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ABSTRACT

Context. The∆-variance analysis, introduced as a wavelet-based measurefor the statistical scaling of structures in astronomical maps,
has been proven to be an efficient and accurate method to characterise the power spectrum of interstellar turbulence. It has been applied
to observed molecular cloud maps and corresponding simulated maps generated from turbulent cloud models. The implementation
which is presently in use, however, has several shortcomings. It does not take into account the different degree of uncertainty of map
values for different points in the map, its computation by convolution in spatial coordinates is very time-consuming, and the selection
of the wavelet is somewhat arbitrary and does not provide an exact value for the scales traced.
Aims. We propose and test an improved∆-variance algorithm for two-dimensional data sets which isapplicable to maps with variable
error bars, which can be quickly computed in Fourier space, and we calibrate the spatial resolution of the∆-variance spectra.
Methods. The new∆-variance algorithm is based on an appropriate filtering of the data in Fourier space. It uses a supplementary
significance function by which each data point is weighted. This allows to distinguish the influence of variable noise from actual
small scale structure in the maps and it helps to deal with theboundary problem in non-periodic and/or irregularly bounded maps.
Applying the method to artificial maps with variable noise shows that we can considerably extend the dynamic range for a reliable
determination of the spectral index. We try several wavelets and test their spatial sensitivity using artificial maps with well known
structure sizes. Performing the convolution in Fourier space provides a major speed-up of the analysis.
Results. It turns out that different wavelets show different strengths with respect to the detection of characteristic structures and
spectral indices, i.e. different aspects of map structures. As a reasonable universal compromise for the optimum∆-variance filter we
propose the Mexican hat filter with a ratio between the diameters of the core and the annulus of 1.5. When the main focus lieson the
measurement of the spectral index, the French hat filter witha diameter ratio of about 2.3 is also well suitable. In paper II we exploit
the strength of the new method applying it to different astronomical data.
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1. Introduction

The interstellar medium is highly turbulent and turbulent mo-
tions determine the evolution of interstellar clouds. The turbulent
pressure is partially able to support them against gravitational
collapse (Klessen et al., 2000); turbulent shocks create and dis-
solve dense clumps in molecular clouds or even whole clouds
(Ballesteros-Paredes et al., 1999), the turbulent mass transport
modifies their chemical evolution (Décamp & Le Bourlot, 2002),
and the irregular turbulent structure determines their penetration
by UV radiation (Zielinsky et al., 2000). Thus, the complex dy-
namic structure on all scales resulting from turbulence hasim-
portant implications for many aspects of the astrophysics of the
interstellar matter.

Whereas many observations reveal the complexity of the
structure of the interstellar medium, most models of interstel-
lar clouds are still based on simple geometrical configurations.
A first step towards a better understanding of interstellar turbu-
lence and towards building more realistic models of interstellar
clouds is to identify model structures characterised by a limited
set of parameters which can be quantified by comparison with
observed cloud images. As many aspects of observed interstellar
clouds can be described by fractal properties (Combes, 2000), a

promising first approach to a parametric description is given by
exponents of scaling relations.

Motivated by the similarity of observed interstellar cloudim-
ages with the structure offractional Brownian motion (fBm, see
Sect. 2.2.1) fractals, which are characterised by the single num-
ber of the exponent of the power spectrum, Stutzki et al. (1998)
developed the∆-variance analysis as a tool to measure the struc-
tural scaling behaviour of observed images.

The∆-variance is a type of averaged wavelet transform that
measures the variance in a structuref (r) on a given scalel by fil-
tering it by a spherically symmetric down-up-down functionof
size l (Zielinsky & Stutzki 1999). The∆-variance analysis was
successfully applied to several observational data sets: Stutzki
et al. (1998) studied a CO map of the Outer Galaxy, Bensch
et al. (2001) investigated a series of nearby star-forming clouds
and a number of nested maps in different CO isotopes from the
Polaris Flare, Huber (2002) performed a systematic study ofa
large set of Galactic CO maps, and Sun et al. (2006) analysed
maps of the Perseus molecular cloud taken in various tracersand
including the analysis of velocity channels. The intensitymaps
of most clouds resulted in power-law∆-variance spectra with
exponents between 0.5 and 1.3. Mac Low & Ossenkopf (2000)
and Ossenkopf (2002) applied the∆-variance analysis to simula-
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tions of interstellar turbulence to compare the scaling behaviour
of the simulations with that of observed maps. It became how-
ever obvious that, aside from the spectral index, deviations from
a power law on particular scales should be studied as well be-
cause they provide significant information on the physical pro-
cesses on these scales. Thus the∆-variance analysis is to be op-
timised with respect to its capabilities of the corresponding scale
detection.

We propose in this paper a number of improvements to the
∆-variance optimising its sensitivity, its applicability to arbitrary
data sets, and the speed of its computation. The critical quan-
tity for the detection of pronounced scales in a structure isthe
shape of the wavelet filter function. The spherically symmetric
down-up-down function introduced by Stutzki et al. (1998) is an
obvious first choice. However, other wavelet shapes offer attrac-
tive alternatives.

For infinitely extended or for periodic structures the fastest
way of numerically calculating the∆-variance is given by a
Fourier transform of the image. However, observed maps typi-
cally have a finite size, often even cutting the observed clouds
at the map boundary, and Fourier-based methods run into the
well known problems of artificial structure being introduced
by these edge effects. Bensch et al. (2001) thus implemented
the∆-variance by a numerical treatment in the spatial domain.
Calculating a two-dimensional convolution in the spatial do-
main, however, results in a rather slow computation. An addi-
tional complication in observed data comes from the fact that
the signal-to-noise ratio is often not uniform across the mapped
area. A particular example of maps with strongly variable data
reliability are line centroid velocity maps. Here, the accuracy of
the centroid velocity always depends on the line intensity.Mac
Low & Ossenkopf (2000) have shown that the “traditional∆-
variance analysis may fail in this case. To relieve these problems
and concerns, we introduce a supplementary function into the
∆-variance analysis which is used to weigh the data points in
the spatial map according to their significance. This helps to de-
rive correct contributions of data points with a different signal-
to-noise ratio to the structure information on a particularspatial
scale and it allows to calculate the∆-variance in Fourier space
and thus to make use of the numerical advantages of the Fast
Fourier Transform algorithm.

After revising the fundamental properties of the∆-variance
and defining appropriate images to test the method in Sect. 2,
we introduce the concepts of the improved∆-variance including
a weighting function in Sect. 3 and optimise it with respect to
the wavelet filter function in Sect. 4, where we also verify its
performance by extensively testing it against the test structures.
In Sect. 5 we evaluate the effect of the significance function in
case of noisy data and Sect. 6 summarises our findings provid-
ing recommendations for the optimum method and wavelet to
use. In a second paper, we test the capability of the new method
applying it to simulations of interstellar turbulence and observed
molecular line maps exploiting the improved sensitivity toderive
general properties of interstellar turbulence.

2. The starting point

2.1. The ∆-variance

The ∆-variance analysis was comprehensively introduced by
Stutzki et al. (1998) and Bensch et al. (2001). Here, we only
repeat those equations which are essential to understand the ex-
tensions proposed in Sects. 3 and 4. Although the∆-variance can
be used in principle for an arbitrary number of dimensions were-

strict ourselves to the two-dimensional case, i.e. the analysis of
maps or images.

