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Abstract

Line mapping with single-pixel heterodyne instruments is usually performed
either in an On-The-Fly (OTF) or in a raster mapping mode depending on the ca-
pabilities of the telescope and the instrument. In general the observing efficiency
can be increased by combining several source point integrations with a common
reference measurement. This is already implemented at many telescopes, however,
a thorough investigation of the optimum calibration of the modes and the best way
of performing these observations is still lacking.

Here, we use the knowledge on the system stability obtained by an Allan vari-
ance measurement to derive general rules and a mathematical formalism for opti-
mising the setup of mapping observations. Special attention has to be paid to the
minimisation of the impact of correlated noise introduced by the common OFF inte-
grations and to the correction of instrumental drifts. Both aspects can be covered by
using a calibration scheme that interpolates between two OFF measurements taken
with an integration time that is 0.7

√
N times the integration time for each of the N

source points between the two OFF measurements.
The total uncertainty of the calibrated data consisting of radiometric noise and

drift noise can be minimised by adjusting the source integration time and the scan
length N. It turns out that OTF observations are very robust providing a low relative
noise even if their setup deviates considerably from the optimum. Fast data readouts
are often essential to minimise the drift contributions, but for continuum observa-
tions they will nevertheless exceed in many cases the radiometric noise leading to a
very poor overall data quality.

The main drawback of the described mapping modes is the limited use of the
measured data with respect to a later spatial or spectroscopic rebinning.
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1 Introduction

Schieder & Kramer (2001) showed that the knowledge on the system stability of a het-
erodyne instrument can be used to obtain optimum parameters for performing actual
observations with the instrument. They computed the timing parameters providing the
minimum uncertainty of the calibrated data, consisting of radiometric noise and drift
noise, per unit of observing time for two basic observing modes. Unfortunately, their
computations were restricted to fluctuations with an 1/ fα power spectrum with a spec-
tral index α between 2 and 3. This spectral index is representative for spectroscopic fluc-
tuations across a given backend (Ossenkopf 2003), but recent measurements by Why-
born (2003) have shown that fluctuations of the total power level of the signal typically
follow a much shallower spectral index of about 0.7. This requires a revision of their
results with respect to generalising the spectral index.

Moreover, Schieder & Kramer (2001) assumed a special calibration scheme for all
mapping modes where single rows in a map are combined with a single reference mea-
surement for calibration, although other calibration schemes are possible as well. Thus
we have repeated their computations in a more general framework allowing for various
calibration schemes and arbitrary spectral indices resulting in general guidelines for an
optimum performance and calibration of mapping observations.

As corresponding optimisations for observing modes with single source and refer-
ence positions, including position switch, chop, and frequency switch modes, were al-
ready introduced by Ossenkopf (2003), we restrict ourselves here to mapping observing
modes. Depending on the capabilities of the telescope and the instrument, mapping can
be performed either in an On-The-Fly (OTF) or in a raster mapping mode. Beuther et al.
(2000) has shown that OTF modes are in principle always preferable from the viewpoint
of the observing efficiency. They impose, however, harder requirements to the pointing
and timing behaviour of the telescope, which may not always be given. Because the
delay between adjacent points in the raster mapping adds only a small complication to
the optimisation problem we will concentrate here on the OTF mapping discussing the
deviations from this mode for raster maps only in the Appendix.

The outline of the paper follows our basic approach to the optimisation problem. In
Sect. 2 we introduce the properties of the mapping modes and discuss the possible ways
how the measured data will be calibrated to obtain scientific data. In Sect. 3 we evaluate
the different calibration schemes with respect to their sensitivity to drift effects. In Sect.
4 we demonstrate the application of the different calibration schemes to actual obser-
vations performed at the KOSMA 3 m telescope. Choosing the best calibration scheme
we then optimise the exact timing of the observations with respect to radiometric noise
and drift noise in Sect. 5. The conclusions for the observing mode efficiencies are sum-
marised in Sect. 6.

2 Introduction to OTF observations

2.1 The general measurement scheme

A general introduction to OTF mapping was given by Beuther et al. (2000). OTF map-
ping with a position switch reference is the most efficient – and thus frequently applied
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Figure 1: Demonstration of the general properties of an OTF observation. In this ex-
ample, the OFF position is visited twice within one coverage of the whole map. An
additional OFF measurement is performed at the end of the observation. The green
dots symbolise the points where the backends are read out. The integration starts when
the telescope enters the blue area of the map. In this example, the scanning direction is
changed after each row.

– mode for the observation of large fields in the sky with single-pixel receivers. The
gain in the observing efficiency relative to other observing modes stems both from the
lack of dead times between the observation of adjacent points and from the reuse of
the observation of a single reference position for the calibration of several data points.
The general sequence of operations is demonstrated in Fig. 1. This example corresponds
to a mode implemented for the Herschel satellite, where a turn is performed between
subsequent lines so that they are scanned in opposite directions. Moreover, it is possible
here to go from an arbitrary position within the map to the reference position whereas
the implementation of the OTF mode at most ground-based telescopes foresees an OFF
measurement after each full scan line. We will consider the most general case here.

The instrument integrates here for the full time between two data read-outs, sym-
bolised by the green dots in the picture. This leads to smearing, i.e. broadening of the
effective beam characterising the measurement along the scanning direction. Beuther
et al. (2000) have shown that for OTF maps where the readout is performed on a spa-
tial grid corresponding to a Nyquist sampling of the map with the beam profile, the
effective beam broadening is less than 4 %. An edge taper of 14 dB was assumed there.

However, we can foresee a number of observations which will not be performed ex-
actly on Nyquist sampling. Traditionally the difference between a sampling at half the
beam width, FPBW/2, and a full Nyquist sampling with FPBW/2.4 (for a 14 dB edge ta-
per) is ignored by using the slightly coarser sampling. This can be justified by the drop
of the relative gain of information on the spatial structure of an object per observing
time when using a finer sampling below the beam size (Bensch et al. 2001). Moreover,
the huge frequency coverage of the HIFI instrument will allow a mapping of the same
astronomical object in different frequencies with different beam widths. Here, it is ob-
viously impossible to observe exactly the same area with a Nyquist sampling at all fre-
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quencies. Thus compromises will be made resulting in samplings deviating from a full
Nyquist sampling.

Figure 2: Beam broadening due to the scanning motion of the telescope during inte-
gration in OTF observations. The solid line shows the ratio between the HPBW of the
effective beam in scanning direction and the original Gaussian beam. The dotted line
represents the ratio between the corresponding standard deviations.

We can compute the quantitative impact of the beam smearing in the general case
by the numerical convolution of a two-dimensional Gaussian beam profile with a strip
function of finite size representing the motion of the telescope during the integration.
The result is shown in Fig. 2. The solid line shows the increase of the half-power beam
width (HPBW) with increased scanning length. We find that the beam broadening goes
from the mentioned 4 % at the Nyquist sampling of 0.42 HPBW to 6 % at 0.5 HPBW
and to 25 % at 1 HPBW. When using a scanning length above 2 HPBW, the beam is
completely dominated by the strip length. Already at 2 HPBW, the original beam con-
tributes only by 2 %. This is also visible in the beam shape. To judge the beam shape
we have plotted the ratio between the standard deviation of the actual beam and the
original beam as dotted line. The difference between the two curves gives a measure
for the degree of “non-Gaussianity” of the beam. The beam shape is close to Gaussian
for scan lengths below 1 HPBW and almost rectangular above 2 HPBW. The beam size
perpendicular to the scanning direction is not influenced by the scans.

