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ABSTRACT

Context. TheA-variance analysis, introduced as a wavelet-based mefasuhe statistical scaling of structures in astronomicaps)
has been proven to be aflieient and accurate method to characterise the power speofrimterstellar turbulence. It has been applied
to observed molecular cloud maps and corresponding sietutaeps generated from turbulent cloud models. The impleatien
which is presently in use, however, has several shortcanihgoes not take into account thefdrent degree of uncertainty of map
values for diferent points in the map, its computation by convolution iatisp coordinates is very time-consuming, and the selectio
of the wavelet is somewhat arbitrary and does not providexaoteralue for the scales traced.

Aims. We propose and test an improvadrariance algorithm for two-dimensional data sets whidpiglicable to maps with variable
error bars, which can be quickly computed in Fourier space vee calibrate the spatial resolution of thevariance spectra.

Methods. The newA-variance algorithm is based on an appropriate filteringhefdata in Fourier space. It uses a supplementary
significance function by which each data point is weightelisTllows to distinguish the influence of variable noiserfractual
small scale structure in the maps and it helps to deal wittbthendary problem in non-periodic giod irregularly bounded maps.
Applying the method to artificial maps with variable nois@wh that we can considerably extend the dynamic range fdiable
determination of the spectral index. We try several wasgedetd test their spatial sensitivity using artificial mapghwiell known
structure sizes. Performing the convolution in Fourieceparovides a major speed-up of the analysis.

Results. It turns out that dierent wavelets show fiierent strengths with respect to the detection of charatiestructures and
spectral indices, i.e. fierent aspects of map structures. As a reasonable universgromise for the optimum-variance filter we
propose the Mexican hat filter with a ratio between the diansatf the core and the annulus of 1.5. When the main focusttiglse
measurement of the spectral index, the French hat filteravittameter ratio of about 2.3 is also well suitable. In paper exploit
the strength of the new method applying it téfeient astronomical data.

Key words. Methods: data analysis — Methods: statistical — ISM: cloutiSM: structure

1. Introduction promising first approach to a parametric description ismgyive
exponents of scaling relations.

The interstellar medium is highly turbulent and turbulerd-m  Mmotivated by the similarity of observed interstellar cldoe
tions determine the evolution of interstellar clouds. Turbtilent ages with the structure éfactional Brownian motion (fBm, see
pressure is partially able to support them against grawitat Sect. 2.2.1) fractals, which are characterised by the singin-
collapse (Klessen et al., 2000); turbulent shocks creadede® per of the exponent of the power spectrum, Stutzki et al. §199
solve dense clumps in molecular clouds or even whole clougsyeloped tha-variance analysis as a tool to measure the struc-
(Ballesteros-Paredes et al., 1999), the turbulent massgoat tyral scaling behaviour of observed images.

modifies their chemical evolution (Décamp & Le Bourlot, 200
and the irregular turbulent structure determines theiepation
by UV radiation (Zielinsky et al., 2000). Thus, the complgx d
namic structure on all scales resulting from turbulenceiitmas
portant implications for many aspects of the astrophydithe
interstellar matter.

The A-variance is a type of averaged wavelet transform that
measures the variance in a structfi(g) on a given scaleby fil-
tering it by a spherically symmetric down-up-down functiain
sizel (Zielinsky & Stutzki 1999). The\-variance analysis was
successfully applied to several observational data sétszks
et al. (1998) studied a CO map of the Outer Galaxy, Bensch

Whereas many observations reveal the complexity of tle¢ al. (2001) investigated a series of nearby star-formiogds
structure of the interstellar medium, most models of ined+s and a number of nested maps itfitdient CO isotopes from the
lar clouds are still based on simple geometrical configansti Polaris Flare, Huber (2002) performed a systematic study of
A first step towards a better understanding of interstelldsit- large set of Galactic CO maps, and Sun et al. (2006) analysed
lence and towards building more realistic models of intdl@t maps of the Perseus molecular cloud taken in various tracers
clouds is to identify model structures characterised bynitéid including the analysis of velocity channels. The intensilgps
set of parameters which can be quantified by comparison widh most clouds resulted in power-laivariance spectra with
observed cloud images. As many aspects of observed iflarsteexponents between 0.5 and 1.3. Mac Low & Ossenkopf (2000)
clouds can be described by fractal properties (Combes,)2800and Ossenkopf (2002) applied thevariance analysis to simula-
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tions of interstellar turbulence to compare the scalingavetur  strict ourselves to the two-dimensional case, i.e. theyaisabf

of the simulations with that of observed maps. It became howwaps or images.

ever obvious that, aside from the spectral index, deviatfoom TheA-variance measures the amount of structure on a given
a power law on particular scales should be studied as well Bealel in a mapf (r) by filtering the map with a spherically sym-
cause they provide significant information on the physical p metric down-up-down function of size(French hat filter) and
cesses on these scales. ThusAheariance analysis is to be op-computing the variance of the thus filtered map. It is given by
timised with respect to its capabilities of the correspagdicale

detection. 2 2

We propose in this paper a number of improvements to tﬁré(l) B <(f(r) * Ql(r)) >r @
A-variance optimising its sensitivity, its applicability &rbitrary .
data sets, and the speed of its computation. The criticati-qu¥/nere, the average is taken over the area of the map, the sym-
tity for the detection of pronounced scales in a structuriags POl * stands for a convolution, ar@), describes the French hat

shape of the wavelet filter function. The spherically synminet function defined as

down-up-down function introduced by Stutzki et al. (1998an 1 I <1/2
obvious first choice. However, other wavelet sha @ttrac- 4 Ny
tive alternatives. e Ql(r) 7l 18 tlj2<rl <3l/2 2)

e - 0 > 3l/2
For infinitely extended or for periodic structures the faste Il /
way of numerically calculating thé-variance is given by a 1y the filter consists of a positive core and a negativelasnu

Fourier transform of the image. However, observed maps tyRihere the width of the annulus agrees with the diameter of the
cally have a finite size, often even cutting the observeddsoucqre and the absolute values in each of them are inversely pro

at the map boundary, and Fourier-based methods run into figtional to their areas so that they both have an integrighte
well known problems of artificial structure being mtroddceofunityl_

by these edgefiects. Bensch et al. (2001) thus implemented

the A-variance by a numerical treatment in the spatial domaig,

Calculating a two-dimensional convolution in the spatiat d

main, however, results in a rather slow computation. An ad

tional complication in observed data comes from the fact thg,

the signal-to-noise ratio is often not uniform across th@peal

area. A particular example of maps with strongly variabltada@ (1)

reliability are line centroid velocity maps. Here, the aeay of !

the centroid velocity always depends on the line inteniiigc _

Low & Ossenkopf (2000) have shown that the “traditional @(r) - 4 { 1 : Irf<1/2

variance analysis may fail in this case. To relieve thesblpros |77, 2 0 tirf>1/2

and concerns, we introduce a supplementary function irgo th

A-variance analysis which is used to weigh the data points @(r) 5

the spatial map according to their significance. This helmet |37, m

rive correct contributions of data points with dfdrent signal-

to-noise ratio to the structure information on a particsigatial The “traditional” A-variance filter is reproduced for a diameter

scale and it allows to calculate thievariance in Fourier spaceratiov = 3. We come back to discussing the choicer of Sect.