The∆-variance measures the amount of structure on a given
scalel in a mapf (r) by filtering the map with a spherically sym-
metric down-up-down function of sizel (French hat filter) and
computing the variance of the thus filtered map. It is given by

σ2
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Thus the filter consists of a positive core and a negative annulus
where the width of the annulus agrees with the diameter of the
core and the absolute values in each of them are inversely pro-
portional to their areas so that they both have an integral weight
of unity 1.

In a more general picture one can consider the filter function
as a wavelet composed of a negative and a positive part both
normalised to integral values of unity so that the overall filter has
a vanishing integral. Using an arbitrary diameter ratio between
the annulus and the corev we can write
⊙
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(r) (3)
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1/(v2 − 1) : l/2 < |r| ≤ v × l/2
0 : |r| ≤ l/2, |r| > v × l/2 (4)

The “traditional”∆-variance filter is reproduced for a diameter
ratio v = 3. We come back to discussing the choice ofv in Sect.
4.

Because the average distance between two points in the core
and the annulus of the filter is close to the lengthl (see Sect. 4.2),
the convolved map retains only variations on that scale whereas
variations on smaller and larger scales are suppressed. The∆-
variance as the variance of the convolved map thus measures
the amount of structural variation on the scalel. Plotting the∆-
variance as a function of the filter sizel then provides a spectrum
showing the relative amount of structure in a given map as a
function of the structure size.

The filter convolution and computation of the∆-variance can
be easily performed in Fourier space where they are reduced to a
simple multiplication and integration. This directly relates the∆-
variance to the power spectrum. IfP(|k|) is the radially averaged
power spectrum of the structuref (r), the∆-variance is given by
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where ˜⊙
l is the Fourier transform of the filter function with the

sizel andk denotes the spatial frequency or wavenumber. If the

1 Following the original definition by Stutzki et al. (1998) our ∆-
variance is larger by the constant factor of 2π than the definition used
by Bensch et al. (2001).
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power spectrum is given by a power law,P(|k|) ∝ |k|−ζ , the∆-
variance also follows a power lawσ2

∆
∝ lα with α = ζ − 2 within

the exponential range 0≤ ζ < 6 (Stutzki et al., 1998)2.
Thus, the∆-variance shows in principle only information

that is also contained in the power spectrum. The main advan-
tage of the∆-variance compared to the direct computation of
the power spectrum results from the smooth filter shape which
provides a very robust way for an angular average, insensitivity
to singular variations, and independence of gridding and finite
map size effects. It provides a good separation of different ef-
fects based on their characteristic scale, e.g. a clear distinction
between observational noise, structure blurring by the finite tele-
scope beam, and the internal scaling of the astrophysical source.
A detailed computation of the influence of finite map sizes and
telescope blurring was provided by Bensch et al. (2001).

However, when applying Eq. (5) to compute the∆-variance
it inherits a main drawback from the power spectrum – it im-
plicitly assumes a periodic continuation in the Fourier transform
although most astrophysical observations show no periodicity.
Sect. 3 thus deals with the implications of this assumption and
possible ways to overcome the resulting limitations.

2.2. Test data sets

In order to test how the∆-variance reproduces specific struc-
tural characteristics, we have constructed a series of artificial
data sets with known characteristics. They were either chosen
to reproduce the typical self-similar scaling behaviour measured
in many astrophysical observations (Combes, 2000) or to con-
tain pronounced artificial structures with a well known sizescale
which should be clearly detected in the∆-variance spectrum.
All test data sets were generated with an intrinsic resolution of
128× 128 pixels.

2.2.1. Periodic data

As a simple test bed where boundary effects play no role we
started with three types of periodic maps. The first type is pro-
vided by the fractal structures offractional Brownian motion
(fBm) as used by Bensch et al. (2001). fBm structures are de-
fined by a power law power spectrumP(|k|) ∝ |k|−ζ and random
phases in Fourier space. We created fBms by the Fourier trans-
form of a Hermitian field with amplitudes following the power
spectral indexζ and random phases. This procedure guarantees
real values and periodic maps. The structure analysis in terms
of the∆-variance should recover the power spectral index of the
fBm structure measuring a slopeα = ζ − 2 for this data set.

As periodic structure with a pronounced size scale we use
chess board like patterns where the number of fields on the board
is varied to change the size of the structures in the map relative to
the map size. Because the single chess fields are the only struc-
ture in this data set, their size should appear as prominent peak
in the∆-variance spectrum. This data set gives a sharp definition
of the characteristic length scale in the spatial domain butcon-
tains a large contribution of high frequency modes in the spa-
tial frequency domain due to the sharp edges of each field. Thus
we have added as a third type of test maps data fields provided
by a single Fourier component in both directions, i.e. the super-
position of two orthogonal sine waves with the same period3,

2 Please, note the difference to the often used energy spectrumP(k)
which is obtained by angular integration ofP(k) and has the spectral
indexζint = ζ − 1.

3 All maps are normalised to have a side length of 1 here.

Fig. 2. Example of a filled circle structure used to test the∆-variance
algorithm. The diameter of the circle is 0.25.

f (r) = cos(2πkx) + sin(2πky). In case of a wavenumberk = 1 it
can be regarded as an fBm withζ → ∞. The scale of the char-
acteristic variation should be clearly detected but in contrast to
the power spectrum we do not expect a single sharp maximum
in the∆-variance spectrum, because the Fourier transform of the
∆-variance filter is a Bessel function with pronounced side lobes.

The test data sets are all characterised by one free parame-
ter. For the fBms this is the spectral indexβ. For the chess board
pattern and the sine wave field it is the size of the characteristic
structure or the dominant wavenumber, respectively. Examples
of the test data sets are shown in Fig. 1. The fBm structure used
here is characterised by a spectral indexζ = 3.0 and a total vari-
ance of 1. The chess board example shows characteristic struc-
ture lengths between 0 and 0.24. Its average size, integrated over
all possible angles is 0.13. The sine wave field shown here is
characterised by a wavenumberk = 8 leading to a length of 0.09
for the maximum variation.

2.2.2. Non-periodic data

As real astrophysical data are hardly periodic, tests for the treat-
ment of boundary effects have to be performed on non-periodic
data. We use two types of data sets to study these effects.

First we select subsets of larger (periodic) fBm structuresin
the same way as introduced by Bensch et al. (2001). The subsets
cover one quarter in length, i.e. 1/16 in area, of the periodic fBm
field so that they should hardly retain any information aboutthe
large scale periodicity. As the subsets are randomly chosenthey
typically show sharp discontinuities at the edges. This seems to
exclude Fourier based methods for the analysis. In Sect. 3.1we
show, however, that the∆-variance analysis can be extended to
account for the discontinuities. Although it is not guaranteed that
a subset has the same spectral index as the whole fBm struc-
ture we will judge the value of the∆-variance analysis based on
the agreement of the determined spectral index with the origi-
nal fBm index because this approach reflects the typical obser-
vational strategy that high resolution observations are restricted
to small parts of a molecular cloud but they are used to derive
the general scaling behaviour of the cloud (see e.g. the IRAM
keyproject “Small-scale structure of pre-star-forming regions”,
Falgarone et al., 1998).