Thus the OTF mode does not provide a noticeable beam broadening as long as the
data readout is performed on a time scale corresponding to a telescope motion of less
than about 0.65 HPBW. When observations ask for a lower resolution than actually pro-
vided by the beam. e.g. for the comparison of line ratios, or a coarser sampling, it is
possible to integrate longer thus reducing the noise. With integration times correspond-
ing to more than about 1.8 HPBW the actual measurement then represents a rectangular
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profile along the scanning direction. Nevertheless, even in these cases the data should
be read out faster (with approximately the Nyquist sampling) to allow a possible further
analysis of the data with the full resolution of the telescope.

2.2 The calibration by a reference measurement

All astronomical measurements suffer in principle from temporal drifts of the instru-
mental sensitivity which can lead to inaccurately calibrated data. Heterodyne measure-
ments use the regular observation of a reference to correct for the drift effects. The map-
ping modes considered here, use a point on the sky which is free of emission, the OFF
position, as reference. The calibrated data are then obtained by subtracting the count
rate on the OFF from the count rate on the source (Kutner & Ulich 1981, Ossenkopf
2002).

Consequently the radiometric noise in the calibrated data for each pixel consists of
noise contributions from the source integrations and from the OFF measurement,σnoise ∝√

1/ts + 1/tOFF. In case of the lack of any dead times it can be easily shown that the ra-
diometric noise is minimised when using an OFF integration time tOFF =

√
Nts, if N

source integrations with ts are calibrated with the same OFF measurement (Ball 1976).
Although this relation is not strictly fulfilled in the situation of non-negligible over-
heads, it is still approximately given there (Schieder & Kramer 2001) and thus widely
used in current implementations of OTF observing modes at ground-based telescopes.

There are three different calibration approaches in common use:
i) single OFF: The reference position is observed for tR = tOFF before (or after) a series
of N source points and the count rate there is subtracted from all source points in the
series.

Cs,i = cs,i − cR (1)

where the index i running from 1 to N characterises the different source points in a
series. This approach is currently used as standard calibration for OTF observations at
the JCMT and at KOSMA.

ii) interpolated OFF: The total OFF integration time tOFF is split into two OFF ob-
servations with half the integration time, tR = tOFF/2, before and after the series of N
source points. The reference count rate subtracted from each source count rate is given
by the linear interpolation between the two OFF measurements

Cs,i = cs,i − [(1− l)cR,1 + lcR,2] (2)

Here, l is given by a time interpolation equation which results in l = 0 if the source
count rate is measured at the time of the first OFF observation and in l = 1 if it is
measured at the time of the second OFF. It can be obtained from

l =
tR/2 + td,1 + (i − 1/2)ts

tR + td,1 + td,2 + Nts
(3)

where the terms td,1 and td,2 stand for the dead times when going from the OFF position
to the first source point and from the last source point to the OFF position. The number
i denotes the index of the source point in the current scan and N is the total number of
source points between two OFF measurements.
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The actual timing for the observation can be almost identical to case i) because the
OFF measurements between the source series are simply split into two subsequent OFF
measurements with the half time. The only difference is that the whole observation is
bracketed between two OFF measurements with half the standard OFF integration time.
This approach is currently the default setting for the OTF calibration at the IRAM 30 m
telescope.

iii) double OFF: This approach uses the same splitting of the OFF measurement into
two parts before and after the source series as case ii) but uses the average of both count
rates for the calibration instead of applying a linear interpolation in time.

Cs,i = cs,i −
[

1
2

cR,1 +
1
2

cR,2

]
(4)

It corresponds to Eq. (2) with a fixed value l = 0.5.
This approach guarantees that all source points in a series are calibrated with the

same OFF count rate corresponding to the value obtained in the linear interpolation at
the centre of the series of source points.

The obvious advantage of the linear interpolation (ii) is the complete cancellation of
all linear drifts. The disadvantage is the production of a varying noise across each series
of source points resulting from the variable OFF contributions. In the centre of each
series, where l = 0.5, the noise from the OFF position corresponds to an integration
time of tOFF, but at the ends, where l = 0 or l = 1, the noise from the OFF is higher
by

√
2 because only a single measurement with tR = tOFF/2 contributes there. This is

actually visible in some IRAM observations where the noise is minimal in the centre of
each line but increasing towards the edges of the maps (Teyssier, priv.comm.). However,
the effect is relatively small because the noise contribution from the OFF integration to
the total noise is small for large scans, when tOFF =

√
Nts is used, so that its change by

a factor of
√

2 does not have a big impact on the overall calibration.

2.3 Correlated noise

The calibration of the data from several source points with a common OFF measure-
ment always produces a certain amount of correlated noise in the final data. Because
the different reference calibration approaches imply different ways of adding the noise
from the neighbouring two OFF measurements to a series of source data they will result
in a different amount of correlated noise throughout any OTF map. When the calibra-
tion involves a temporal interpolation, the correlated noise will also vary from point to
point.

Because of this temporal dependence there is no unique single parameter to quantify
the correlated noise, but several ways are possible. To avoid a complex multidimen-
sional description we will nevertheless use here a simple parameter for the correlated
noise given by the product of the number of pixels showing the same noise contribution
and the variance of this noise. This definition reflects a measure for the visual effect of
correlated noise in a map where the eye automatically integrates over parts of the map
to detect structures. The product of the variance with the pixel number then corresponds
to this integration.

For the comparison of the correlated noise between the different OFF calibration
schemes we use the single-OFF calibration as a reference. The correlated noise behaviour
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Figure 3: Demonstration of the correlated noise across the source spectra produced by
the subtraction of the reference measurements for the different calibration schemes dis-
cussed in Sect. 2.2. The coloured bars in the time series indicate OFF measurements.
Their height represents the noise in the OFF measurement corresponding to the inte-
gration time. The coloured dots indicate the correlated noise contribution from the OFF
measurement with the corresponding colour to the calibrated source data. The black
dots stand for the total noise variance added from the reference measurements to each
source data point. Part a represents the single OFF calibration, part b the double-OFF
calibration, and part c the interpolated-OFF calibration.

6



for this scheme is visualised in Fig. 3a. The coloured bars in the time series represent the
different OFF measurements and the dots with the corresponding colour indicate the
relative contribution of the noise from the corresponding OFF measurement to the cal-
ibrated source data. The correlated noise is given here by the sum of the height of all
dots between two subsequent OFF measurements.