and thus to make use of the numerical advantages of the Fast

Fourier Transform algorithm. Because the average distance between two points in the core
After revising the fundamental properties of thevariance and the annulus of the filter is close to the lengiee Sect. 4.2),

and defining appropriate images to test the method in Secttf# convolved map retains only variations on that scale edeer

we introduce the concepts of the improvedariance including variations on smaller and larger scales are suppressedA-The

a weighting function in Sect. 3 and optimise it with respect tvariance as the variance of the convolved map thus measures

the wavelet filter function in Sect. 4, where we also verify itthe amount of structural variation on the schlPlotting theA-

performance by extensively testing it against the testaires. variance as a function of the filter sikehen provides a spectrum

In Sect. 5 we evaluate thedfect of the significance function in showing the relative amount of structure in a given map as a

case of noisy data and Sect. 6 summarises our findings provighction of the structure size.

ing recommendations for the optimum method and wavelet to The filter convolution and computation of thevariance can

use. In a second paper, we test the capability of the new rdettoe easily performed in Fourier space where they are redoced t

applying it to simulations of interstellar turbulence aferved simple multiplication and integration. This directly reda theA-

molecular line maps exploiting the improved sensitivitgasive variance to the power spectrumBAf(k|) is the radially averaged

general properties of interstellar turbulence. power spectrum of the structufér), theA-variance is given by

In a more general picture one can consider the filter function

a wavelet composed of a negative and a positive part both

(ﬂormalised to integral values of unity so that the overa#ffihas
vanishing integral. Using an arbitrary diameter rationsen

e annulus and the covave can write

GOn-Gm (3)

I,core l,ann

4 [1/(v?=1) :1/2<rl<vx]1/2 @
71210 S <120 > vx1/2

o0 ~ 2
2. The starting point oi(l) = 2r fo P(IkI) ’@l(lkl)' [kl dik| (5)

2.1. The A-variance ~ ) ) ) )
where(), is the Fourier transform of the filter function with the

The A-variance analysis was comprehensively introduced Ryze| andk denotes the spatial frequency or wavenumber. If the
Stutzki et al. (1998) and Bensch et al. (2001). Here, we only

repeat those equations which are essential to understarekih 1 Following the original definition by Stutzki et al. (1998) ron-

tensions proposed in Sects. 3 and 4. Althoughthvariance can variance is larger by the constant factor afthan the definition used
be used in principle for an arbitrary number of dimensionseve by Bensch et al. (2001).
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power spectrum is given by a power laR(k|) o« |k|=¢, the A-
variance also follows a power Iazwz oc |* with @ = ¢ — 2 within
the exponential range 9 ¢ < 6 (Stutzki et al., 1998)

Thus, theA-variance shows in principle only information I
that is also contained in the power spectrum. The main advan- o6l 06
tage of theA-variance compared to the direct computation of I
the power spectrum results from the smooth filter shape which
provides a very robust way for an angular average, insgitgiti
to singular variations, and independence of gridding anitefin

0.4 0.4

map size #ects. It provides a good separation offéient ef- o2 02
fects based on their characteristic scale, e.g. a cleandisin ,

between observational noise, structure blurring by thésfieile- 00l
scope beam, and the internal scaling of the astrophysicatso oo o2 o4 06 o8

A detailed computation of the influence of finite map sizes al
telescope blurring was provided by Bensch et al. (2001).

However, when applying Eq. (5) to compute the/ariance
it inherits a main drawback from the power spectrum — it im-
plicitly assumes a periodic continuation in the Fouriensfarm
although most astrophysical observations show no peitgdic
Sect. 3 thus deals with the implications of this assumptimh a
possible ways to overcome the resulting limitations.

qgg. 2. Example of a filled circle structure used to test theariance
algorithm. The diameter of the circle is 0.25.

f(r) = cos(Zrkx) + sin(2rky). In case of a wavenumbkr= 1 it

can be regarded as an fBm with— . The scale of the char-
acteristic variation should be clearly detected but in sttto

the power spectrum we do not expect a single sharp maximum
in the A-variance spectrum, because the Fourier transform of the
2.2. Test data sets A-variance filter is a Bessel function with pronounced sidek

In order to test how theé\-variance reproduces specific struc; The test data sets are all characterised by one free parame-
L P P - . ter. For the fBms this is the spectral ing&x~or the chess board
tural characteristics, we have constructed a series dfcati

data sets with known characteristics. They were eitherertno%attem and the sine wave field it is the size of the charatiteri

to reproduce the typical self-similar scaling behaviouaswged tructure or the dominant wavenumber, respectively. Exesnp
torep yp . 9 of the test data sets are shown in Fig. 1. The fBm structure use
in many astrophysical observations (Combes, 2000) or te ¢

tain pronounced artificial structures with a well known sizale re is characterised by a spectral index3.0 and a total vari-
1P . ; ance of 1. The chess board example shows characteristic stru
which should be clearly detected in tldevariance spectrum.

. S . ture lengths between 0 and 0.24. Its average size, intebpaer
gs;[isizdgﬁxseis were generated with an intrinsic resmhat all possible angles is 0.13. The sine wave field shown here is
: characterised by a wavenumlbet 8 leading to a length of 0.09
for the maximum variation.
2.2.1. Periodic data

As a simple test bed where boundarfjeets play no role we 2.2.2. Non-periodic data

started with three types of periodic maps. The first type & pr . -
vided by the fractal structures dfactional Brownian motion As real astrophysical data are hardly periodic, tests feirtiat-

(fBm) as used by Bensch et al. (2001). fBm structures are ent of boundaryfects have to be performed on non-periodic

- 2 ta. We use two types of data sets to study thésets.

fined by a power law power spectrudfk|) « |k|=¢ and random ata. ) )
phasesyin Iriourier sparl)ce. Wepcreated fB)ms by the Fouriertraps TSt We select subsets of larger (periodic) fBm structumes
form of a Hermitian field with amplitudes following the powert€ Same way as introduced by Bensch et al. (2001). The subset

spectral index and random phases. This procedure guarant er one quarter in length, i.€/16 In area, .Of the pe_r|od|c fBm
real values and periodic maps. The structure analysis inger!'€1d SO that they should hardly retain any information alibat

of the A-variance should recover the power spectral index of ti9€ Scale periodicity. As the subsets are randomly chiresn
fBm structure measuring a slope= ¢ — 2 for this data set. typically ShOV_V sharp discontinuities at the edges' Thisnse®

As periodic structure with a pronounced size scale we ugédu‘jﬁ Fourler&ast(?[ﬂﬁmethods for thle @”a'ys'% In Stectgledlt
chess board like patterns where the number of fields on thelbog 'O, NOWEVET, that th&-varianceé analysis can be extended to
is varied to change the size of the structures in the magivelat account for the discontinuities. Although it is not guaesett that
the map size. Because the single chess fields are the onty stthUbset has the same spectral index as the whole fBm struc-
ture in this data set, their size should appear as promireak p ure we will judge the value of_thﬁ-varlance f’:\naly5|s_ baseq on
in the A-variance spectrum. This data set gives a sharp definitig}? agreement of the det(_ermlned spectral index W'th. the-orig
of the characteristic length scale in the spatial domaircbut Nal fBM index because this approach reflects the typicalrebse
tains a large contribution of high frequency modes in the sp\éat'onal strategy that high resolution observations astricted .
tial frequency domain due to the sharp edges of each fields T small parts of a molecular cloud but they are used to derive
we have added as a third type of test maps data fields provi a8 general scaling behaviour of the cloud (see e.g. the IRAM

by a single Fourier component in both directions, i.e. theesu eyproject “Small-scale structure of pre-star-formingieas”,
y g P hee d:algarone etal., 1998).

position of two orthogonal sine waves with the same pékio S ) .
As second non-periodic structure we use a filled circle on an