As second non-periodic structure we use a filled circle on an
otherwise empty map. The dominant scale is the size of the cir-
cle but as the∆-variance also measures the size of the “empty”
surroundings of the circle we expect considerable contributions
from this area to the spectrum at large lags. By adjusting thepo-
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Fig. 1. Examples of periodic data sets used to test the∆-variance algorithm. The fBm structure on the left is characterised by a spectral index
ζ = 3.0. The chess board has a characteristic structure size of about 0.13. The sine wave field on the right consists of a single Fourier component
at k = 8, the corresponding characteristic distance is 0.09.

sition of the circle with respect to the map boundaries we can
test the robustness of the edge treatment in the non-periodic al-
gorithm (in a periodic treatment the∆-variance is independent
of the position of the circle). The main free parameter of this
structure is the diameterd of the circle. The average circle scale
is given byπ/4d. We have not scanned the distance to the map
boundary as an additional free parameter, but performed only a
few tests for circles shifted by a integer multiples of the full di-
ameter relative to the centre. An example with a circle diameter
of 0.25 is shown in Fig. 2.

3. Weighting in Fourier space

3.1. Edge treatment

In the introduction of the∆-variance by Stutzki et al. (1998) we
made extensive use of the Fourier transformation, applyingEq.
(5) to convolve the astrophysical image with the∆-variance fil-
ter. With the Fourier transform implicitly assuming data period-
icity, we introduce, however, steps at the edges of a map if the in-
tensity does not show the same value on both sides. Because step
functions contain contributions at all spatial frequencies they
distort the∆-variance spectrum of the original structure. Bensch
et al. (2001) have shown that this effect can lead to considerable
errors for most astrophysical structures, where a periodiccontin-
uation is not possible.

The solution proposed there with the POINT and PIX al-
gorithms was a modification of the filter function when applied
close to the boundaries of the maps. The filter is truncated so
that it never stretches beyond the map edges. To guarantee that
the core and the annulus are still normalised to unity for thetrun-
cated filter, both parts are multiplied with correction factors de-
pending on the remaining filter size. This edge treatment has,
however, the disadvantage that different parts of a map are con-
volved with a different filter function so that the computation
of the∆-variance by Fourier transform via Eq. (5) is no longer
possible. In Bensch et al. (2001) we thus concluded that the∆-
variance should be rather computed in ordinary space. This ap-
proach is, however, slow compared to the computation in Fourier
space (several hours instead of a few seconds for maps contain-
ing more than about 100×100 pixels).

Here, we introduce a method that combines the improved
edge treatment with a computation in Fourier space. It is fast
and does not introduce artificial high-frequency contributions by
periodically wrapping discontinuities at the map edges. Toob-
tain this behaviour the method is set up to fulfil three conditions:

i) In the convolution a fixed filter function is to be used so that
the convolution can be computed by multiplication in Fourier
space.ii) To avoid effects of periodic edge-wrapping, the filter
contributions beyond the edges of the map have to be truncated.
iii) The normalisation of the filter discussed in Sect. 2.1 has to
be fulfilled at each point.

These apparently conflicting requirements can be met using
two simple ideas. The truncation of the filter is substitutedby
a zero-padding of data and the corresponding error in the filter
normalisation is corrected by weighting factors for the twofilter
contributions computed as a function of the coordinates in the
map.

Instead of truncating the filter when it extends beyond the
map edges we increase the map by zero-padding beyond the
edges up to the maximum filter size used. Then the extended
map can be convolved with a fixed filter function, providing only
zero contributions from outside the original map. In this way no
points from other periodically wrapped parts of the image may
then fall into the filter centred at any map position. The error in
the normalisation of the filter introduced by this substitution can
be computed from the convolution of the filter with an auxiliary
mapw(r), which has a value 1 inside the range of valid data and
0 in the zero-padded region. Because the∆-variance filter

⊙

l
has to fulfil the two normalisation conditions for the core and
the annulus (see Eq. 4)
∑

map

⊙

l,core

(r) =
∑

map

⊙

l,ann

(r) = 1 (6)

it has to be split into the positive and negative filter parts for the
computation of the normalisation errors. The sums extend over
the map of valid data. In total four convolution integrals need to
be evaluated to compute the∆-variance

Gl,core(r) = fpadded(r) ∗
⊙

l,core

(r′)

Gl,ann(r) = fpadded(r) ∗
⊙

l,ann

(r′)

Wl,core(r) = w(r) ∗
⊙

l,core

(r′)

Wl,ann(r) = w(r) ∗
⊙

l,ann

(r′) (7)

wherefpaddedstands for the map with the additional zero-padded
boundary region. As we use fixed filter functions and all involved
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functions vanish at the map edges, the convolution integrals can
be easily computed in Fourier space involving a fast Fourier
transform and a map multiplication. Although the map treated
in this way is larger than the original map by up to a factor three
in each direction, the Fourier transform using an algorithmlike
FFTW, which can work on arbitrary map sizes, is still consider-
ably faster than any convolution in ordinary space.

The full map convolved with the∆-variance filter truncated
at the map edges is then

Fl(r) =
Gl,core(r)
Wl,core(r)

−
Gl,ann(r)
Wl,ann(r)

(8)

It is only defined where the normalisation parametersWl,core and
Wl,ann are both different from zero.

In the computation of the∆-variance spectrum one has to
take into account the reduced significance of the data valuesin
the convolved maps produced by the fact that the applied filter
becomes more and more distorted relative to the optimum filter
when it is truncated. Using the normalisation parameters ofthe
truncated filters as a measure for their significance one can add a
significance weighting to the∆-variance analysis. We define the
∆-variance no longer as the variance of the convolved map but
weight the map points by the significance of the filter appliedto
compute the value at each point when computing the variance

σ2
∆(l) =

∑

map(Fl(r) − 〈Fl〉)2Wl,tot(r)
∑

mapWl,tot(r)
(9)

with

Wl,tot(r) = Wl,core(r)Wl,ann(r) (10)

The sum covers the whole (extended) convolved data field. The
definition of the significance function as the product of bothnor-
malisation factors is somewhat arbitrary but reproduces the de-
sired behaviour that changes in the positive and negative part
of the filter contribute equally. We have tested different powers
of the product but found the best agreement with the theoretical
behaviour in fBm data sets for an exponent of just unity.

Figure 3 demonstrates the effect of the edge treatment in the
example of an fBm structure which is periodic and for a non-
periodic sub-map from a larger fBm structure. We have used
three different ways to compute the∆-variance. First we as-
sume that the maps are periodic, neglecting all wrap-aroundef-
fects. For the periodic fBm this is, of course, the best assump-
tion which should reproduce exactly the properties of the power
spectrum used to generate the fBm. It is, however, rarely useful
when dealing with observed data as they are in general not peri-
odic. The second approach creates periodicity by mirroringthe
map along both axes as discussed by Stutzki et al. (1998) so that
a larger periodic map is produced and wrap-around effects can
be neglected. This approach, however, still results in discontinu-
ities in the first derivatives at the mirror axes. The third approach
uses the truncated filter as described above.