The situation for the double-OFF calibration is demonstrated in Fig. 3b. When split-
ting the OFF measurement between two OTF scans into two parts the absolute noise
variance in each of these parts is twice the noise of the original measurement. When cal-
ibrating the source data with the fixed ratio l = 1/2 each source point “feels” only half
of the noise variance from each of the OFF measurements, indicated by the coloured
dots, compared to the single-OFF calibration. The sum of their uncorrelated contribu-
tions then provides a noise level identical to the single-OFF treatment. The correlated
noise from each OFF measurement, however, is only half the value from the single-OFF
calibration. Hence, the somewhat better treatment of instrumental drifts by the double-
OFF calibration is also accompanied by a reduction of the correlated noise, so that this
method is clearly superior to the single-OFF calibration.

Fig. 3c shows the behaviour for a linearly interpolated-OFF calibration
With the linear interpolation between the two adjacent OFF measurements, we ob-

tain the increased total noise close to the boundaries of each scan as discussed above.
The total noise variance varies between the value for the single-OFF calibration at the
scan centre and twice this values at the boundaries. The correlated noise from each
OFF measurement varies strongly across a scan. An upper limit to the correlated noise
sum from one OFF measurement can be obtained when neglecting the finite integra-
tion time for the OFF measurement and replacing the sum by an integral. This integral
amounts to 2/3 of the correlated noise sum obtained in the single-OFF calibration. For
the total noise, the integral would, however, show 4/3 of the value for the single-OFF
calibration. Thus, the linear interpolation shows a slightly increased total noise but a
decreased correlated noise contribution compared to the single-OFF scheme. However,
the double-OFF calibration is clearly superior in both aspects.

σ2
(t    )off

σ 2
combined

2

0

1

Time sequence of points in the OTF map

OFF OFF

Figure 4: Demonstration of the correlated noise for an interpolated OFF calibration
where the OFF measurement is used for both adjacent source scans and the OFF in-
tegration time is half of the integration time used in the schemes shown in Fig. 3.
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An obvious further step towards an increase of the efficiency of the observations is
the reuse of an OFF measurement for two two adjacent scans so that the OFF integration
time can be reduced by a factor two. When using the full OFF integration time for the
reference time, i.e. tR = tOFF, all the equations from Sect. 2.2 are still valid. For the
interpolated-OFF calibration this is demonstrated in Fig. 4. Beside the efficiency gain
due to the reduction of the OFF integration time we find that the correlated noise is
increased now by a factor two because the noise from one OFF measurement is spread
across the two adjacent scans. The total noise variance sum, however, does not differ
from Fig. 3.

In case of the double-OFF calibration both the total noise variance and the correlated
noise sum are now identical to the values in the single-OFF calibration with twice the
OFF integration time. For the interpolated OFF calibration both the correlated noise and
the total noise variances are now higher by a factor of up to 4/3 than the value obtained
in the single-OFF calibration. Vice versa we can use an OFF calibration time of 2/3 of
the time used in the single-OFF calibration to obtain the same amount of total noise and
correlated noise in the interpolated-OFF calibration.

Thus we find three different ways to produce the same total noise contribution and
the same degree of correlation in the noise from the OFF measurement to each source
measurement. The single-OFF calibration uses each OFF integration time for a full scan
containing no drift corrections at all. In the double-OFF calibration we can reduce the
OFF integration time to 1/2 and obtain in addition a reduction of the drift error by at
least a factor two. In the interpolated-OFF calibration we need an OFF integration time
of 2/3 compared to the single-OFF calibration but obtain a complete cancellation of all
linear drift errors.

After these general considerations we will actually compute the error in the calibrated
data due to both instrumental drift and the radiometric noise both from the source
points and from the OFF subtraction in the next section.

3 Computation of the data uncertainty due to noise and
drift

3.1 General quantification of the noise and drift fluctuations

The total uncertainty of the measured data composed of radiometric noise and drift
noise can be computed from the statistics of both fluctuation spectra. This has been per-
formed by Schieder & Kramer (2001) using special assumptions on the implementation
of the OTF mode and on the fluctuation spectra. Here, we repeat these computations for
the general case.

If the measured signal is described by a continuous function s(t) the difference be-
tween the count rate for a source measurement and the corresponding OFF measure-
ment can be written as

Cs,i = cs,i(t)− (1− l)cR,1(t)− lcR,2(t) (5)

=
1
ts

∫ t+tR+tD,1+ts

t+tR+tD,1

dt′ s(t′)
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−(1− l)
1
tR

∫ t+tR

t
dt′ s(t′)

−l
1
tR

∫ t+tscan+2tR

t+tscan+tR

dt′ s(t′)

(6)

To abbreviate the notation we use here the total delay time before a given source mea-
surement i, tD,1 = td,1 + (i − 1)ts and the time between two OFF measurements, tscan =
td,1 + Nts + td,2. This equation can be used for all calibration schemes discussed above
when using the general weighting factors l and 1 − l. For the case of the single OFF l is
simply set to 1 or 0 and for the double OFF l = 1/2. In all cases where the OFF measure-
ment is split into two separate contributions we use tR = tOFF/2, otherwise tR = tOFF.

The average total uncertainty of the count rate is then

σ2
C(i) =

〈
(Cs,i − 〈Cs,i〉t)2〉

t (7)

where we treat the measurement as a continuous function, ignoring that it can be per-
formed only in discrete steps.

It can be easily seen that the maximum uncertainty occurs for weak signals where
the count rates on the source and on the OFF position are almost the same. Thus we
start here with this worst case assuming 〈cs,i(t)− (1− l)cR,1(t)− lcR,2(t)〉t = 0. Then the
second term in Eq. (7) vanishes and we can rewrite it as

σ2
C(i) =

〈
cs,i(t)2〉

t + (1− l)2 〈
cR,1(t)2〉

t + l2 〈
cR,2(t)2〉

t

−2(1− l) 〈cs,i(t)cR,1(t)〉t − 2l 〈cs,i(t)cR,2(t)〉t

+2l(1− l) 〈cR,1(t)cR,2(t)〉t (8)

The first three contributions contain the variation representing the noise within each
of the three measurements involved. The other terms represent the cross correlation
between them containing all drift terms.

The computation scheme for all six terms follows the same approach. We demonstrate
it here only for 〈cs,i(t)cR,1(t)〉t:

〈cs,i(t)cR,1(t)〉t =
〈

1
tstR

∫ t+tR

t
dt′

∫ t+tR+tD,1+ts

t+tR+tD,1

dt′′ s(t′)s(t′′)
〉

t
(9)

With an appropriate coordinate transformation to time variables τ ′ and τ ′′ starting at
the beginning of the two involved measurements we obtain

〈cs,i(t)cR,1(t)〉t =
〈

1
tstR

∫ tR

0
dτ ′

∫ ts

0
dτ ′′ s(t− τ ′)s(t− τ ′′ + tD,1 + ts)

〉
t

(10)

The integrals can be evaluated if we know the auto-correlation function of the fluctu-
ation spectrum. For a power-law noise spectrum S( f ) ∝ 1/ fα with spectral indices α

between 0 and 31 the auto-correlation function can be evaluated as

γ(τ) = 〈s(t + τ)s(t)〉t

= g0 − gατα−1 (11)