2 please, note the fierence to the often used energy spectR@) Otherwise empty map. The dominant scale is the size of the cir
which is obtained by angular integration Bk) and has the spectral cle but as the\-variance also measures the size of the “empty”
indexdine = ¢ — 1. surroundings of the circle we expect considerable cortiohs

3 All maps are normalised to have a side length of 1 here. from this area to the spectrum at large lags. By adjustingthe




4 V. Ossenkopf, M. Krips and J. Stutzki: Improving thevariance method

Fig. 1. Examples of periodic data sets used to testAhariance algorithm. The fBm structure on the left is chtgdsed by a spectral index
¢ = 3.0. The chess board has a characteristic structure size of 3. The sine wave field on the right consists of a single&riEocomponent
atk = 8, the corresponding characteristic distance@®90

sition of the circle with respect to the map boundaries we ca@nln the convolution a fixed filter function is to be used so that
test the robustness of the edge treatment in the non-perddi the convolution can be computed by multiplication in Fourie
gorithm (in a periodic treatment th&e-variance is independentspaceii) To avoid dfects of periodic edge-wrapping, the filter
of the position of the circle). The main free parameter o$ thicontributions beyond the edges of the map have to be truthcate
structure is the diameterof the circle. The average circle scaldii) The normalisation of the filter discussed in Sect. 2.1 has to
is given byr/4d. We have not scanned the distance to the méye fulfilled at each point.

boundary as an additional free parameter, but performgdanl  These apparently conflicting requirements can be met using
few tests for circles shifted by a integer multiples of thi dir two simple ideas. The truncation of the filter is substitubgd
ameter relative to the centre. An example with a circle digme a zero-padding of data and the corresponding error in the filt

of 0.25 is shown in Fig. 2. normalisation is corrected by weighting factors for the filter
contributions computed as a function of the coordinatefién t
S . map.
3. Weighting in Fourier space Instead of truncating the filter when it extends beyond the
3.1. Edge treatment map edges we increase the map by zero-padding beyond the

) _ ) _ edges up to the maximum filter size used. Then the extended
In the introduction of the\-variance by Stutzki et al. (1998) wemap can be convolved with a fixed filter function, providingyon
made extensive use of the Fourier transformation, appliing zero contributions from outside the original map. In this/wa
(5) to convolve the astrophysical image with thevariance fil-  points from other periodically wrapped parts of the imageyma
ter. With the Fourier transform implicitly assuming dataipé-  then fall into the filter centred at any map position. The eimo
icity, we introduce, however, steps at the edges of amapifth  the normalisation of the filter introduced by this substitntcan
tensity does not show the same value on both sides. Becayse 5b computed from the convolution of the filter with an auxilia
functions contain contributions at all spatial frequescieey mapw(r), which has a value 1 inside the range of valid data and
distort theA-variance spectrum of the original structure. Bensal in the zero-padded region. Because Meariance fi|ter®|

etal. (2001) have shown that thiffect can lead to considerablehas to fulfil the two normalisation conditions for the coredan
errors for most astrophysical structures, where a perimmiitin-  the annulus (see Eq. 4)

uation is not possible.

The solution proposed there with the POINT and PIX aE @(r) - Z @(r) -1 (6)
gorithms was a modification of the filter function when apglie map| sore map |.ann
close to the boundaries of the maps. The filter is truncated so
that it never stretches beyond the map edges. To guarartee ifthas to be split into the positive and negative filter patsthe
the core and the annulus are still normalised to unity fotiie-  computation of the normalisation errors. The sums extered ov
cated filter, both parts are multiplied with correction tastde- the map of valid data. In total four convolution integraledéo
pending on the remaining filter size. This edge treatment h&¢ evaluated to compute thevariance
however, the disadvantage thaffdient parts of a map are con-
volved with a diferent filter function so that the computatiorGl.core(r) = fpaddedr) * @(f')
of the A-variance by Fourier transform via Eqg. (5) is no longer l.core
pos_sible. In Bensch et al. (2001) we @hus c_oncluded thamhe Glandl) = fpaddedT) * Q(r')
variance should be rather computed in ordinary space. This a vt
proachis, however, slow compared to the computation iniEour |

w(r) « ()(r")

space (several hours instead of a few seconds for maps wont¥¥i,core(r)

ing more than about 16A.00 pixels). I.core
Here, we introduce a method that combines the improvegy — w(r r 7
edge treatment with a computation in Fourier space. It it fas Lanr(7) )+ Q( ) ™

and does not introduce artificial high-frequency contiig by hann

periodically wrapping discontinuities at the map edgesolfe wherefpaqdesstands for the map with the additional zero-padded
tain this behaviour the method is set up to fulfil three cand&: boundary region. As we use fixed filter functions and all ineal
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0.01 " " T T T
¢ periodicity used, a=0.986
x  mirrored, a=0.879

A truncated filter, ®=0.972

functions vanish at the map edges, the convolution integh

be easily computed in Fourier space involving a fast Fourier

transform and a map multiplication. Although the map trdate

in this way is larger than the original map by up to a factoeéhr L

in each direction, the Fourier transform using an algoritixe

FFTW, which can work on arbitrary map sizes, is still conside

ably faster than any convolution in ordinary space. .
The full map convolved with thé-variance filter truncated = '°

at the map edges is then

Gi core(I) _ Giand(r)
Wicore(r)  Wiann(r)

Itis only defined where the normalisation parameWs,. and
W _ann @re both diferent from zero. 10 ‘ L ‘ S
In the computation of thé\-variance spectrum one has to 0.01 o1 1
take into account the reduced significance of the data vatues lag
the convolved maps produced by the fact that the applied filte | . : —_—
becomes more and more distorted relative to the optimumn filte ¢ periodicity assumed, a=0.861
when it is truncated. Using the normalisation parameteth®f
truncated filters as a measure for their significance onedda a
significance weighting to th&-variance analysis. We define the -
A-variance no longer as the variance of the convolved map but
weight the map points by the significance of the filter appleed
compute the value at each point when computing the variance 103
(o)

Zmap(Fl (r) —(F ))ZVVI,tot(r)

Fi(r) =

(8) L

x  mirrored, a=0.894
A truncated filter, a=1.01

20 —
T = T Wi (©)
with |
W t0t(r) = Wi core(F)W anr(T) (10) 3 - : ]

The sum covers the whole (extended) convolved data field. The'®” ] e
definition of the significance function as the product of bwan- 001 ?m; 1
malisation factors is somewhat arbitrary but reproducesidr . . .

sired behaviour that changes in the positive and negatirte pfald-3- A-variance spectra computed with thredfetient types of the
of the filter contribute equally. We have testedfelient powers €dge treatment for one periodic fBm structure (upper plag ane

of the product but found the best agreement with the thesateti "0"-Periodic subset from a fBm structure (lower plot). TBenk are
behaviour in fBm data sets for an exponent of just unity characterised by a spectral index 3.0 so that theA-variance should