For the periodic fBm structure we find a very close agree-
ment of the∆-variance using the truncated filter with the theo-
retical value given by a slopeα = 1. The mirror continuation
results in an apparent reduction of the amount of large scale
structures in the map as they are partially assigned to larger
modes only present in the map extended by mirroring. Thus the
∆-variance slope is systematically underestimated. For thenon-
periodic structure, the assumption of periodicity resultsin strong
deviations from the power-law behaviour at small scales dueto
artificial high-frequency contributions from the edges. The mir-
roring shows again an underestimate of the power spectral index

Fig. 3. ∆-variance spectra computed with three different types of the
edge treatment for one periodic fBm structure (upper plot) and one
non-periodic subset from a fBm structure (lower plot). The fBms are
characterised by a spectral indexζ = 3.0 so that the∆-variance should
show a slopeα = 1.0. The measured slopes are indicated for each graph
in the plot.

at large scales, and only the use of the truncated filters results in
a good reproduction of the expected value for the slope.

In Fig. 3 we plot the results obtained just for one realiza-
tion of an fBm and for one sub-map from a large fBm. But
the exact shape of the computed∆-variance spectra can depend
on the distribution of the random phases within the fBm and it
will certainly depend on the selection of the sub-map withinan
fBm. Thus we have repeated the computation for a set of maps
in Fig. 4. Analogously to the statistical treatment by Bensch et
al. (2001) we vary the spectral index of the fBm structures and
chose randomly 30 different fBms or fBm sub-maps and deter-
mine their∆-variance spectra. We do not display all spectra,
but only the resulting distribution of slopesα. The Fig. shows
the average∆-variance slope and the spread of measured slopes
as a function of the spectral indexζ using the three different
edge treatments. All slopes are computed from a power fit cov-
ering the full data range plotted in Fig. 3. An optimum treatment
should reproduce the relationα = ζ − 2 indicated by the dotted
line in Fig. 4.

For the periodic fBms we find that the∆-variance spectra
from the truncated filter show about the same spectral indices as
the periodic treatment. The error bars in the periodic treatment
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Fig. 4. Average and standard deviation of the spectral indices of the∆-
variance spectra determined for a set of fBm structures (upper plot) and
for a set of sub-maps from fBm structures (lower plot) depending on the
spectral index of the fBms. All spectra are computed at the same power
spectral indicesζ = 2.0,2.4, 2.8,3.2, 3.6, and 4.0, but for a better visi-
bility, the standard deviations for the truncated filter andfor the mirror
continuation are displaced in the plot relative to these values. In case
of the periodic analysis of the fBm maps the error bars givingthe stan-
dard deviation of the statistical samples are practically zero. The dotted
line indicates the theoretical index for infinitely large fBm structures
α = ζ − 2.

are zero because the∆-variance spectrum is independent of the
exact phase distribution and thus identical for each map of the
sample. The standard deviation of the slopes in the truncated-
filter treatment is always about 0.08 here. The∆-variance spec-
trum underestimates the power spectral index by 0.03 atζ = 3.6
and by 0.08 atζ = 4 because the theoretical value is only reached
for infinitely large maps and the deviations grow when approach-
ing the asymptotic limit ofα = 4 (see Stutzki et al. 1998). The∆-
variance spectrum computed for the mirror-continuation ofthe
map always underestimates the spectral index by about 0.1.

In case of non-periodic fBm sub-structures the periodicity
assumption clearly fails. With this approach the measured slope
saturates at aboutα = 1.1. The use of the simple∆-variance
without filter truncation or mirror continuation provides wrong
results at power spectral indices above aboutζ = 2.9. This is
due to unavoidable discontinuities at the submap edges which
result in high-frequency contributions in the periodic treatment

Fig. 5. ∆-variance spectra for the filled-circle map where the circlehas
a diameter of 1/8 of the map size and is shifted by three diameters from
the centre of the map. The valuesl̂ indicate the lag of the measured peak
in the spectrum.

resulting in too shallow∆-variance spectra. In contrast, both the
mirror-continuationand the filter truncation provide a reasonable
measure for the actual map structure for all spectral indices. Both
methods are hardly affected by the discontinuities at the sub-map
edges. The mirror-continuation always underestimates thespec-
tral index by about 0.1 (except atζ = 4.0). The filter truncation
method reveals the correct spectral index forζ ≤ 3.0 and overes-
timates it by 0.05 atζ = 4.0. Regarding the typical error bars of
0.15, the systematic errors are, however, smaller than the scatter
between different fBm realizations with the same spectral index.

The same tests were repeated for map sizes ranging from 322

to 2562 pixels. In agreement with the studies by Bensch et al.
(2001) we found no systematic changes in the∆-variance slopes
exceeding 0.03 when changing the map size but an increase of
the error bars from 0.15 at map sizes of 1282 to 0.25 at a size
of 322. This larger uncertainty for smaller maps prevents any
significant conclusion from maps spanning less than≈ 30 pixels.

To demonstrate the influence of the edge treatment on the∆-
variance spectrum of an object with a pronounced size scale we
show in Fig. 5 the spectra computed for the map containing the
filled circle with a diameter of 1/8 of the map size. The peak of
the∆-variance spectra at 0.11 falls below the circle diameter of
0.125 but slightly above the average distance between two points
on the rim of the circle which is about 0.10. The somewhat larger
value is probably due to the contributions from the “empty” en-
vironment of the circle at large lags, also resulting in a decay
of the∆-variance spectra at large lags which is shallower than
the l−2-characteristics of uncorrelated structures.. These contri-
butions are dispersed over a relatively wide range of scalescor-
responding to the different distances to the map boundary in a
non-periodic treatment and to the distances to the next circle in
a periodic interpretation of this structure. As these variations are
mainly assigned to lags exceeding the map size in the periodic
treatment, the two curves for the periodic treatment show some-
what lower∆-variance values within the map than the filter trun-
cation method where the “empty” region is constrained by the
map size. Nevertheless, the total differences between∆-variance
spectra using the different edge treatment methods are relatively
small, so that either method seems to be justified for this case.
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3.2. Generalisation for data with varying reliability

The concept of weighting the∆-variance computation by dif-
ferent filter significance values can be generalised to deal with
data, where the data points in a map are as well characterisedby
a variable data reliability. This applies e.g. to maps wherenot all
points are observed with the same integration time so that they
show a different noise level. The inverse noise RMS is an indi-
cator for the significance of the data at different points. Many
other observational effects may lead to a similar variation of the
data reliability across the map. As long as the reliability can be
expressed as a significance numberwdata(r) between 0 and 1 all
such maps may be analysed within the concept outlined here.
The same equations as discussed in the filter truncation are to
be applied, but the auxiliary weight mapw(r) does no longer
consist of the values 1 inside and 0 outside of the original map.
It rather contains the significance valueswdata(r) ranging con-
tinuously from 0 to 1. The weighting factors in the∆-variance
computationWl,tot(r) then contain the integrated significance of
the filter-convolved data at each point.