1There exists a logarithmic deviation for α = 1, so that equation does not hold for this particular value.
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assuming zero averages (Schieder & Kramer 2001).
Exploiting this relation we can exchange the sequence of integration and averaging

resulting in

〈cs,i(t)cR,1(t)〉t =
1

tstR

∫ tR

0
dτ ′

∫ ts

0
dτ ′′γ(τ ′ − τ ′′ + tD,1 + ts)

= g0 −
gα

α(α + 1)tstR

{
[tD,1 + ts + tR]α+1 − [tD,1 + tR]α+1

−[tD,1 + ts]α+1 + tα+1
D,1

}
(12)

Applying the same procedure to all terms in Eq. (8) results in

σ2
C(i) =

−2gα

α(α + 1)

{
tα−1

s + (1− 2l + 2l2)tα−1
R

+l(1− l)
(2tR + tscan)α+1 − 2(tR + tscan)α+1 + tα+1

scan

t2
R

−(1− l)
(tR + tD,1 + ts)α+1 − (tR + tD,1)α+1 − (tD,1 + ts)α+1 + tα+1

D,1

tRts

−l
(tR + tD,2 + ts)α+1 − (tR + tD,2)α+1 − (tD,2 + ts)α+1 + tα+1

D,2

tRts

}
(13)

where we have use tD,2 as abbreviation for the total delay time after a given source
measurement i, tD,2 = tscan − tD,1 − ts = td,2 + (N − i)ts.

The coefficient gα giving the amplitude of the fluctuations can be determined by an
Allan variance measurement (Allan 1966). The Allan variance measures in a long time
series of data dumps the variance of the difference of the signal between subsequent
intervals as a function of the length of these intervals. A comprehensive introduction
to this technique was given by Ossenkopf (2003). The Allan variance spectrum can be
computed in the same way as laid out above2

σ2
A =

2gα

α(α + 1)
4(2α−1 − 1)tα−1

bin (14)

where tbin denotes the length of the data intervals. This allows to express the total data
uncertainty in terms of the Allan variance spectrum.

However, the fluctuations of any signal are not characterised by a single power spec-
trum but they consist at least of a superposition of white noise with a spectral index
α = 0 and an instrumental drift contribution with some steeper spectral index. Fortu-
nately, we expect no correlation between the radiometric white noise and any instru-
mental drift, so that both the Allan variance spectrum and in the uncertainty of the
calibrated data from an OTF observation are simply the sum of both contributions. The
Allan variance of the white noise contribution is given by

σ2
A =

2〈s(t)〉2
t

BFltbin
(15)

2The original definition of the Allan variance by Allan (1966) is smaller by the factor 1/2.
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where BFl denotes the fluctuation bandwidth of the radiometric noise. This can be ex-
ploited to relate the coefficient gα to this quantity. With the definition of the Allan time
tA as the bin size where the drift contribution and the radiometric noise contribution
in the measured Allan variance spectrum show the same magnitude (Ossenkopf 2003),
we can relate the radiometric noise to the coefficient gα. We obtain the coefficient of the
drift contribution as

gα =
α(α + 1)〈s(t)〉2

t

4(2α−1 − 1)BFltαA
(16)

Finally we can compare the total uncertainty of the calibrated data σ2
C(i) to the un-

avoidable uncertainty due to the radiometric noise in an equivalent measurement with
an ideal instrument without any drifts, assuming an ideal observing mode without the
need for an OFF observation. If we assume that this measurement would use the same
total observing time for the N points of an OTF cycle in a given map, ttot = tOFF + tscan,
the resulting data uncertainty would be

σ2
C,ideal =

N〈s(t)〉2
t

BFlttot
(17)

Normalising the radiometric and drift noise of the real OTF observation relative to the
limiting ideal observation we obtain a measure for the actual impact of the instrumental
drift on the data quality

σ2
C(i)

σ2
C,ideal

=
xtot

N

{
1
xs

+
1− 2l + 2l2

xR
− 2

4(2α−1 − 1)

[
xα−1

s + (1− 2l + 2l2)xα−1
R

+(l − l2)
(2xR + xscan)α+1 − 2(xR + xscan)α+1 + xα+1

scan

x2
R

−(1− l)
(xR + xD,1 + xs)α+1 − (xR + xD,1)α+1 − (xD,1 + xs)α+1 + xα+1

D,1

xRxs

−l
(xR + xD,2 + xs)α+1 − (xR + xD,2)α+1 − (xD,2 + xs)α+1 + xα+1

D,2

xRxs

]}
(18)

where we have taken all time scales relative to the Allan time tA, i.e. xtot = ttot/tA,
xs = ts/tA and so on.

We find two essential contributions: the first two terms characterise the radiometric
noise of the observations. This noise is higher than the radiometric noise in the ideal
observation due to the xR-term containing the noise from the OFF measurement. With-
out this term the radiometric noise ratio would be unity. All terms in the curled brackets
characterise the drift contribution to the total data uncertainty. The different terms stand
here for the drift occurring during the different time lags involved in the measurement.
The ratio between the drift noise and the radiometric noise of the observed data can be
computed by simply dividing these two contributions.

3.2 Comparison of the different calibration schemes

With Eq. (18) we can now draw quantitative conclusions on the different calibration
schemes. We have computed the data uncertainty σ2

C(i)/σ2
C,ideal as a function of the scan
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length N, the spectral index of the instrumental drift α, the position of a source point
within the OTF scan i, the source point integration time xs, and the dead times between
the OFF measurement and the source integrations in the scan line. To avoid too many
parameters we assume as a simplification that the two dead times for moving from the
source to the OFF position and vice versa are the same, xd,1 = xd,2 = xd. This is well
fulfilled for most observations with HIFI, due to the large inertia for the telescope but
might need a small correction for fast ground-based telescopes measuring large OTF
maps. Moreover, it is assumed in this section that the total integration time on the OFF
position follows the standard rule xOFF =

√
Nxs derived for an ideal telescope (Beuther

et al. 2000, Schieder & Kramer 2001).
In Fig. 5 we compare the three standard calibration schemes as discussed in Sect. 2.2.

It shows the normalised total noise rms as a function of the position of a source point
within the scan line for different source integration times. In the simulation a spectral
index of the instrumental drift α = 2.5 was assumed which is typical for spectroscopic
fluctuations (Schieder & Kramer 2001, Ossenkopf 2003). The scan length was fixed to
N = 10 points and the total dead time given as the sum of the dead times before and
after an OFF measurement was assumed to be a quarter of the Allan time. This is a
typical value that we expect for Herschel but it is somewhat too high for most ground-
based telescopes.

For all three cases we find that the shortest integration time, xs = 0.01 results in a rela-
tively high noise. This can be easily understood by the low efficiency of this observation
where only a small integration time is spent on the source but a large portion of the
total cycle is occupied by the dead times. Because of this relatively fast cycle the noise is
barely varying across the scan line. No instrumental drifts are seen. In contrast, the data
from the whole scan line are dominated by instrumental drifts when the source integra-
tion time per point are in the order of the Allan time. Thus, an intermediate integration
time per source point results in the lowest overall data uncertainty. In this example the
optimum falls between about 0.1 Allan times for the single-OFF calibration and 0.2 Al-
lan times for the interpolated-OFF calibration. The optimum is smaller as smaller the
dead time in a scan and as higher the number of source points in a scan are.