) . show a slope& = 1.0. The measured slopes are indicated for each graph
Figure 3 demonstrates thé&ect of the edge treatment in thej,, 1,0 p|0t_p P arap

example of an fBm structure which is periodic and for a non-
periodic sub-map from a larger fBm structure. We have used
three diferent ways to compute th&-variance. First we as- ] ]
sume that the maps are periodic, neglecting all wrap-arefind at large scales, and only the use of the truncated filterstsesu
fects. For the periodic fBm this is, of course, the best agsun® good reproduction of the expected value for the slope.
tion which should reproduce exactly the properties of theqro In Fig. 3 we plot the results obtained just for one realiza-
spectrum used to generate the fBm. It is, however, rarelfubisetion of an fBm and for one sub-map from a large fBm. But
when dealing with observed data as they are in general not péhe exact shape of the comput&dariance spectra can depend
odic. The second approach creates periodicity by mirrottieg on the distribution of the random phases within the fBm and it
map along both axes as discussed by Stutzki et al. (1998pso thill certainly depend on the selection of the sub-map witin
a larger periodic map is produced and wrap-aroutielces can fBm. Thus we have repeated the computation for a set of maps
be neglected. This approach, however, still results inattisou-  in Fig. 4. Analogously to the statistical treatment by Bénet
ities in the first derivatives at the mirror axes. The thirgayach al. (2001) we vary the spectral index of the fBm structures an
uses the truncated filter as described above. chose randomly 30 ffierent fBms or fBm sub-maps and deter-
For the periodic fBm structure we find a very close agre#iine their A-variance spectra. We do not display all spectra,
ment of theA-variance using the truncated filter with the theobut only the resulting distribution of slop@s The Fig. shows
retical value given by a slope = 1. The mirror continuation the averagé-variance slope and the spread of measured slopes
results in an apparent reduction of the amount of large sca&g a function of the spectral indéxusing the three dierent
structures in the map as they are partially assigned to largelge treatments. All slopes are computed from a power fit cov-
modes only present in the map extended by mirroring. Thus teeng the full data range plotted in Fig. 3. An optimum treatth
A-variance slope is systematically underestimated. Fontiee  should reproduce the relatian= ¢ - 2 indicated by the dotted
periodic structure, the assumption of periodicity resinltstrong  line in Fig. 4.
deviations from the power-law behaviour at small scalestdue  For the periodic fBms we find that th&-variance spectra
artificial high-frequency contributions from the edgeseThir- from the truncated filter show about the same spectral isdise
roring shows again an underestimate of the power specttekin the periodic treatment. The error bars in the periodic tnestt
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P T S 0.01F ]
~Y[ ¢ periodicity used e [ ]
L x  mirrored ;:%— r 7
[ A truncated filter ] : :
1.5 - %i% - | ,
~ | ey ] [ 1
ORI s .
| By s :
0.5 . i ]
i e ]
L. ] | A truncoted fitter, 1=0.108 ]
0.0 *%_%% LT r x  mirrored, 1=0.112 b
20 25 30 35 4.0 ¢ periodicity assumed, 1=0.113
¢ (fBm) 107* ) ) L ) ) L
R e — 0.01 0.1 1
L O periodicity assumed %A T o3
20 x mirrored "’%f Fig.5. A-variance spectra for the filled-circle map where the cihde
[ & truncoted fiter 1 adiameter of 8 of the map size and is shifted by three diameters from
r %% 1 the centre of the map. The valudsdicate the lag of the measured peak
o o 7 inthe spectrum.
S ok %ﬁ % %;
s [ H@ B 1 resulting in too shallowA-variance spectra. In contrast, both the
r L % 1 mirror-continuation and the filter truncation provide aseaable
0.5 L - measure for the actual map structure for all spectral irsdigeth
L %% 1 methods are hardlyfected by the discontinuities at the sub-map
L ] edges. The mirror-continuation always underestimatesybe-
0.0 *H% -1 tral index by about 0.1 (except at= 4.0). The filter truncation
Eol L . 1 method reveals the correct spectral index(fer 3.0 and overes-

25 30 35 timates it by 0.05 at = 4.0. Regarding the typical error bars of
¢ (1B8m) 0.15, the systematic errors are, however, smaller tharctitées
Fig. 4. Average and standard deviation of the spectral indiceseoAth between dferent fBm realizations with the same spectral index.

variance spectra determined for a set of fBm structuresgiupiot) and The same tests were repeated for map sizes ranging frém 32
for a set of sub-maps from fBm structures (lower plot) defreman the t0 256 pixels. In agreement with the studies by Bensch et al.
spectral index of the fBms. All spectra are computed at theesaower (2001) we found no systematic changes insheariance slopes
spectral indiceg = 2.0,2.4,2.8,3.2,3.6, and 4.0, but for a better visi- exceeding 0.03 when changing the map size but an increase of
bility, the standard deviations for the truncated filter &mdthe mirror  the error bars from 0.15 at map sizes of 128 0.25 at a size
continuation are displaced in the plot relative to thesei@®l In case of 322, This larger uncertainty for smaller maps prevents any
of the periodic analysis of the fBm maps the error bars githegstan- significant conclusion from maps spanning less th@0 pixels.
dard deviation of the statistical samples are practicaifpzThe dotted = 14 yomqnsrate the influence of the edge treatment onthe
line indicates the theoretical index for infinitely largenfBstructures . . ) ;
v=7-2. variance spectrum of an object with a pronounced S|ze.sc_1ale w

; show in Fig. 5 the spectra computed for the map containing the

filled circle with a diameter of /B of the map size. The peak of
the A-variance spectra at 0.11 falls below the circle diameter of

are zero because thevariance spectrum is independent of th@,125 but slightly above the average distance between timspo
exact phase distribution and thus identical for each mapef ton the rim of the circle which is about 0.10. The somewha#arg
sample. The standard deviation of the slopes in the trudeatgalue is probably due to the contributions from the “empty? e
filter treatment is always about 0.08 here. Theariance spec- vironment of the circle at large lags, also resulting in aayec
trum underestimates the power spectral index by 0.¢3-a8.6  of the A-variance spectra at large lags which is shallower than
and by 0.08 at = 4 because the theoretical value is only reachete I-2-characteristics of uncorrelated structures.. Theserieont
for infinitely large maps and the deviations grow when apphhea butions are dispersed over a relatively wide range of scales
ing the asymptotic limit ofr = 4 (see Stutzkietal. 1998). The responding to the dierent distances to the map boundary in a
variance spectrum computed for the mirror-continuatiothef non-periodic treatment and to the distances to the nexedinc
map always underestimates the spectral index by about 0.1. a periodic interpretation of this structure. As these \taie are

In case of non-periodic fBm sub-structures the periodicitpainly assigned to lags exceeding the map size in the periodi
assumption clearly fails. With this approach the measuligguks treatment, the two curves for the periodic treatment shaneso
saturates at about = 1.1. The use of the simpla-variance what lowerA-variance values within the map than the filter trun-
without filter truncation or mirror continuation providesamg cation method where the “empty” region is constrained by the
results at power spectral indices above ahput 2.9. This is map size. Nevertheless, the totafdiences betweek-variance
due to unavoidable discontinuities at the submap edgeshwhapectra using the flerent edge treatment methods are relatively
result in high-frequency contributions in the periodicatreent small, so that either method seems to be justified for this.cas

N
o
b
o
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3.2. Generalisation for data with varying reliability