With this generalised concept, the∆-variance analysis can
be applied to arbitrary two-dimensional data sets. They must be
projected onto some regular grid but they do not need to con-
tain regular boundaries as the corresponding “empty” grid points
only have to be marked with a zero significance. Varying noiseor
other changes in the data reliability can be expressed in thesig-
nificance functionwdata(r) which has to be constructed for each
data set. The only remaining requirement for the applicability
of the∆-variance is the sufficiently large spatial dynamic range
in the data. The criterion of at least 30 pixels in each direction
for reasonable error bars of the∆-variance spectrum discussed
above has to be extended in case of a low data significance. In
Sect. 5 we test the dynamic range over which the slope of fBms
can be reliably determined in case of noisy data. We find as a rule
of thumb that the minimum map size has to be increased by one
over the average data significance. In paper II we will apply the
∆-variance analysis to observed data with irregular boundaries
and a spatially varying significance.

4. Filter optimisation

4.1. The ∆-variance filter function

All examples given above were computed with the fixed filter
function of a French hat with a diameter ratio between the annu-
lus and the corev = 3. An obvious question is whether we can
improve on the∆-variance by using a different diameter ratio
and/or a different filter function. Due to its discontinuity in the
normal space the French hat has high frequency lobes in Fourier
space. Alternative approaches should use smoother functions in
ordinary space to obtain a better confinement in Fourier space.
As a smooth example we implemented a “Mexican hat” consist-
ing of two Gaussian functions:

⊙

l,core

(r) =
4
πl2

exp

(

r2

(l/2)2

)

(11)

⊙

l,ann

(r) =
4

πl2(v2 − 1)

[

exp

(

r2

(vl/2)2

)

− exp

(

r2

(l/2)2

)]

wherel is the size of the filter andv is the diameter ratio between
the annulus and the core of the filter as defined in Sect. 2.1. The
choice of the Gaussians guarantees that the filter gives the best
simultaneous confinement in ordinary space and in Fourier space
not showing any side lobes in either of them.

Fig. 6. Factor translating the filter core diameterl into the average dis-
tance measured by the filter as a function of the diameter ratio between
annulus and core of the filter. The average distance is computed by a
double integral over the core and the annulus of the filter.

As the opposite extreme we have also tested a filter measur-
ing the difference between one point in the map and all points
displaced by the sharp distancel relative to this pixel. The corre-
sponding∆-variance then measures basically the structure func-
tion of the map (see e.g. Miesch & Bally, 1994; Frick et al.,
2001). However, because those tests confirmed only the results
from Ossenkopf & Mac Low (2002) and Frick et al. (2001) that
the structure function is relatively insensitive to distortions of the
power spectrum on particular scales we excluded this filter from
the following studies.

Thus, we restrict ourselves here to the Mexican and the
French hat filter, where we vary in both cases the diameter ra-
tio v. In this way we test both the influence of the general filter
shape and of the ratio between core and annulus for each filter
on the computed∆-variance spectra.

4.2. The effective filter length

Taking into account the finite width of the core and the annulus
of both filter functions it is not obvious on which scale variations
are actually measured when using a filter with sizel. Here, we
compute this scale based on the geometrical properties of the
filter.

In the French hat filter we measure the average distance be-
tween a point in the core and a point in the annulus, providingthe
average scale on which a structure variation in the map should
be measured. For the Mexican hat filter, the computation of the
average distance includes the additional weighting of eachdis-
tance by the product of the positive and negative filter values.
This reflects the effect of the convolution of a map with this fil-
ter.

Figure 6 shows the resulting effective filter length relative
to the filter sizel as a function of the diameter ratiov for the
French and the Mexican hat. The length scale traced by the filters
is approximately a linear function of the diameter ratio between
the core and the annulus of the filter. Using a least-square fitwe
obtain the coefficients

leff
l
=

{

0.29v + 0.26 for the French hat
0.41v + 0.46 for the Mexican hat

(12)

The original∆-variance definition using a French hat with
v = 3 gives an effective length of 1.12 times the core diameter
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Fig. 7. ∆-variance spectra computed for the sine wave field with a
wavenumberk = 8. The filter truncation is applied in both cases for
the edge treatment. The peak scale is given asl̂, the logarithm of the
ratio between upper and lower lag where the∆-variance has dropped to
1/2 of the peak value is given asw.

l. Thus all scales computed previously with that filter shouldbe
shifted by the factor 1.12. This is only a small correction, not
changing the conclusions in any of the papers that have used
the∆-variance so far. In all plots shown in this paper, we use
the effective length as the lag of the∆-variance to allow a direct
comparison of the spectra independent of the filter used.

4.3. Filter evaluation

The optimum filter to be used in the∆-variance analysis has to
fulfil two criteria: the correct detection of pronounced size scales
in the maps and the exact determination of the scaling exponents
of the contained structures.

4.3.1. Scale detection

In the detection of pronounced scales the maximum of the∆-
variance spectrum should fall onto the correct lag corresponding
to the structure size. Moreover, the signature of the pronounced
scale in the∆-variance spectrum should be as sharp as possible
with a high contrast relative to other scales. As test imageswe
used the chess board field, the sine wave field, and the filled
circle field.

To illustrate the behaviour we plot the results for the sine
wave field. Fig. 7 shows the∆-variance spectra measured for a
field with k = 8 by the French and the Mexican hat filters. In both
cases the filter truncation method is used. The dominant scale is
detected as a peak in the∆-variance spectra, the peak position at
about 0.07 is somewhat smaller than the scale of the maximum
variation 1/(k

√
2) = 0.088. We found this small shift by about

20 % in all spectra. When using the effective filter length, the
peak position is very constant independent of the filter typeand
its diameter ratio.

At scales above the peak, the spectra obtained for the two fil-
ters deviate considerably. The French hat filter produces ripples
at large lags. From the positions of these ripples we find that
they reflect the side lobes of the Bessel function, representing
the Fourier transform of the French hat filter. This must not be
misinterpreted as a detection of large-scale structure in the map.
The side lobes detect the single Fourier amplitude fromk = 8

also at other effective filter sizes. This can be seen when chang-
ing the diameter ratiov in the filter. The peak remains at the same
position but the ripples in the∆-variance spectrum move corre-
sponding to the changes in the side lobes of the Bessel function.
Decreasingv relative to the value of 3.0 results in a steeper de-
cay above the peak and an increased number of ripples at large
lags. When reducing the diameter ratiov for the Mexican hat fil-
ter the decay above the peak also steepens and we obtain some
flattening at the largest lags in the map. In general we can either
achieve the sharp peak and the artificial structures at largelags
by the French hat filter or the broader peak without ripples by
means of the Mexican hat.

Because the field is periodic we can also apply the periodic
continuation method here. The equivalent figure shows the same
shape of the peak but more pronounced ripples with deeper min-
ima at large scales for the French hat filter and a somewhat
steeper decay for the Mexican hat. In this case the∆-variance
spectrum simply represents the Fourier transform of the filter
function because the structure contains only a single Fourier
component. For integer wavenumbers the periodic continuation
is identical to the mirror continuation so that we obtain thesame
spectra except for a small discretisation error from a single pixel
row which is treated different when mirroring or continuing peri-
odically. In general the edge truncation always produces a strong
and the mirror-continuation a weak smearing of the French-hat
∆-variance ripples at large lags relative to the periodic continua-
tion.

