescope at 110 GHz is 100′′

source adopted # positions σβ/σn β = d∆ + 2 fit range

distance [pc] observed lag L [pc]

Perseus/NGC1333 350 33 000 7.28 3.07± 0.10 0.31–2.52

Orion A 450 33 000 6.31 2.54± 0.05 0.39–7.50

Orion B 415 80 000 5.75 2.68± 0.12 0.36–6.92

NGC 2264/Mon OB1 800 19 000 14.82 2.54± 0.12 0.93–7.14

Mon R2 950 7 000 5.00 2.76± 0.12 0.69–2.16

∆-variance, we obtain a spectral index of β = 3.47 for the
IRAM 12CO J = 1→ 0 map, which is significantly larger
than the value obtained here using the three-parameter
fit, β = 3.29. For the IRAM 12CO J = 2→ 1 map we ob-
tain a smaller index (β = 3.08), compared to the β = 3.25
from the three-parameter fit. Thus, for the IRAM 12CO
J = 2 → 1 map, the deviation of the ∆-variance from
a straight line essentially arises from the contribution of
noise, while for the IRAM 12CO J = 1 → 0 map, beam
smearing effects dominate. The modification of the spec-
tral index is significant, despite the fact that the influence
of beam smearing and noise is confined to small lags. This
is a general rule for observed maps with a relatively small
dynamical range in linear resolution (some 3000 positions
for the IRAM maps). It does not only apply to the ∆-
variance, but has to be considered for other methods to
quantify the structure, as it is done e.g. for the two-point
correlation functions by Miesch & Bally (1994).

It is interesting to note that after the correction of
both effects we obtain the same spectral index β for both
IRAM maps (within the errors), a result which is not ob-
vious from the uncorrected ∆-variance. This is supported
by the results of Falgarone et al. (1998), who note a re-
markably constant intensity ratio of the 12CO J = 2→ 1
to 12CO J = 1→ 0 across the maps.

7. Summary

We presented a detailed study of the ∆-variance as a tool
to determine the power law power spectral index β of 2-
dimensional intensity distributions, such as observed maps
of the ISM. We compared algorithms to determine the ∆-
variance for discretely sampled data in the Fourier domain
and in the spatial domain. They were verified using fBm-
fractals, artificially generated structures with well defined
properties, providing a realistic representation of observed
molecular cloud images. A study of the accuracy and the
limitation of the ∆-variance analysis was given.

Edge effects were found to be important for maps
which do not trace the full spatial extent of the emission,
as it is typically the case for most high resolution observa-
tions. We demonstrated that the influence of edge effects
can be significant for methods which quantify the struc-
ture using the Fourier transform of the image. For images
with β > 3 the index determined for a sub-set is signifi-
cantly smaller than that of the original image. In contrast,
the ∆-variance determined in the spatial domain provides
a reliable estimate for the index β. For small maps, the
accuracy of the index β is limited by the edge effects, and
we estimated the minimum required map size to be 32×32
pixels.

A leading order approximation was deduced for the
influence from the beam smearing and white noise. This
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Fig. 9. ∆-variance of the velocity integrated spectral line maps shown in Fig. 8. The solid line gives the result of a χ2-fit to the
data, using the ∆-variance model of Eq. (15). The power spectral index β obtained from this fit is indicated in each panel. The
dashed line shows the ∆-variance corrected for white noise and the turnover of the dashed line toward smaller lags (divergence
from a straight line) indicates the influence of the telescope beam

enables us to study the ∆-variance for a larger range of
lags, and for small maps containing less than 64 × 64
pixels. For the latter, we found that a significant fraction
of the ∆-variance is affected by noise and beam smearing,
resulting in a systematic error if no correction is done.

We applied the ∆-variance to several observed CO
maps, including surveys of giant molecular clouds made
with the Bell Labs 7 m telescope and observations toward
the Polaris Flare/MCLD 123.5+24.9, a translucent cloud
at high Galactic latitudes. We found that the spatial struc-
ture of the velocity integrated maps is well characterized
by a power law power spectrum. For linear scales >∼ 0.5 pc,
the spectral index is remarkably uniform (2.5 < β < 2.8)
for different clouds (quiescent/star forming) and tracers
with different optical depths (12CO and 13CO J = 1→ 0).
Significantly larger indices (β > 3) are found for the
13CO J = 1 → 0 map of Perseus/NGC 1333 and obser-
vations made at higher spatial resolution toward MCLD
123.5+24.9, suggesting that the structure is smoother at
scales <∼ 0.5 pc. At present, it is not clear whether this re-
flects some peculiar properties of the high latitude translu-
cent cloud, optical depth effects or the physical processes
responsible for the dissipation of the non-thermal motions
in molecular cloud cores.