Comparing the calibration schemes shows extreme differences in the impact of the in-
strumental drift. The single-OFF calibration has a huge sensitivity to instrumental drifts
and the advantage of the interpolated-OFF calibration relative to the double-OFF cali-
bration is also clearly visible. The latter has a much higher data uncertainty at the ends
of the scan. In contrast, the variation of the radiometric noise from the OFF calibration
in the interpolated-OFF scheme, which is visible at low integration times as small noise
enhancements at the ends of the interval, is only a small contribution. In the centre of
the scan double-OFF and interpolated-OFF calibration necessarily have to agree. With
these results the single-OFF calibration is easily disqualified compared to the other two
schemes. For all cases with many source points per OFF measurement N and with a
noticeable instrumental drift, the interpolated-OFF calibration is also clearly superior
to the double-OFF calibration. The latter one has advantages for short scans and small
instrumental drifts.

In general the parameter study has shown that the data uncertainty due to drift effects
grows with a growing spectral index of the fluctuation spectrum α and with growing
dead times before and after the OFF measurements. Both parameters cannot be changed
by an appropriate selection of the details of the observation or a change in the calibra-
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a)

b)

c)

Figure 5: Variation of the total data uncertainty obtained in the different OTF calibration
schemes across an OTF scan line. The rms of the fluctuations is plotted relative to the
rms which would be obtained by an ideal instrument. Part a shows the result from the
single-OFF calibration, part b the double-OFF calibration, and part c the interpolated-
OFF calibration. A scan length N = 10, a spectral index α = 2.5, and a total dead time
xd,1 + xd,2 = 0.25 was used.
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tion scheme. Thus the instrumental design should be directed towards a minimisation of
both parameters. The drift uncertainty is increased by a higher number of source points
in each scan but reduced in case of smaller integration times per source point. The mu-
tual optimisation of these two parameters leads in general to the lowest uncertainties
for scans with a large number of points but very short integration times. This may be
limited, of course, by the size of the region to be mapped and data rate which can be
taken with the instrument. A detailed optimisation taking both effects into account is
given in Sect. 5.1. We have to be aware, however, that all time scales are actually relative
to the Allan time. The main prerequisite for any accurate mapping observation is thus a
long instrumental stability, as measured by the Allan time.

Looking at the overall pictures it is clear that the interpolated approach is in general
the most robust and accurate one. In all cases where we have an accurate knowledge of
the instrumental drift behaviour and where we can use very small integration times, the
double-OFF calibration is, however, slightly better than the interpolation. The ideal ap-
proach would be to change the linear interpolation approach into an equivalent scheme
where different portions in time from the OFF integration before and after the line are
combined as into the OFF spectrum to be subtracted from the data, but this would need
an arbitrarily fine granularity of the data from the OFF in time which does not seem to
be practically feasible. Thus we can conclude that for telescopes which can observe re-
ally fast, like IRAM, the double-OFF approach is actually the best solution, whereas for
telescopes like Herschel with long delay times and a limited data rate we should rather
use the interpolation which is only slightly worse for small integration times but much
better in case of a slow timing.

4 Application to observed data

The different calibration schemes were tested using existing molecular line mapping
observations performed with the KOSMA 3 m telescope. An arbitrary OTF patch was
taken from a larger W 75 survey in 13CO 2-1 obtained by Jakob et al. (in prep.). The
observations were taken in the ordinary OTF mode where after each line of the patch,
containing 20 source integrations of 5 s, one OFF integration of 23 s, corresponding to√

20× 5 s, was performed. For the slew from the end of an OTF scan to the OFF position
a dead time of 19 s was needed, the slew from the OFF position to the beginning of the
subsequent OTF scan took 12 s. The spectral resolution of the used backend is 360 kHz
and the corresponding fluctuation bandwidth 560 kHz. The spectroscopic Allan time
of the instrument at this resolution is about 120 s. The Allan time of the whole system
including the atmosphere is estimated to be approximately 80 s. The drift index of the
fluctuations falls between 2 and 3. For all computations we assume 2.5 here. The single-
sideband system temperature during the observations was about 350 K.

To emphasise the drift effects we first consider maps of line integrated intensities,
where the full velocity range of the 13CO line from 4 to 8 km/s was integrated corre-
sponding to an effective bin width of 2.9 MHz. When the bin width exceeds the fluctua-
tion bandwidth of the single channels considerably the effective profile is close to a box
car profile, so that the resulting fluctuation bandwidth is equal to the bin width. The
effective Allan time at this width is then tA = (560 kHz/2.9 MHz)1/2.5 × 80 s ≈ 40 s
(Schieder & Kramer 2001) so that one OTF cycle corresponds to approximately 4 Al-
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lan times at this resolution. Thus we expect that drift effects start to become noticeable
above the radiometric noise level in the integrated maps.

Figure 6: Demonstration of the influence of the different calibration schemes on the
appearance of the produced line maps. The maps in the upper panels were obtained
when calibrating with the single OFF measurement before and after each line. The lower
left panel shows the result with a fixed sum from the two adjacent OFF measurements
(l = 1/2) and the lower right panel shows the result when using a time interpolation
between both OFF measurements. The map was measured in horizontal stripes. After
each line an OFF measurement was taken.

Fig. 6 compares the four integrated line maps obtained in the different calibration
schemes. First we see immediately that the two single-OFF calibration maps show a
very “stripy” structure. This is more prominent when using the OFF after the scan lines
than with the OFF before the line but also in this first case one can clearly notice several
elongated structures in horizontal direction which are only drift artifacts and not real
structures. The stripes are not restricted to one end of the scans but cover large parts
of the map. In contrast, the maps obtained from the double-OFF calibration and the
interpolated-OFF calibration appear basically isotropic and they are very similar. The
small remainders of a stripy structure at the third and eleventh line from the top in the
double-OFF map are, however, further suppressed when using the interpolated-OFF in-
tegration. We can conclude that the first application of the different calibration schemes
to real observations proves already the theoretical considerations that the single-OFF
calibration is clearly more susceptible to drift effects than the other calibration schemes
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so that it should be avoided. The interpolated-OFF calibration seems to be slightly better
than the double-OF calibration but this is hardly significant in this example.