Corresponding results for the chess board map show almost
the same curves as the sine wave field at all lags above the peak
in the∆-variance spectra. But they show a flatter rising part at
smaller lags. The additional high-frequency contributions from
the edges of the chess fields increase the∆-variance at small
lags leading to a slope shallower than 1 there. The situationis
somewhat different for the circle map. The strong contributions
from the “empty” area at large lags visible in Fig. 5 suppress
differences from the different filter shapes in the spectrum. The
spectra obtained from both filter types look very similar.

To quantify the influence of the selection of the filter shape
and the diameter ratio on the detection of the dominant scale
length we measure the sharpness of the∆-variance peaks shown
in Fig. 7. We use the width of the peakw, given as the logarithm
of the ratio between upper and lower lag where the∆-variance
drops to 1/2 of the peak value, and its contrast relative to the
values at lags which are either small or large compared to the
peak position, i.e. relative to the first and the last point inthe∆-
variance spectrum. The behaviour of both parameters is shown
in Fig. 8 as a function of the filter diameter ratiov. The upper
plot shows the logarithmic width of the peak; the lower plot the
contrast of the peak relative to values at much larger and much
smaller lags. From the figure it is obvious that we cannot achieve
a minimum width and maximum contrasts simultaneously with
the same filter, so that some balance has to be found. The con-
trast with respect to smaller lags hardly varies with filter type and
diameter ratio but the contrast relative to large lags is drastically
changed. The French hat filter always produces a narrower peak
but the decrease of the peak width towards smallerv ratios is ac-
companied by a deterioration of the contrast with respect tolarge
lags. The Mexican hat filter shows a continuous improvement
of both quantities towards smaller ratios but gives a somewhat
broader peak. The slight increase of the contrast with respect to
the lower end of the spectrum towards smallerv values for both
filter types indicates that small diameter ratios result in asome-
what longer dynamic range below the dominant peak where the
∆-variance spectrum follows a power law.



V. Ossenkopf, M. Krips and J. Stutzki: Improving the∆-variance method 9

Fig. 8. Logarithmic FWHM of the∆-variance peak and contrast be-
tween the peak value and the values atl = 0.014 andl = 1/3 for the
sine wave map analysed in Fig. 7.

Comparing the different edge treatment approaches in cor-
responding plots shows that the mirror-continuation always pro-
duces about the same peak width and a somewhat better contrast
than the filter truncation method because the latter introduces
some flattening in the∆-variance spectra at the largest lags.

A very similar behaviour is also observed for the chess board
structure. In contrast, the filled-circle map with its large-scale
contributions shows a different behaviour demonstrated in Fig.
9. Only the contrast relative to the∆-variance values at small
lags shows the same small improvement for both filters towards
small diameter ratiosv as seen in Fig. 8. The other parameters
behave qualitatively different. For the Mexican hat we find an
optimum diameter ratiov ≈ 1.2 . . .1.4 where the peak width has
a minimum and the contrast with respect to large lags shows a
maximum. For the French hat the contrast relative to large lags
deteriorates over a much broader range at smallv ratios and we
observe an increased width of the peak there. Diameter ratios be-
low v ≈ 2.3 clearly reduce the sensitivity of the French hat filter
in this case. The increase of the peak width and the reduction
of the contrast can be understood as resulting from the stronger
pickup in the side lobes of the Fourier transformed French hat
filter which are closer to the main peak and stronger for smaller
v ratios.

The corresponding figure computed using the mirror-
continuation is very similar. The mirror-continuation always
provides a somewhat better contrast. The effect of contrast re-

Fig. 9. Logarithmic FWHM of the∆-variance peak and contrast be-
tween the peak value and the values atl = 0.014 andl = 1/3 for
the filled circle map discussed in Fig. 5. The widths measuredfor the
French hat atv < 1.25 are lower limits because the spectrum did not fall
below half of the peak value at the upper end of the spectrum.

duction at large lags by the filter truncation is always larger for
the French hat than for the Mexican hat and decreasing with
growing distance of the filled circle from the map boundaries.

The somewhat better contrast relative to small lags obtained
in all cases with the French hat filter indicates that this filter is al-
ways better suitable to detect a power law scaling behaviourover
a wide dynamic range below a dominant scale. For the detection
of the dominant scale the situation is less clear. In the sinewave
and chess board maps the Mexican hat provides a better contrast
but a larger peak width, for the circle map the Mexican hat at its
optimum diameter ratio is only slightly worse than the French
hat at its optimum ratio. Taking the general uncertainties from
the French hat ripples at large lags, however, it seems always
preferable to use the Mexican hat filter.

Comparing all results with respect to a clear indication of
particular structure scales we find that the Mexican hat filter with
a diameter ratiov ≤ 1.4 provides the best resolution. Diameter
ratiosv between 1.4 and 1.7 still produce a reasonably good sen-
sitivity. The French hat filter has its maximum sensitivity for di-
ameter ratiosv between 2.3 and 2.5. Although it produces∆-
variance peaks with a smaller width than the Mexican hat filter,
it produces in general ripple artifacts in the∆-variance spectrum
at large lags, lowering the overall contrast of the peak, so that
it should be deferred relative to the Mexican hat filter for the
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Fig. 10. ∆-variance spectra computed for a sub-map from an fBm struc-
ture with ζ = 3. Filter truncation is used for the edge treatment.α de-
notes the power-law slope fitted over the full range.

structure detection. For non-periodic structures coveredby reg-
ular maps with rectangular boundaries, the edge treatment by
mirror-continuation gives a somewhat better contrast thanthe
filter truncation method but this difference is relatively small.

4.3.2. Spectral index

To judge the value of the different filters with respect to the re-
trieval of the correct slope of an fBm structure or a sub-map from
an fBm structure we consider two quantities: the dynamic range
over which the∆-variance slope can be reliably determined and
the difference between the actually measured slope and the the-
oretical value.

The dynamic range of scales traceable with a filter of given
shape and diameter ratio is constrained by the maximum filter
size that can be used for the given map size. It is measured by
the maximum effective filter length for which the contributions
from those parts of the filter extending beyond a map boundary
produce no noticeable distortion of the∆-variance spectrum. In
case of the French hat filter we find that the diameter of the an-
nulus, i.e.l × v, may not exceed the size of the map for reliable
∆-variance values. For the Mexican hat, the parameterl× v must
not exceed 2/3 of the map size. From the relations between the
effective filter length and the filter sizel obtained in Sect. 4.2,
we see that the dynamic range of effective lags available for a
fit of the ∆-variance spectrum grows with decreasing diameter
ratio v. Smallerv values increase the total range of lags where
the∆-variance can be determined without being dominated by
edge effects. Moreover, Sect. 4.3.1 shows that smallerv ratios
also tend to extend the dynamic range of scales below a struc-
ture peak where the∆-variance follows a power law. Thus, small
ratios also seem to be favourable for a reliable slope detection.