The concept of weighting tha-variance computation by dif- 1.6
ferent filter significance values can be generalised to déhl w
data, where the data points in a map are as well charactdayysed 1.4
a variable data reliability. This applies e.g. to maps winerteall
points are observed with the same integration time so thegt the 1.2
show a dfferent noise level. The inverse noise RMS is an indk
cator for the significance of the data affdient points. Many 8 ;g
other observationalfiects may lead to a similar variation of the
data reliability across the map. As long as the reliabildéy be 0.8
expressed as a significance numisgsir) between 0 and 1 all
such maps may be analysed within the concept outlined here, 4
The same equations as discussed in the filter truncatioroare t
be applied, but the auxiliary weight mag(r) does no longer o.( . . . . . . . o,
consist of the values 1 inside and 0 outside of the origingh.ma 1.0 1.5 2.0 25
It rather contains the significance valueg{r) ranging con- diometer rotio
tinuously from 0 to 1. The weighting factors in tlkevariance Fig. 6. Factor translating the filter core diametdnto the average dis-
computation o1(r) then contain the integrated significance ofance measured by the filter as a function of the diameter batiween
the filter-convolved data at each point. annulus and core of the filter. The average distance is cadpw a
With this generalised concept, tevariance analysis can double integral over the core and the annulus of the filter.
be applied to arbitrary two-dimensional data sets. Theyties

projected onto some regular grid but they do not need to con- as the opposite extreme we have also tested a filter measur-
tain regular boundaries as the corresponding “empty” @ids  jg the diference between one point in the map and all points
only have to be marked with a zero significance. Varying neise gisplaced by the sharp distariaelative to this pixel. The corre-
other changes in the data reliability can be expressed isifhe gpondinga-variance then measures basically the structure func-
nificance functiongai(r) which has to be constructed for eachign of the map (see e.g. Miesch & Bally, 1994; Frick et al.,
data set. The only remaining requirement for the appliggbil 5001). However, because those tests confirmed only thetsesul
of the A-variance is the sficiently large spatial dynamic rangef,om Ossenkopf & Mac Low (2002) and Frick et al. (2001) that
in the data. The criterion of at least 30 pixels in each dioect e strycture function is relatively insensitive to disins of the

for reasonable error bars of thievariance spectrum discussedyoer spectrum on particular scales we excluded this filtenf
above has to be extended in case of a low data significancey g following studies.

Sect. 5 we test the dynamic range over which the slope of fBMs Th,s we restrict ourselves here to the Mexican and the

can be reliably determined in case of noisy data. We find a®a rgrench hat filter, where we vary in both cases the diameter ra-
of thumb that the minimum map size has to be increased by Qg | this way we test both the influence of the general filter

over the average data significance. In paper Il we will appy t shape and of the ratio between core and annulus for each filter
A-variance analysis to observed data with irregular bouedargp the computed-variance spectra.

and a spatially varying significance.

X
P I B B

L L L - L L L L L L L BN

o
o

) S 4.2. The effective filter length
4. Filter optimisation o o )
Taking into account the finite width of the core and the ansulu

4.1. The A-variance filter function of both filter functions it is not obvious on which scale véidas

All examples given above were computed with the fixed filt}'® actually measured when using a filter with sizdere, we
function of a French hat with a diameter ratio between theianrEOMPUte this scale based on the geometrical propertieseof th

lus and the core = 3. An obvious question is whether we carilte"-

improve on theA-variance by using a fierent diameter ratio In the French hat filter we measure the average distance be-
andor a diferent filter function. Due to its discontinuity in the!VE€N & pointin the core and a pointin the annulus, provitlieg

normal space the French hat has high frequency lobes ineﬁfouﬂverage scale on which a structure variation in the map ehoul
e measured. For the Mexican hat filter, the computationef th

space. Alternative approaches should use smoother fusatio di includes the additional weidhti f elich
ordinary space to obtain a better confinement in FourierespafV€rage distance includes the additional weighting of e
ince by the product of the positive and negative filter \@lue

As a smooth example we implemented a “Mexican hat” consi his refl h f1h luti f ith this fi
ing of two Gaussian functions: is reflects the fect of the convolution of a map with this fil-

ter.

_ 4 r? Figure 6 shows the resultingfective filter length relative

= 2 2 to the filter sizel as a function of the diameter ratiofor the
(Om = —exp 12) (11) o the filter sizel as a function of the di iofor th
|.core French and the Mexican hat. The length scale traced by thesfilt

_ 4 r r is approximately a linear function of the diameter rationmestn

= 7202 — 2 2 the core and the annulus of the filter. Using a least-squane=fit
OO0 =~ -1 |®P\w2z) " Pa h d th lus of the filter. Using a | f
lann obtain the cofiicients

wherel is the size of the filter andis the diameter ratio between| . {().29\,+ 0.26 for the French hat 12)

the annulus and the core of the filter as defined in Sect. 24. Th- = ;
choice of the Gaussians guarantees that the filter givesete b-IT 0.41v+046 forthe Mexican hat
simultaneous confinementin ordinary space and in Foura@mesp  The original A-variance definition using a French hat with
not showing any side lobes in either of them. v = 3 gives an fective length of 1.12 times the core diameter
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also at other fective filter sizes. This can be seen when chang-
ing the diameter ratiwin the filter. The peak remains at the same
position but the ripples in tha-variance spectrum move corre-
sponding to the changes in the side lobes of the Bessel imcti
Decreasing relative to the value of 3.0 results in a steeper de-
cay above the peak and an increased number of ripples at large
lags. When reducing the diameter ratifor the Mexican hat fil-
ter the decay above the peak also steepens and we obtain some
flattening at the largest lags in the map. In general we caereit
achieve the sharp peak and the artificial structures at lagge
by the French hat filter or the broader peak without ripples by
_ . X, means of the Mexican hat.
XQ fi?i?%ﬁftriooig}WW:ZOSQZA ) Because the field is periodic we can also apply the periodic
LT T continuation method here. The equivalent figure shows timesa
shape of the peak but more pronounced ripples with deeper min
ima at large scales for the French hat filter and a somewhat
. . . ] _ steeper decay for the Mexican hat. In this caseAhariance
Fig.7. A-variance spectra computed for the sine wave field with &yectrum simply represents the Fourier transform of therfilt
wavenumbeik = 8. The filter truncation is applied in both cases fog\ion because the structure contains only a single Eouri
the edge treatment. The peak scale is giveh ése logarithm of the o, 5onent. For integer wavenumbers the periodic coniioiat
ratio between upper and lower lag where feariance has dropped to is identical to the mirror continuation so that we obtainshene
1/2 of the peak value is given as spectra except for a small discretisation error from a sipipel
row which is treated dierent when mirroring or continuing peri-
odically. In general the edge truncation always producé®ag
and the mirror-continuation a weak smearing of the Frerath-h
A-yariance ripples at large lags relative to the periodidion-

T T T T
Lo

0.1

L
0.1
lag

o
o

I. Thus all scales computed previously with that filter shdaéd
shifted by the factor 1.12. This is only a small correctioat n
changing the conclusions in any of the papers that have u
the A-variance so far. In all plots shown in this paper, we use
the dfective length as the lag of thevariance to allow a direct
comparison of the spectra independent of the filter used.