From Eq. (18) we can actually compute the drift noise that we expect in the differ-
ent calibration schemes. The ideal observation would result in a radiometric noise of
σ ≈ 0.1 K. When calibrating the data following the single-OFF scheme, the actual ra-
diometric noise is higher by the factor 1.87. From Fig. 5 we see that the maximum drift
occurs at the source point with the maximum temporal distance to the corresponding
OFF measurement. When using the OFF measurement before each scan for calibration
we find that the maximum drift noiseσ2

C,drift = 2.4σC,ideal = 1.3σC,rad.. With the OFF mea-
surement after each scan we arrive at somewhat higher values of 1.4σC,rad. due to the
slightly longer slew time at the end of each scan. It is clear that these drift effects are vis-
ible as global structures in the integrated line maps, but for each single source point they
can still be hidden in the radiometric noise. For the double-OFF calibration the radio-
metric noise is somewhat smaller, σC,rad. = 1.71σC,ideal, because of the lower noise from
the OFF data including two OFF measurements. The maximum drift error is expected
at the ends of the scan interval (see Fig. 5). We obtain σ2

C,drift = 0.56σC,ideal = 0.33σC,rad..
Thus, the double-OFF integration should already remove all visible drift effects from
the maps. For the interpolated-OFF calibration the maximum drift error occurs again in
the centre of a scan line. Here, we find σ2

C,drift = 0.35σC,ideal = 0.2σC,rad. with the same ra-
diometric noise as in the double-OFF calibration. Towards the ends of the OTF scan the
radiometric noise grows slightly up to 1.78σC,ideal but the drift noise decreases further
down to σ2

C,drift = 0.14σC,ideal = 0.08σC,rad.. Thus all drift effects should be completely
suppressed in the integrated line map when applying the interpolated-OFF calibration.

We have to keep in mind, however, that the Allan variance is only a statistical mea-
sure to characterise the drift behaviour. Thus we cannot expect to find uniform drift
effects in all scans but we will always find lines with stronger and weaker indications of
instabilities. This is well visible in Fig. 6. Eq. (18) is strictly valid only for the ensemble
average over many observations. The possible spread of the actual drift noise in a par-
ticular observation relative to this average value grows towards higher spectral indices
of the fluctuations. When interpreting calibrated data, one thus has always to take into
account that the errors computed here are no error limits but 1σ values of a stochastic
process.

So far we have concentrated on the drift effects which are best visible in the inte-
grated line maps. To study the effect of correlated noise we have to use single channels
instead where the radiometric noise is larger and the drift effects are smaller. For a sin-
gle channel an ideal observation would give a radiometric noise of σ ≈ 0.23 K and the
Allan time is about 80 s. Fig. 7 shows the maps of the single spectrometer channel at the
position of the peak of the average line profile obtained from the different calibration
schemes. Here we find, much smaller differences between the calibration schemes than
in Fig. 6 but it still seems that these differences are dominated by the drift effects and
not by the different introduction of correlated noise. This can be seen by comparing the
two figures. We find that those lines showing drift signatures in the integrated maps
are the same lines that show the smaller deviations in the channel maps although the
radiometric noise is higher in the channel maps.

This is in agreement with the results that we get from Eq. (18). The amount of corre-
lated radiometric noise relative to the ideal observation is the same as for the integrated
map discussed above. Thus we have about 25 % more noise from the OFF positions in
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Figure 7: Channel map at 5.7 km/s obtained in the different calibration schemes from
the same data as used for the integrated line maps in Fig. 6.

the single-OFF calibration and about 10 % more noise at the edges of the interpolated-
OFF calibration than in the double-OFF calibration but this is not noticeable by eye in
the figure. Thus we can conclude that for maps with more that 10 pixels the introduc-
tion of correlated noise by the different calibration schemes is sufficiently similar so that
they should be chosen basically on their capability of correcting the drift of the system
and not on differences in the correlated radiometric noise. Thus we restrict ourselves to
the interpolated-OFF calibration in the following.

5 Global optimisation

5.1 Minimisation of the total noise

Aside from identifying the optimum calibration scheme for OTF observations, the for-
malism introduced in Sect. 2 can also be used to optimise the actual timing of the obser-
vations. In Sect. 2.3 it was discussed already that it is possible to adjust the time spent
for the OFF integration by considering the correlated noise and the resulting total data
uncertainty. Moreover, Fig. 5 has shown that it is possible to compute the drift noise as
a function of the source integration time. Consequently, we can try to adapt the scan-
ning speed of the OTF observations to provide source integration times resulting in a
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minimum uncertainty of the calibrated data.

Figure 8: Relative rms of the total data uncertainty from radiometric and drift noise
obtained in the interpolated-OFF calibration as a function of the source point integration
time relative to the Allan time for different scan lengths. A spectral index α = 2.5, and
a dead time 2xd = 0.25 was used here.

This is demonstrated in Fig. 8 where the resulting data uncertainty is plotted as a func-
tion of the source integration time for different scan lengths. A spectral index α = 2.5
typical for spectroscopic drifts and a total dead time of 0.25 Allan times were used here.
The plot shows the maximum value across the OTF scans, which is typically reached
at the ends of the scan for short cycles and in the centre as soon as drift effects start to
dominate.

For all scan lengths we find a characteristic minimum corresponding to the optimum
source integration time. When using longer integration times the drift effects start to
dominate. At smaller integration times the relative overhead from the dead times for
slewing to and from the OFF position makes the observations inefficient so that the
radiometric noise too high. We also see that the relative accuracy of the observations
at the optimum timing grows towards more source points within each OTF scan. The
equivalent plot for the double-OFF calibration shows a steeper increase of the noise
when the source point integration time is above its optimum value but minima which
are slightly deeper than the minima shown here.

A special behaviour occurs for very shallow spectra. There, the slope at large integra-
tion times is the same for all scan lengths and we find no intersection of the curves. This
means that very long scans are always favourable even if the resulting cycle length is
much larger than the Allan time. This can be easily understood from the fact that in fluc-
tuation spectra shallower than 1/ f the noise is still reduced with increasing integration
time, just like in the familiar case of white noise, but with another slope. The exact value
for the transition to this behaviour depends on the dead times involved but it occurs
usually for α < 0.75.

Independent from the spectral index of the fluctuations we find that the best observ-
ing mode is always given by very long scans with many points and a very short integra-
tion time per point in each scan. A full observation is then obtained from many of these
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short-time coverages. This was shown already by Schieder & Kramer (2001). Unfortu-
nately, there are practical limitations to this approach in each instrument. A telescope
cannot move arbitrarily fast and the integrated data cannot be read out and dumped
at an infinite data rate. Thus, the minimum relative integration time xmin set by the in-
strument is a limiting quantity for the optimum OTF timing. Moreover, the size of the
astronomical source never justifies an arbitrarily large map, so that the maximum num-
ber of source points is also constrained. Taking these two limitations a plot like Fig. 8
computed for the actual slewing time can then be used to obtain the optimum observing
mode. In most cases, the solution will still fall at the extreme provided by the maximum
possible number of points and the minimum possible integration time.

The OTF mode implemented at most ground-based telescopes always identifies the
OTF scan length with the length of a single row in an OTF map. However, there is no a
priori requirement for this identity. Thus the observing mode definition of OTF modes
for the Herschel Space Telescope foresee also to use only parts of map rows or multiple
rows within one OTF scan between two OFF measurements. This is partially motivated
by the relatively slow slew to the OFF position exceeding the turn time between subse-
quent lines in an OTF mapping. In case of such an inequality between the scan length N
and the length of a map row Nrow the additional turn delays tturn between subsequent
rows have to be taken into account when computing the total noise in the data. For a
point i measured within an OTF scan of length N, the number of turns before and after
this point are Nturn,1 = (i − 1)/Nrow and Nturn,2 = (N − i)/Nrow, respectively. Hence,
the total delay before the measurement xD,1 has to be increased by Nturn,1xturn, the to-
tal delay after the measurement xD,2 by Nturn,2xturn and the total scan length xscan by
(Nturn,1 + Nturn,2)xturn in Eq. (18), where xturn denotes the turn time relative to the Allan
time, xturn = tturn/tA.