To study the agreement of the measured∆-variance slopes
with the theoretically predicted index as a function of the filter
shape we compute the spectra for fBm structures and sub-maps
from fBm structures using the different filters. Fig. 10 shows the
spectra for a submap from an fBm withζ = 3.0 computed with
four different filters. First we notice the extension of the dy-
namic range for smallerv ratios. None of the spectra gives an
exact power law, but the French hat filter withv = 3.0 and both
Mexican hat filters provide a reasonably good reproduction of
the theoretical indexα = 1.0. For smallv ratios, the French hat

Fig. 11. Distribution of fitted∆-variance exponents for fBm maps (up-
per plot) and submaps from fBm structures (lower plot) withζ = 2.5,
3.0, and 3.5 as a function of the filter diameter ratio. The French hat
filter combined with the filter truncation method is used. Dotted lines
indicate the expected∆-variance exponents corresponding to the fBm
spectral indices. The error bars indicate the scatter obtained for struc-
tures with the same parameters in terms of the standard deviation.

tends to overestimate the true spectral index. The Mexican hat
results in somewhat too small exponents.

The corresponding spectra computed by the help of the
mirror-continuation method result in a spectral index which is
too low by about 0.1 compared to the theoretical value due to
the flattening of the spectra at large lags as seen in Fig. 3. The
Mexican hat and the French hat provide almost the same slopes.

When applying the analysis to the sine wave field withk = 1,
i.e. the equivalent of an fBm withζ = ∞, the longer dynamic
range traced by the French hat filter results in a measured spec-
tral index of the∆-variance which is closer to the theoretical
value of 4 than that obtained for the Mexican hat filter.

For a systematic investigation of the accuracy in the deter-
mination of the∆-variance slope as a function of the filter diam-
eter ratiov we analyse sets of 30 different fBm structures and
30 submaps from fBms using the two basic filter shapes vary-
ing their diameter ratiov and the fBm spectral indexζ. Fig. 11
demonstrates the result for the French hat filter applied with the
filter-truncation method. The range of spectral indices covers the
typical indices in observations of interstellar clouds (Elmegreen
& Scalo, 2004; Falgarone et al., 2004). The strongest devia-
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tions of the measured exponents from the expected values oc-
cur at small diameter ratiosv. Hence, ratios below 1.7 should
not be used. fBms and submaps behave different. For the fBms
the strongest deviations from the theoretical spectral index oc-
cur at small spectral indices; for the fBm submaps they occurat
large indices. This can be explained by selection effects. When
selecting submaps from an fBm, there is a significant scatter
in the properties of the actually selected structure. This is vis-
ible as larger error bars. For large spectral indices we often find
submaps which are dominated by some structure extending be-
yond the the submap boundaries. This tends to increase the mea-
sured slope.

Other combinations of filter shape and edge treatment show
somewhat different properties in details but the same general be-
haviour as Fig. 11. The mirror continuation method always un-
derestimates the spectral index. With both filter types it produces
at diameter ratiosv ≥ 2.0 slopes which are too low by 0.05–0.1.
At lower ratios the difference grows up to 0.2. The Mexican hat
filter shows always a slightly stronger deviation from the theo-
retical value than the French hat filter. However, when systemat-
ically correcting the slopes by a constant shift of∆α = 0.1 both
filter types provide reliable spectral indices forv ≥ 1.4. With the
filter truncation method both filters result in a good reproduction
of the spectral index at diameter ratiosv ≥ 2.5. An acceptable
sensitivity is still obtained forv ≥ 1.4 with the Mexican hat and
for v ≥ 2.0 with the French hat filter. In this intermediate range,
the measured average slope always deviates by less than 0.1 from
the theoretical value.

One has to keep in mind, however, that most of the deviations
discussed here fall below the size of the statistical error bars. For
the fBm submaps, which are most representative for astronom-
ical maps, they amount to∆α ≈ ±0.15 at a map size of 1282

and to∆α ≈ ±0.25 at a map size of 322 (see Sect. 3.1). Except
for very small diameter ratios,v ≤ 1.2, the use of the Mexican
hat always provides a somewhat smaller scattering of the mea-
sured exponents than the French hat filter. The edge treatment
has practically no influence on the size of these scatter bars.

Comparing the results from the scale detection and the repro-
duction of the spectral index we find that each problem asks for
a different optimum filter. Whereas the scale detection favours
the Mexican hat filter with a diameter ratiov <∼ 1.4, the slope
reproduction is equally well satisfied by both filter types for a
diameter ratiov >∼ 2.0. A reasonable compromise, providing a
good sensitivity to either issue is the use of a Mexican hat filter
with a diameter ratiov ≈ 1.5.

The edge treatment by mirror continuation is somewhat
favourable relative to the filter truncation in the slope detection,
but requires that the average spectral index is corrected bya con-
stant shift of∆α = 0.1. On the other hand the filter truncation
method can be applied as well for maps with irregular bound-
aries and shows a somewhat lower statistical scattering within
the studied samples. Thus, the filter truncation provides the most
reliable parameters in a single run for any data set without the
need for additional corrections.

5. The impact of a varying data reliability

To close the circle of testing all extensions proposed here we
combine the results on the optimum filter shape with the weight-
ing function and return to the analysis of data with a varyingre-
liability within the map. To test how the improved∆-variance
analysis recovers the properties of an original structure from
measurements influenced by a varying noise level, we create
maps where white noise with a spatial pattern of different noise

Fig. 12. ∆-variance spectra computed from an fBm structure with a
spectral indexζ = 3.1 and a superimposed circular pattern of white
noise. The solid line shows the∆-variance spectrum of the original fBm,
the dotted line the spectrum obtained from the direct analysis of the
noisy map, and the dashed line the spectrum computed with a reliabil-
ity weighting given by the inverse noise RMS.

amplitudes was added. We use combinations of the different spa-
tial structures discussed in Sect. 2.2 for the structure to be mea-
sured and for the spatial distribution of a noise level superim-
posed to the data.

Fig. 12 shows one example of a resulting∆-variance spec-
trum for an fBm structure with a spectral indexζ = 3.1 where
a noise pattern given by the filled circle described in Sect. 2.2.2
andd = 2/3 was added. The average signal-to-noise ratio, de-
fined as the ratio between the maximum in the fBm structure
and the noise RMS, is 1 and the variation between the noise lev-
els inside and outside of the circle is a factor 9. This example
may represent the situation of an observed map where the in-
ner part is covered by many integrations, so that it shows a high
signal-to-noise ratio, whereas the outer part is observed with few
integrations leading to a higher noise level.

The solid line represents the∆-variance spectrum of the orig-
inal fBm structure. The dotted line is the spectrum that is ob-
tained by the direct analysis of the noisy map without any re-
liability weighting. Because there is no correlation in thenoise
between neighbouring data points, the added noise contributes to
the∆-variance spectrum only at small scales with a decay pro-
portional to l−2 towards larger lags. Due to the relatively high
average noise level, the∆-variance spectrum is dominated by
the noise contribution up to lags of about 0.2. The original fBm
spectrum is matched only in a very narrow scale range at the
largest lags.

The dashed line shows the improvement that is obtained by
using the knowledge on the noise level in terms of a weighting
functionw(r) inversely proportional to the local noise RMS. Due
to the relative suppression of contributions from the outernoisy
parts of the map the original fBm spectrum is recovered over a
much broader range of scales. We find, however, a small distor-
tion at the data point for the largest lag. This can be interpreted as
the effect of a slight “cross talk” from the weighting function to
the measured structure. The obvious strong improvement of the
recovery of the original∆-variance spectrum from the noisy data
is thus achieved at the cost of a slightly reduced data reliability
on the characteristic scales of the weighting function.