Corresponding results for the chess board map show almost
the same curves as the sine wave field at all lags above the peak
in the A-variance spectra. But they show a flatter rising part at
smaller lags. The additional high-frequency contribusiémom
4.3. Filter evaluation the edges of the chess fields increase Aheariance at small

) ) ] ) ) lags leading to a slope shallower than 1 there. The situagion
The optimum filter to be used in thevariance analysis has togomewhat dterent for the circle map. The strong contributions

in the maps and the exact determination of the scaling exfiengyifrerences from the fferent filter shapes in the spectrum. The

of the contained structures. spectra obtained from both filter types look very similar.
To quantify the influence of the selection of the filter shape
4.3.1. Scale detection and the diameter ratio on the detection of the dominant scale

length we measure the sharpness ofAheriance peaks shown

In the detection of pronounced scales the maximum ofAthe in Fig. 7. We use the width of the peak given as the logarithm
variance spectrum should fall onto the correct lag corredpp  of the ratio between upper and lower lag where AReariance
to the structure size. Moreover, the signature of the proned drops to 42 of the peak value, and its contrast relative to the
scale in theA-variance spectrum should be as sharp as possiblgdues at lags which are either small or large compared to the
with a high contrast relative to other scales. As test images peak position, i.e. relative to the first and the last poirthimA-
used the chess board field, the sine wave field, and the fillegliance spectrum. The behaviour of both parameters isrshow
circle field. in Fig. 8 as a function of the filter diameter ratio The upper

To illustrate the behaviour we plot the results for the singlot shows the logarithmic width of the peak; the lower phu t
wave field. Fig. 7 shows th&-variance spectra measured for &ontrast of the peak relative to values at much larger anchmuc
field withk = 8 by the French and the Mexican hat filters. In botemaller lags. From the figure it is obvious that we cannotehi
cases the filter truncation method is used. The dominarg &ala minimum width and maximum contrasts simultaneously with
detected as a peak in thevariance spectra, the peak position athe same filter, so that some balance has to be found. The con-
about 0.07 is somewhat smaller than the scale of the maximtmast with respect to smaller lags hardly varies with filygre and
variation J/(kv2) = 0.088. We found this small shift by aboutdiameter ratio but the contrast relative to large lags istitrally
20% in all spectra. When using théective filter length, the changed. The French hat filter always produces a narrowér pea
peak position is very constant independent of the filter tup& but the decrease of the peak width towards smaltatios is ac-
its diameter ratio. companied by a deterioration of the contrast with respdetrtge

At scales above the peak, the spectra obtained for the two filgs. The Mexican hat filter shows a continuous improvement
ters deviate considerably. The French hat filter produggsas of both quantities towards smaller ratios but gives a sona¢wh
at large lags. From the positions of these ripples we find thatoader peak. The slight increase of the contrast with &@spe
they reflect the side lobes of the Bessel function, représgntthe lower end of the spectrum towards smalle@alues for both
the Fourier transform of the French hat filter. This must ret Hilter types indicates that small diameter ratios result some-
misinterpreted as a detection of large-scale structuteamtap. what longer dynamic range below the dominant peak where the
The side lobes detect the single Fourier amplitude fkom 8  A-variance spectrum follows a power law.
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Fig.8. Logarithmic FWHM of theA-variance peak and contrast be+ig. 9. Logarithmic FWHM of theA-variance peak and contrast be-
tween the peak value and the valued at 0.014 andl = 1/3 for the tween the peak value and the valued at 0.014 andl = 1/3 for
sine wave map analysed in Fig. 7. the filled circle map discussed in Fig. 5. The widths meastoethe
French hat at < 1.25 are lower limits because the spectrum did not fall

] ] below half of the peak value at the upper end of the spectrum.
Comparing the dferent edge treatment approaches in cor-

responding plots shows that the mirror-continuation akyaiyp-
duces about the same peak width and a somewhat better ¢conttastion at large lags by the filter truncation is always larfge
than the filter truncation method because the latter inttedu the French hat than for the Mexican hat and decreasing with
some flattening in tha-variance spectra at the largestlags.  growing distance of the filled circle from the map boundaries
A very similar behaviour is also observed for the chess board The somewhat better contrast relative to small lags obdaine
structure. In contrast, the filled-circle map with its lasgmale in all cases with the French hat filter indicates that thisffik al-
contributions shows a flerent behaviour demonstrated in Figways better suitable to detect a power law scaling behavioer
9. Only the contrast relative to thie-variance values at small a wide dynamic range below a dominant scale. For the detectio
lags shows the same small improvement for both filters tosvardf the dominant scale the situation is less clear. In the\winee
small diameter ratios as seen in Fig. 8. The other parametersnd chess board maps the Mexican hat provides a better sbntra
behave qualitatively dierent. For the Mexican hat we find anbut a larger peak width, for the circle map the Mexican hatsat i
optimum diameter ratio ~ 1.2...1.4 where the peak width hasoptimum diameter ratio is only slightly worse than the Fienc
a minimum and the contrast with respect to large lags showsat at its optimum ratio. Taking the general uncertaintiesnf
maximum. For the French hat the contrast relative to largs lathe French hat ripples at large lags, however, it seems alway
deteriorates over a much broader range at smtios and we preferable to use the Mexican hat filter.
observe an increased width of the peak there. Diametesiiadio Comparing all results with respect to a clear indication of
low v ~ 2.3 clearly reduce the sensitivity of the French hat filteparticular structure scales we find that the Mexican hat filith
in this case. The increase of the peak width and the reduct@mliameter ratiov < 1.4 provides the best resolution. Diameter
of the contrast can be understood as resulting from theg#ronratiosv between 1.4 and 1.7 still produce a reasonably good sen-
pickup in the side lobes of the Fourier transformed French tgitivity. The French hat filter has its maximum sensitivity €li-
filter which are closer to the main peak and stronger for ssnallameter ratioss between 2.3 and 2.5. Although it producks
v ratios. variance peaks with a smaller width than the Mexican hat filte
The corresponding figure computed using the mirroit produces in general ripple artifacts in thevariance spectrum
continuation is very similar. The mirror-continuation alyg at large lags, lowering the overall contrast of the peakhso t
provides a somewhat better contrast. Tlfea of contrast re- it should be deferred relative to the Mexican hat filter foe th
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Fig. 10. A-variance spectra computed for a sub-map from an fBm struc- — T —
ture with = 3. Filter truncation is used for the edge treatmentle- r ¢=35 ¢ 1
notes the power-law slope fitted over the full range. r } % % =30 x _ A
¢=25 A 1

structure detection. For non-periodic structures coveserkg- |
ular maps with rectangular boundaries, the edge treatment b | }

mirror-continuation gives a somewhat better contrast tien s |
filter truncation method but this fierence is relatively small. s |-

4.3.2. Spectral index H

To judge the value of the fierent filters with respect to the re-
trieval of the correct slope of an fBm structure or a sub-nmemf
an fBm structure we consider two quantities: the dynamigean N
over which theA-variance slope can be reliably determined and 1.0 1.5 2.0 2.5 3.0
the diference between the actually measured slope and the the- v
oretical value.

The dynamic range of scales traceable with a filter of givemg. 11. Distribution of fittedA-variance exponents for fBm maps (up-
shape and diameter ratio is constrained by the maximum filgg" plot) and submaps from fBm structures (lower plot) witk 2.5,
size that can be used for the given map size. It is measuredf?i% and 35 as a function of the filter diameter ratio. The French hat
the maximum &ective filter length for which the contributions/ e combined with the filter truncation method is used. @dtlines
from those parts of the filter extending bevond a map bound indicate Fhe.expected-varlance exponents corresponding to the fBm

part . 8 g bey p as,ryectral indices. The error bars indicate the scatter mddafor struc-

produce no noticeable distortion of thevariance spectrum. In a5 with the same parameters in terms of the standardtievia
case of the French hat filter we find that the diameter of the an-
nulus, i.el x v, may not exceed the size of the map for reliable
A-variance values. For the Mexican hat, the parametermust tends to overestimate the true spectral index. The Mexiean h
not exceed 23 of the map size. From the relations between thesults in somewhat too small exponents.
effective filter length and the filter sizeobtained in Sect. 4.2,  The corresponding spectra computed by the help of the
we see that the dynamic range dfeetive lags available for a mirror-continuation method result in a spectral index vahie
fit of the A-variance spectrum grows with decreasing diameteso low by about 0.1 compared to the theoretical value due to
ratio v. Smallerv values increase the total range of lags whettie flattening of the spectra at large lags as seen in Fig. 8. Th
the A-variance can be determined without being dominated Byexican hat and the French hat provide almost the same slopes
edge dects. Moreover, Sect. 4.3.1 shows that smalleatios When applying the analysis to the sine wave field With 1,
also tend to extend the dynamic range of scales below a strije: the equivalent of an fBm witli = oo, the longer dynamic
ture peak where th&-variance follows a power law. Thus, smallrange traced by the French hat filter results in a measured spe
ratios also seem to be favourable for a reliable slope detect tral index of theA-variance which is closer to the theoretical