In this case, the minimum relative data uncertainty is no longer provided by the max-
imum scan length and the minimum possible integration time because of the increasing
overhead for turns when increasing the scan length. The optimisation has to be done
by actually evaluating Eq. (18) for different scan lengths and integration times. This is
demonstrated in Fig. 9 showing the total noise rms as a function of the source integra-
tion time and the scan length for a map where the row length is restricted to 30 points
and the relative turn time is xturn = 0.15.

The most important feature in this plot is the large length of the valley in terms of
the scan length, but to a lesser extend also its width in terms of the source integration
time. The 2 %-contour encloses already a factor six in scan length and a factor two in the
integration time The whole plotted 10 % range is even much larger. This means that OTF
observations are extremely robust with respect to bad timings. Even when using setups
which are very different from the optimum the noise rms is typically only enhanced by
a few up to some ten percent. This explains why the OTF mode is used very successfully
at many ground-based telescopes without a thorough theoretical analysis.

The staircase structure of the contours reflects additional turns which are required
when the scan length exceeds multiples of the row length. There are several minima
with their deepest points always at integer multiples of the row length. In this example,
the optimum scan length falls at 120 points, but scans with 150, 180 or 210 points and
a slightly shorter integration time are practically not worse. The optimum source inte-
gration time is no longer determined by the minimum time allowed by the instrument
but still short compared to the Allan time. In numerous tests with parameters typical
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Figure 9: Relative rms of the calibrated data in OTF observations as a function of the
scan length and the integration time per source point relative to the system Allan time.
Values of more than 10 % above the minimum are clipped in the plot. The asterisk marks
the optimum setup resulting in the minimum noise. A row length of 30 points, an OFF
dead time 2xd = 0.6, a turn time of the telescope xturn = 0.15, and a spectral index
α = 2.5 were used here.

for different telescopes we found no case with a minimum not corresponding to a full
row. Thus we can always complete rows in an OTF scan before going to the OFF posi-
tion. However, it is also typical that one can combine several rows in an OTF scan. As
the topology of the surface plotted in Fig. 9 is relatively simple, an optimisation of OTF
observations based on Eq. (18) is always possible without much computational effort
even if there is no analytic expression for the optimum timing.

Eq. (18) can also be used to check the optimum integration time for the OFF mea-
surement. In Sect. 2.3 qualitative arguments had shown that for the interpolated-OFF
calibration scheme an OFF integration time of tOFF = 2/3 ×

√
Nts should be sufficient.

By introducing q as a free parameter characterising the relative OFF integration time
tOFF = q

√
Nts we can directly compute the impact of this parameter on the total noise

of the calibrated data. The result is shown in Fig. 10. Here, we have determined the
global minimum of the total noise error depending on the scan length, the q parameter
and the source integration time. As discussed above the minimum falls at the shortest
possible integration time when no restrictions are made to the scan length. Thus this
parameter is not plotted here, but only the dependency of the noise on the other two
parameters.

We find again a very broad range of good parameters. At the optimum scan length of
150 points, the 2 %-contour covers q values between 0.4 and 1.6. Thus, the exact choice
of the OFF time has hardly any influence on the total data uncertainty of the calibrated
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Figure 10: Relative rms of the calibrated data in OTF observations as a function of the
scan length and the q parameter determining the OFF integration time. The parameters
from Fig. 9 were used together with the optimum source integration time of xs = 0.03
given there.

data. We find the same robustness discussed above for the scan lengths. Varying the
model parameters showed that the optimum scan length depends strongly on the min-
imum allowed integration time and the spectral index of the fluctuations but that the
optimum q-parameter is always close to 0.7. like in Fig. 10. Thus this value can be used
for all observations applying the interpolated-OFF calibration scheme discussed in Sect.
2.3.

5.2 Examples

To provide a feeling for the results discussed they will be applied to a few realistic exam-
ples. Ground based telescopes have the general advantage that they can quickly slew to
the off position and store the measured data at a high rate. In principle, they could also
perform a fast turn between subsequent rows in a map, but this feature is rarely imple-
mented. Their big disadvantage is the atmospheric instability. A typical Allan variance
spectrum measured in the 345 GHz window in good weather conditions at the KOSMA
telescope shows an Allan time of about 80 s and a spectral index α ≈ 2.5 for spec-
troscopic measurements with a fluctuation bandwidth of 1.6 MHz corresponding to a
backend velocity resolution of about 1 km/s. In contrast, the continuum drifts at the
same resolution show an Allan time of about 8 s and a shallow spectrum with an index
of about α ≈ 1.5.

Assuming a map size of at most 30 points, a minimum data taking interval of 1 s, a
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dead time for slewing to the OFF position of 10 s, and a dead time for a turn between
the rows of 8 s we find that for spectroscopic observations (subtracting a zero-order
baseline) the optimum scan consists of 180 points, i.e. six rows, observed with an inte-
gration time of 2 s per source point. The full range of good observing parameters covers
scan lengths between 120 and 270 points and integration times between 1 s and 4 s. The
drift contribution to the total noise is only 8 % of the radiometric noise at the optimum
timing. If the instrument is not capable to observe subsequent rows without much de-
lay, so that the scan lengths are restricted to the row length, the optimum integration
time is 6 s and the total rms of the data is increased by 5 % relative to a telescope with
an implemented turn. For continuum observations the optimum integration time is the
minimum allowed integration time, the optimum scan length is 60 points but the rela-
tive drift contribution is already 70 %. In this case, the restriction of the scan length to
the row length provides almost no deterioration of the observing efficiency, in fact by
reducing the scan length to one row, the total noise rms is increased only by 1 % but the
drift contribution relative to the radiometric noise drops to 51 %.

For HIFI observations with the Herschel Space Telescope we expect a more stable
configuration, with an Allan time of about 150 s for spectroscopic drifts at a fluctuation
bandwidth of 1.6 MHz. The drift index should also be close to α = 2.5. On the other
hand, all telescope slews are relatively slow so that we can estimate a slewing time of
about 40 s when going to an OFF position which is 20′ apart from the source and a turn
time of about 20 s. Moreover, the used hot electron mobility transistors are known to
dominate the fluctuation spectrum for continuum measurements resulting in an Allan
time of about 1.5 s and a spectral shape somewhat shallower than 1/ f noise at the same
spectral resolution. The minimum data taking interval will be 1 s for all mapping obser-
vations. For line maps the optimum scan length is 180 points. All integer multiples of 30
between 90 and 270 are almost as good. The optimum integration time falls between 2 s
and 8 s with the exact minimum at 4 s. The drift noise contribution at the optimum pa-
rameters is 10 % of the radiometric noise. Here, the complexity of scanning subsequent
rows in opposite directions is well justified because a limitation of the scan length to the
row length would increase the noise rms obtained in the same observing time by 9%
corresponding to a 19% loss of observing efficiency. Continuum observations in OTF
mode always have to use the fastest data rate available and restrict themselves to one
row but the drift noise in this setup would exceed the radiometric noise already by a
factor 2.4. Thus, we have to conclude that continuum observations with HIFI cannot be
performed in the OTF mode with a reasonable accuracy.