In forthcoming papers we will extend the studies to
individual channel maps to establish links between the
velocity and spatial structure (Bensch et al., in prep.)
and investigate the influence of optical depth effects
(Ossenkopf et al., in prep.). An application of the ∆-
variance to 3-dimensional density structures (and their
2-dimensional projections) generated by numerical simu-
lations of magneto-hydrodynamic turbulence is presented
by MacLow & Ossenkopf (2000) and Ossenkopf & MacLow
(2000).

Appendix A: ∆-variance for images with a power
law power spectrum

Consider an image sβ = sβ(x, y) with a power law power
spectrum

Psβ (k) = Psβ ,0


1 0<k<kl

k−β−k−βh

k−βl −k
−β
h

kl≤k<kh

0 k>kh

, (A.1)

and a spectral index in the range 0 ≤ β ≤ 4. Here, k =
(k2
x+k2

y)
1/2 is the spatial frequency, and kl, kh the low and

high frequency cutoffs. For a map with n×n pixels and a
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Fig. 10. Bell Labs 7 m surveys: ∆-variance of the velocity integrated spectral line maps. The result of the three-parameter fit
is shown as solid line. The flattening of the ∆-variance towards larger scale is due to the finite spatial extent of the emission,
which is much smaller than the linear size of the map

Table A1.

β 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

cβ 4.237 0.765 0.146 0.132 (lnn)−1 0.033 0.037 0.033 0.029

sampling of ∆x = ∆y, the cutoffs are kh ≈ (2 ∆x)−1 and
kl ≈ (2n∆x)−1, respectively.

Assuming 〈sβ〉x,y = 0, the ∆-variance is given by a
power law,

σ2
∆(L)/σ2

β =
9

4π3 (khL)−2, β=0, (2πkh)−1�L

cβ(2πkhL)β−2, 0<β≤2, (2πkh)−1�L�(2πkl)
−1

cβ(2πklL)β−2, 2<β<4, L�(2πkl)
−1

, (A.2)

where σ2
β is the integral over the power spectrum and cβ

is deduced in the Appendix C of Paper I. The cβ include
integrals of squared, first order Bessel functions, which in
general do not allow manipulation into a closed form. The
evaluation of cβ was done numerically for discrete values
of β Table A1.

Appendix B: The influence of the beam smearing:
leading order approximation of the ∆-variance

Consider an image with a power law power spectrum given
by (Eq. (A.1)). The beam convolved image is then given
by sB = sβ ∗ B, where we assume a Gaussian telescope
beam B with

∫∫
B dxdy = 1. For small spatial frequen-

cies k � (2 ln 2)1/2/(πθmb), the power spectrum of the
Gaussian can be approximated by both first terms of the
series expansion, |B̃(k)|2 ≈ 1− π2θ2

mb
2 ln 2 k

2, where θmb is the
HPBW of the Gaussian. Thus, in leading order approx-
imation, the power spectrum of the beam convolved im-
age is the power spectrum of the original image, plus an
additive correction term,

PsB − Psβ ≈ −Pcorr = −Psβ

π2θ2
mb

2 ln 2
k2.

The integral of the power spectrum Pcorr gives

σ2
corr = Psβ ,0

π3θ2
mb

4 ln 2
k4

l

β

β − 4
1− (kl/kh)β−4

1− (kl/kh)β
(B.1)
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and its ∆-variance is given by σ2
∆,corr(L) = 1

2π×∫∫
Pcorr |

⊙̃
L|2 dkxdky . Following Paper I, this is

σ2
∆,corr(L)/σ2

corr =
2 (β − 2)

β
cβ−2 (2πkhL)β−2 (B.2)

for lags (2πkh)−1 � L� (2πkl)−1. Thus, the ∆-variance
of the beam convolved image can be approximated by

σ′2∆(L) ≈ σ2
∆ − σ2

∆,corr

= σ2
∆(L)

[
1−Kβ

(
L

θmb

)−2
]
, (B.3)

where σ2
∆ is the ∆-variance of the original image and

Kβ =
1

8 ln 2
cβ−2

cβ

(β − 2)2

β(4− β)
1− (kl/kh)4−β

1− (kl/kh)β−2
· (B.4)

The ratio of the low to the high frequency cutoff kl/kh

is ∼ n−1 for maps with n × n positions. The factor
1−(kl/kh)4−β

1−(kl/kh)β−2 on the right hand side of Eq. (B.4) is then
significant only for β <∼ 2.5 and β >∼ 3.5, where it corre-
sponds to a correction of larger than 20%. For β between
2.5 and 3.5 we can use the approximation 1−(kl/kh)4−β

1−(kl/kh)β−2 ≈ 1.
With the additional assumption of ∆x = 0.5θmb, the
∆-variance is approximated by

σ′2∆(L) ≈ σ2
∆(L)

[
1−K ′β(L/∆x)−2

]
for lags (L/∆x)� (2 ln 2)−1/2, where

K ′β ≈
1

2 ln 2
cβ−2

cβ

(β − 2)2

β(4− β)
, (B.5)

using the coefficients from Table A1.
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