To study the agreement of the measuredariance slopes value of 4 than that obtained for the Mexican hat filter.
with the theoretically predicted index as a function of theefi For a systematic investigation of the accuracy in the deter-
shape we compute the spectra for fBm structures and sub-magisation of theA-variance slope as a function of the filter diam-
from fBm structures using theftierent filters. Fig. 10 shows theeter ratiov we analyse sets of 30ftiérent fBm structures and
spectra for a submap from an fBm with= 3.0 computed with 30 submaps from fBms using the two basic filter shapes vary-
four different filters. First we notice the extension of the dying their diameter ratio and the fBm spectral index Fig. 11
namic range for smallev ratios. None of the spectra gives ardemonstrates the result for the French hat filter applied thie
exact power law, but the French hat filter with= 3.0 and both filter-truncation method. The range of spectral indicescsthe
Mexican hat filters provide a reasonably good reproduction typical indices in observations of interstellar cloudsiiggreen
the theoretical index = 1.0. For smallv ratios, the French hat & Scalo, 2004; Falgarone et al., 2004). The strongest devia-

0.5 e et : 4 : -
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tions of the measured exponents from the expected values oct™

cur at small diameter ratios Hence, ratios below 1.7 should

not be used. fBms and submaps behavkednt. For the fBms

the strongest deviations from the theoretical spectradnat-

cur at small spectral indices; for the fBm submaps they oatur
large indices. This can be explained by selectiffiaas. When
selecting submaps from an fBm, there is a significant scatter
in the properties of the actually selected structure. Thigis- ©
ible as larger error bars. For large spectral indices wendfiel
submaps which are dominated by some structure extending be-
yond the the submap boundaries. This tends to increase tite me
sured slope.

Other combinations of filter shape and edge treatment show fBm + noise, w=1 x
somewhat dferent properties in details but the same general be- fBm ¢
haviour as Fig. 11. The mirror continuation method always un 0 : — : —_—
derestimates the spectral index. With both filter typesdtipces 0.01 o !
at diameter ratios > 2.0 slopes which are too low by 0.05-0.1. °
At lower ratios the dference grows up to 0.2. The Mexican hafig. 12. A-variance spectra computed from an fBm structure with a
filter shows always a slightly stronger deviation from theah spectral index/ = 3.1 and a superimposed circular pattern of white
retical value than the French hat filter. However, when syate noise. The s_olld line shows tlzrevarla_mce spectrum of the or_|g|nal fBm,
ically correcting the slopes by a constant shifthaf = 0.1 both the dotted line the spectrum obtained from the direct afmalysthe
filter types provide reliable spectral indices for 1.4. With the E;"\fv}éirgﬁ?r‘];gﬂ/éuebgﬁgﬁﬂvlgiethneoi?eegﬁén computed witieaite
filter truncation method both filters result in a good reprettn '
of the spectral index at diameter ratios> 2.5. An acceptable

sensitivity is still obtained fov > 1.4 with the Mexican hat and amplitudes was added. We use combinations of tiiergint spa-
for v > 2.0 with the French hat filter. In this intermediate rangajal structures discussed in Sect. 2.2 for the structuretmba-

the measured average slope always deviates by less than\.1 sured and for the spatial distribution of a noise level simper
the theoretical value. posed to the data.

One has to keep in mind, however, that most of the deviations Fig. 12 shows one example of a resultitgzariance spec-
discussed here fall below the size of the statistical eraos =or  trum for an fBm structure with a spectral indéx= 3.1 where

the fBm submaps, which are most representative for astronogmoise pattern given by the filled circle described in Se@t22

ical maps, they amount tae ~ +0.15 at a map size of 128 andd = 2/3 was added. The average signal-to-noise ratio, de-
and toAe ~ +0.25 at a map size of 3Jsee Sect. 3.1). Exceptfined as the ratio between the maximum in the fBm structure
for very small diameter ratios, < 1.2, the use of the Mexican and the noise RMS, is 1 and the variation between the noise lev
hat always provides a somewhat smaller scattering of the meg inside and outside of the circle is a factor 9. This exampl
sured exponents than the French hat filter. The edge treatm@gy represent the situation of an observed map where the in-
has practically no influence on the size of these scatter bars ner part is covered by many integrations, so that it showgla hi

Comparing the results from the scale detection and the fepsgynal-to-noise ratio, whereas the outer part is observttfew
duction of the spectral index we find that each problem asks f@tegrations leading to a higher noise level.

a different optimum filter. Whereas the scale detection favours The solid line represents tievariance spectrum of the orig-

the Mexican hat filter with a diameter ratios 1.4, the slope inal fBm structure. The dotted line is the spectrum that is ob
reproduction is equally well satisfied by both filter types & tained by the direct analysis of the noisy map without any re-
diameter ratiov 2 2.0. A reasonable compromise, providing ajability weighting. Because there is no correlation in tiwise
good sensitivity to either issue is the use of a Mexican hi fil between neighbouring data points, the added noise cotesini
with a diameter ratior ~ 1.5. the A-variance spectrum only at small scales with a decay pro-
The edge treatment by mirror continuation is somewhgbrtional tol-2 towards larger lags. Due to the relatively high
favourable relative to the filter truncation in the slopeetitibn, average noise level, th&-variance spectrum is dominated by
but requires that the average spectral index is correctedtoy-  the noise contribution up to lags of about 0.2. The origiBahf
stant shift ofAe = 0.1. On the other hand the filter truncatior}spectrum is matched On|y in a very narrow scale range at the
method can be applied as well for maps with irregular boungyrgest lags.
aries and shows a somewhat lower statistical scatteringrwit  The dashed line shows the improvement that is obtained by
the studied samples. Thus, the filter truncation providesitbst ysing the knowledge on the noise level in terms of a weighting
reliable parameters in a single run for any data set withoeit tfunctionw(r) inversely proportional to the local noise RMS. Due
need for additional corrections. to the relative suppression of contributions from the ontesy
parts of the map the original fBm spectrum is recovered over a
much broader range of scales. We find, however, a small distor
tion at the data point for the largestlag. This can be inttgut as
To close the circle of testing all extensions proposed here the dfect of a slight “cross talk” from the weighting function to
combine the results on the optimum filter shape with the weighhe measured structure. The obvious strong improvemeheof t
ing function and return to the analysis of data with a varyig recovery of the originah-variance spectrum from the noisy data
liability within the map. To test how the improvettvariance is thus achieved at the cost of a slightly reduced data iiétiab
analysis recovers the properties of an original structooenf on the characteristic scales of the weighting function.
measurements influenced by a varying noise level, we create To study this &ect more systematically we perform a num-
maps where white noise with a spatial pattern dfedtient noise ber of parameter studies combining théelient structures with