5.3 Discussion

OTF observations in general and the optimisation scheme proposed above in particular
have a serious drawback. When reusing the calibrated data for purposes which were not
foreseen when planning the observations, by spatially integrating over several points or
by combining neighbouring pixels in the spectra, the relative gain in the noise reduction
is always lower than for pure radiometric noise.

The effect is well known for spatial rebinning. When maps taken in OTF mode a re-
binned to a coarser resolution the contribution of the correlated noise from the OFF po-
sition stays constant (Beuther et al. 2000). By extending OTF scans over several rows of
a map this effect is in principle even more enhanced. On the other hand, the total noise
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contribution from the OFF measurement drops with increased scan lengths so that the
effect of correlated noise is also somewhat reduced by extending the scans. With the pro-
posed optimisation scheme the same becomes also true for the spectral rebinning. The
Allan time used to optimise the observations is determined by the ratio of drift noise
and radiometric noise. Rebinning of the spectra to a coarser resolution only reduces the
radiometric noise so that the relative contribution of the drift noise is enhanced.

Thus, the value of OTF maps with respect to their reuse for binning either spatially
of spectroscopically is always limited. In both cases artificial structures due to instru-
mental drifts or due to the correlated noise are enhanced. Consequently, a very careful
planning of the observations has to be performed. The observer has to find a compro-
mise between the efficiency of the observations and their re-usability. The optimisation
scheme should always be applied at the level of the coarsest spatial and spectral res-
olution that might be used for interpreting the calibrated data. Thus the planning can
well start from a spatial grid that is not fully sampled even if the observations will be
taken on a Nyquist sampled grid. This guarantees that all artifacts from the observing
mode are suppressed, however, at the costs of the observing efficiency. As more precise
the scientific application of the measured data can be specified in terms of spatial and
spectroscopic resolution as better can the actual observing scheme be adapted to the
application resulting in more efficient observations.

Moreover, we have to introduce a general warning. The optimum total cycle times
for the OTF observations derived here can easily exceed the Allan stability time of the
instrument by a large factor. This is a major difference to the behaviour of single-point
ON-OFF observations where reasonable maximum cycle times are in the order of 2–
3 Allan stability time scales. All conclusions were drawn here on the assumption that
the fluctuation spectrum follows a simple power law. Whereas it is justified to fit almost
every spectrum over a dynamic range of about three by a power law within the accuracy
of the method this is no longer guaranteed over a much larger scale. Thus the Allan
variance spectrum has to be determined over at least the time scale expected for the
longest OTF observing cycles and not only over a few Allan times. Only if this long
term spectrum is well fitted by a power law the formalism derived here can be applied
using the corresponding spectral index of the fluctuations α.

6 Conclusions

In most cases mapping observations should follow the scheme known from OTF maps
where the calibration of several source points uses a common OFF measurement for
reference. This is in general far more efficient than all other reference modes. It intro-
duces, however, correlated noise across the calibrated map stemming from the common
OFF integration. The total amount of correlated noise grows with the square root of the
number of points in a scan between two OFF measurements. To minimise the impact of
this correlated noise the two neighbouring OFF measurements should always be used
for the calibration. Their optimum integration time is approximately 0.7

√
Nts.

In most cases the calibration of the source data should follow the interpolated-OFF
scheme where the data from both neighbouring OFF measurements are weighted ac-
cording to their temporal distance from the source measurement. This compensates all
linear drifts of the instrument and results in the lowest total uncertainty of the calibrated

23



data. The single-OFF calibration still used at several telescopes should be immediately
abandoned because of the strong sensitivity of the calibrated data to drift effects. For
very short scans with less than 10 points at a fast telescope the double-OFF calibration
is superior to the interpolated-OFF calibration but its use is limited to these cases.

The total uncertainty of the calibrated data consisting of radiometric noise and drift
noise can be computed when the fluctuation spectrum of instrumental instabilities is
known, i.e. an Allan variance measurement was performed. The result can be used to
optimise the time line for the actual realization of the mapping observations. It turns out
that the OTF observing mode is in general very robust with respect to non-optimal tim-
ings. The scan length and the source integration time can be varied within a relatively
broad range without increasing the total noise in the calibrated data by more than a few
percent.

The optimisation reveals some general relations on conditions for accurate and effi-
cient mapping observations:

• The efficiency of all mapping modes grows with growing map size.

• The possibility of fast data readouts is in many cases essential to minimise the drift
contributions.

• In most conditions OTF scans can consist of integer multiples of complete map
rows.

We have to stress again that the most essential impact on the data accuracy is provided
by the system stability. All time scales have to be considered relative to the Allan time.
The main prerequisite for any accurate mapping observation is thus a long instrumental
stability, as measured by the Allan time. Due to the low gain stability of most heterodyne
instruments it turns out that it is practically impossible to derive significant information
on the continuum level of astronomical sources using the mapping modes discussed
here. They are always heavily influenced by the instrumental drifts.

Both the general design of the mapping modes with a common OFF measurement and
the optimisation scheme proposed limit the re-usability of the data in terms of spatial
or spectroscopic rebinning. The setup should be optimised with a clear picture of the
resolution requirements set by the scientific goal of an observation.
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A Raster map observations

Raster map observations differ from the OTF observations discussed in the main part of
this paper by two properties. First, the effective beam of the observation is always equal
to the actual telescope beam. It does not suffer from the beam broadening discussed for
OTF maps in Sect. 2.1. This advantage is, however, mostly compensated by the disad-
vantage of the dead time between different points of a map. The observation of each
source point is characterised by two time constants here, the source integration time ts

and the slew time to the next map position tm. For all points in the map, except for the
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last point of a scan, the total time needed for the measurement is given by ts,tot = ts + tm.
No additional turn time between two map rows is required. If we redefine the slew time
to the OFF position as t′d,2 = td,2 − tm we can use all equations derived above for the cal-
ibration and the noise estimate in the OTF mode by using ts whenever the integration
time counts and ts,tot whenever delays enter.

In particular the interpolation measure l derived in Sect. 2.2 (Eq. 3) turns into

l =
tR/2 + td,1 + (i − 1/2)ts,tot

tR + td,1 + t′d,2 + Nts,tot
(19)

For the estimate of the total noise in the data Eq. (18) can still be used when the total
delays include the additional slew times, i.e.

xD,1 = xd,1 + (i − 1)xs,tot

xD,2 = xd,2 + (N − i)xs,tot = x′d,2 + (N − i)xs,tot + xm

xscan = xd,1 + Nxs,tot + x′d,2 (20)

The resulting general behaviour corresponds to an OTF map with very long delays be-
fore and after the lines. The corresponding optimum timing may consist of scan lengths
which are shorter than the row lengths but there are no qualitative differences to the
properties discussed for OTF observations.
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