To study this effect more systematically we perform a num-
ber of parameter studies combining the different structures with
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Fig. 13. Scale range (ratio between maximum and minimum lag) within
which the derived noisy spectrum agrees within 10 % with the origi-
nal spectrum when the∆-variance spectrum is computed either with or
without a weighting function given by the inverse noise RMS.The orig-
inal structure is given by an fBm structure withζ = 3.0 and the noise
pattern by a chess board structure with four fields and a signal-to-noise
ratio of 5.0. On the abscissa we have changed the amplitude ofthe noise
level variation between the different fields of the chess board. The error
bars show the absolute minimum and maximum of the matching range
size found in a sample of 30 different fBms.

varying noise patterns, varying noise levels and varying noise
dynamic ranges. In the resulting∆-variance spectra we com-
puted the scale range over which the spectrum agrees with the
spectrum of the original structure within 10 %. The length of
this range, which allows a reliable derivation of the true scaling
behaviour, is a measure for the quality of the structure recovery.
To test the influence of selection effects we repeat each computa-
tion for a number of different initialisers for fBm structures and
for the noise fields, so that we arrive at 30–80 computations for
each parameter set providing a statistically significant sample.

The result of such a parameter scan is demonstrated in Fig.
13. In this example, the original structure is an fBm structure
with ζ = 3.0 and the superimposed noise amplitude follows a
chess board structure (see Sect. 2.2.1) with four fields, i.e. a field
length of half the map size. By changing the noise amplitude
ratio between the different fields while preserving the average
noise amplitude this plot is suited to study the actual effect of the
noise variation and the corresponding correction by a weighting
function in the∆-variance analysis.

In the analysis without weighting function, the dynamic
scale range within which the true spectrum can be fitted cov-
ers always about a factor 9, independent from the variation of
the noise level between the four fields. The noise correctionby
the weighting function can extend this range up to an average
factor of 25 in case of high variation levels. The error bars,indi-
cating the minimum and maximum ranges detected in the sam-
ple, show, however, that there is a considerable spread in the
range length over which the fit is reliable. The matching range
is always increased compared to the∆-variance analysis without
weighting function, but the actual magnitude of this increase can
considerably vary4. The example represents, however, a kind of
worst case scenario, because the noise variation in this pattern
virtually cuts out two large pieces from the map which may con-

4 The upper limit at about 30 corresponds to the whole spectrum.
Thus a further extension is not possible here.

tain main elements of the original structure. This is not expected
for real observations where the astronomer would hardly select a
field avoiding the main object of interest. For a chess board noise
with half the cell size, the error bars for the distribution of fitting
ranges are reduced already by almost a factor two. The example
is nevertheless instructive because it shows all the effects that
we encounter in the parameter study with different intensity and
noise structures. We find always the increase of the fitting range
but also the larger spread of the ranges within the sample studied.
When using fBms for the noise distribution with spectral indices
ζ around 4 or higher, we find as well a large spread of the factors
by which the length of the fitting range is increased in the new
∆-variance analysis. For all smaller indices the error bars shrink
in the same way as for the chess board with smaller cell size. In
general, we find a more reliable extension of the matching range
by the use of the weighting function as more fragmented the ac-
tual noise map is or as better the noise map is adapted to the the
dominant parts of the actual structure. The latter case is usually
given in astronomical observations.

We conclude that the introduction of a weighting function
given by the inverse noise of the data into the∆-variance analysis
always extends the spatial range over which the original scaling
behaviour can be recovered. The amount of this improvement
depends on the strength of the noise variation across the map
and the coverage of the observed structure by regions of low
noise. The range within which the measured∆-variance spec-
trum agrees with the original spectrum can be extended by more
than a factor three for high levels of noise variations and a good
coverage of the main features of a structure by low-noise ob-
servations. Future studies should show whether the information
from the∆-variance spectrum of the map of weights can be used
to further improve the outcome.

6. Conclusions

The∆-variance analysis was previously established as a general
tool to study the scaling behaviour of interstellar cloud structure.
The main advantage of the∆-variance compared to the compu-
tation of the power spectrum is its robustness with respect to
angular variations, singular distortions, gridding and finite map
size effects.

We propose two essential improvements of the∆-variance
analysis. The first one is the use of a weighting function for each
pixel in the map. This weighting function allows to study data
sets with a variable data reliability across the map and to simul-
taneously solve boundary problems even for maps with irregular
boundaries.

Maps with a variable data reliability are eventually obtained
in most observations, either due to a local or a temporal variabil-
ity of the detector sensitivity or the atmosphere or due to differ-
ent integration times spent for different points of a map. The or-
dinary∆-variance analysis as well as the power spectrum fail to
take the resulting effects into account. By applying the improved
∆-variance analysis to noisy data we find that only the use of a
significance function to weight the different data points allows
to distinguish the influence of variable noise from actual small
scale structure in the maps. In case of statistical uncertainties or
sensitivity changes the weighting function is best provided by
the inverse RMS in the data points.

In the treatment of map boundaries the use of a weight-
ing function allows to use computational methods like the Fast
Fourier Transform to compute the∆-variance spectrum by ex-
tending a measured map by points with zero significance. This
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is mathematically equivalent to the truncation of the filteras pro-
posed by Bensch et al. (2001) but has the advantages of the fast
computation and the definition of a smooth filter shape in Fourier
space not influenced by gridding effects in ordinary space. The
virtual filter truncation is the only approach to analyse maps
which are only sparsely filled by significant values. For rectan-
gular maps a periodic continuation by mirroring can be used as
well to solve the boundary problem. Mirror-continuation will al-
ways underestimate the spectral index by about 0.1. This could
be easily taken into account. However, the mirror-continuation
is less flexible than the filter truncation which works on irregular
maps as well although resulting in slightly larger statistical error
bars.

The second improvement of the∆-variance analysis is its op-
timisation with respect to the shape of the wavelet used to filter
the observed maps. We have computed the effective filter length
as a function of the shape and compared the peak positions of
resulting∆-variance spectra with characteristic structure sizes in
the test data sets. We find that the peak positions always falls 10-
20 % below the maximum structure size. Taking this systematic
offset into account we can calibrate the spatial resolution of the
∆-variance analysis to about±5 %. Unfortunately, it is not possi-
ble to define a single optimum wavelet for all purposes because
different wavelets show different qualities in the detection of the
characteristic structure scaling behaviour. The best choice for an
exact measurement of the power spectral slope are wavelets with
a large ratio between the diameter of the annulus and the core
of the filter. Here, the French hat and the Mexican hat filter are
equally well suited. For the detection of pronounced size scales
the Mexican hat filter and small diameter ratios are preferred.
A good compromise between the different requirements is the
Mexican hat filter with a diameter ratio of 1.5 providing always
a∆-variance spectrum with approximately the correct slope and
without missing any special spectral feature.

We provide an easy-to-use IDL widget program implement-
ing the∆-variance analysis as described here implementing the
different filters and edge-treatment methods for the analysis of
arbitrary maps in FITS format5.
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