T T T T T T T T
I

fBm + noise, w=1/noise A

5. The impact of a varying data reliability
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with noise weigthing o tain main elements of the original structure. This is noteetpd

for real observations where the astronomer would hardicsel
field avoiding the main object of interest. For a chess boaisn
with half the cell size, the error bars for the distributidritiing
ranges are reduced already by almost a factor two. The exampl
is nevertheless instructive because it shows all thiects that
we encounter in the parameter study witffelient intensity and
noise structures. We find always the increase of the fittingea
but also the larger spread of the ranges within the sampiiéestu
When using fBms for the noise distribution with spectralioes
: ‘ ¢ around 4 or higher, we find as well a large spread of the factors
Pl ‘ by which the length of the fitting range is increased in the new
s x X ¥ A-variance analysis. For all smaller indices the error barmk
in the same way as for the chess board with smaller cell size. |
3 T S S general, we find a more reliable extension of the matchingean
0 3 19 13 20 by the use of the weighting function as more fragmented the ac
noise variation . . . .
tual noise map is or as better the noise map is adapted toghe th
Fig. 13. Scale range (ratio between maximum and minimum lag) withidominant parts of the actual structure. The latter casetiallys
which the derived noisy spectrum agrees within 10 % with thgi-0 given in astronomical observations.
o S e i e SpeCTur IS Cmputed ier o vig conclude that the ntrocucton of @ weighting funcion
inal structure is given by an fBm structure with= 3.0 and the noise given by the inverse noise of the data '”to‘*‘ea”anc‘? e_lna_IyS|s
pattern by a chess board structure with four fields and a ktgneoise always extends the spatial range over which the_or!glnallr@a
ratio of 5.0. On the abscissa we have changed the amplitutie abise Pehaviour can be recovered. The amount of this improvement
level variation between thefiiérent fields of the chess board. The erroflepends on the strength of the noise variation across the map
bars show the absolute minimum and maximum of the matchingera and the coverage of the observed structure by regions of low
size found in a sample of 30ftrent fBms. noise. The range within which the measuredariance spec-
trum agrees with the original spectrum can be extended by mor
than a factor three for high levels of noise variations and@dg
varying noise patterns, varying noise levels and varyinigano coverage of the main features of a structure by low-noise ob-
dynamic ranges. In the resultingrvariance spectra we com-servations. Future studies should show whether the infooma
puted the scale range over which the spectrum agrees with tifan theA-variance spectrum of the map of weights can be used
spectrum of the original structure within 10%. The length dp further improve the outcome.
this range, which allows a reliable derivation of the trualisg
behaviour, is a measure for the quality of the structurevecgo
To test the influence of selectioffects we repeat each computa6. Conclusions
tion for a number of dferent initialisers for fBm structures and ) ) . .
for the noise fields, so that we arrive at 30-80 computations fThe A-variance analy3|s was p_rewou_sly established as a general
each parameter set providing a statistically significantrsie. toolto s;udy the scaling behawpur of interstellar cloudsture.

The result of such a parameter scan is demonstrated in Fi§€ Main advantage of thevariance compared to the compu-
13. In this example, the original structure is an fBm stroetut@tion of the power spectrum is its robustness with respect t
with ¢ = 3.0 and the superimposed noise amplitude follows aé,pgular variations, singular distortions, gridding andtéimap
chess board structure (see Sect. 2.2.1) with four fields field S12€ &fects. o _
length of half the map size. By changing the noise amplitude e propose two essential improvements of fheariance
ratio between the dfierent fields while preserving the averag@nalysis. The first one is the use of a weighting function &mte
noise amplitude this plot is suited to study the actilet of the ~ Pixel in the map. This weighting function allows to study alat
noise variation and the corresponding correction by a wigh Sets with a variable data reliability across the map andnwiki
function in theA-variance analysis. taneously solve boundary problems even for maps with iteggu

In the analysis without weighting function, the dynami@oundaries. _ o
scale range within which the true spectrum can be fitted cov- Maps with a variable data reliability are eventually obeain
ers always about a factor 9, independent from the variatfon i§ Most observations, either due to a local or a temporahtséri
the noise level between the four fields. The noise corredtjon ity of the detector sensitivity or the atmosphere or due ftedi
the weighting function can extend this range up to an averag!ét integration times spent forftérent points of a map. The or-
factor of 25 in case of high variation levels. The error bardi- ~dinaryA-variance analysis as well as the power spectrum fail to
cating the minimum and maximum ranges detected in the saffke the resultingféects into account. By applying the improved
ple, show, however, that there is a considerable spreadein #rvariance analysis to noisy data we find that only the use of a
range length over which the fit is reliable. The matching eangignificance function to weight the fiérent data points allows
is always increased compared to theariance analysis without t0 distinguish the influence of variable noise from actuahm
weighting function, but the actual magnitude of this inseeean Scale structure in the maps. In case of statistical unceieaior
considerably var§. The example represents, however, a kind §ensitivity changes the weighting function is best prostidey
worst case scenario, because the noise variation in thisrpatthe inverse RMS in the data points.
virtually cuts out two large pieces from the map which may-con In the treatment of map boundaries the use of a weight-
ing function allows to use computational methods like thetFa

4 The upper limit at about 30 corresponds to the whole spectrufourier Transform to compute thevariance spectrum by ex-
Thus a further extension is not possible here. tending a measured map by points with zero significance. This

without noise weigthing  x
30
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o
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is mathematically equivalent to the truncation of the fiieipro-  Stutzki J., Bensch F., Heithausen A., Ossenkopf V., & Z&nM. 1998, AGA
posed by Bensch et al. (2001) but has the advantages of the fa§36. 697 _
computation and the definition of a smooth filter shape in Fepur SU7 K- Kramer C., Ossenkopf \., Bensch F., Stutzid J., Wille, 2006, AGA
space not influenced by griddingfects in ordinary space. Thezigjinsky M. & Stutzki J. 1999, A&A 347, 633
virtual filter truncation is the only approach to analyse Bafrielinsky M., Stutzki J., Stérzer H. 2000, A&A 358, 723
which are only sparsely filled by significant values. For aeet
gular maps a periodic continuation by mirroring can be used a
well to solve the boundary problem. Mirror-continuationhal-
ways underestimate the spectral index by about 0.1. Thiklicou
be easily taken into account. However, the mirror-contiioua
is less flexible than the filter truncation which works onguitar
maps as well although resulting in slightly larger statestierror
bars.
The second improvement of thevariance analysis is its op-
timisation with respect to the shape of the wavelet usedttr fil
the observed maps. We have computed ttectve filter length
as a function of the shape and compared the peak positions of
resultingA-variance spectra with characteristic structure sizes in
the test data sets. We find that the peak positions alwagsifadl
20 % below the maximum structure size. Taking this systemati
offset into account we can calibrate the spatial resolutiohef t
A-variance analysis to aboud %. Unfortunately, it is not possi-
ble to define a single optimum wavelet for all purposes bexaus
different wavelets show filerent qualities in the detection of the
characteristic structure scaling behaviour. The bestoehioir an
exact measurement of the power spectral slope are wavethts w
a large ratio between the diameter of the annulus and the core
of the filter. Here, the French hat and the Mexican hat filter ar
equally well suited. For the detection of pronounced sizdesc
the Mexican hat filter and small diameter ratios are preterre
A good compromise between thefférent requirements is the
Mexican hat filter with a diameter ratio of 1.5 providing alyga
a A-variance spectrum with approximately the correct slogk an
without missing any special spectral feature.
We provide an easy-to-use IDL widget program implement-
ing the A-variance analysis as described here implementing the
different filters and edge-treatment methods for the analysis of
arbitrary maps in FITS format
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