Active Galactic Nuclei and their host galaxies

Gerold Busch Andreas Eckart, Nastaran Fazeli, Michal Zajaček I. Physikalisches Institut der Universität zu Köln

BCGS weekend seminar 2015, Bad Honnef

Bonn-Cologne Graduate School of Physics and Astronomy

Active Galactic Nuclei and their host ga Slightly biased...:)

Gerold Busch Andreas I. Physika

nstitut der Universität zu Köln

BCGS weekend seminar 2015, Bad Honnef

Bonn-Cologne Graduate School of Physics and Astronomy

Extragalactic astronomy is a young discipline!

Palaeolithic cave paintings Lascaux → Plejades??? Japanese: Subaru Arabic: الثريا

Κλαύδιος Πτολεμαῖος/ Ptolemy (~100-160)

μαθηματική σύνταξις/ المجسطي/ Almagest

Nebra sky disk Germany Bronze Ages (~1600 BC)

> Photo credit: Bbc.co.uk, wikipedia

when compared to astronomy in general...

Extragalactic astronomy is a young discipline!

Persian astronomer Abd Al-Rahman Al-Sufi عبدالرحمن صوفی (903-986)

Book of Fixed Stars (~964) First recorded mention of Large Magellanic Cloud and Andromeda nebula

14th century manuscript depicting Andromeda constellation with Andromeda nebula Credit: Strohmaier (1984)

Extragalactic astronomy is a young discipline!

SIMON MARIVS GVNTZENH. MATHEMATICVS ET MEDICVS ANNO M. DC. XIV. ÆTATIS XLIL

NVENTUM PROPRIUM EST: MUNDUS IOVIALIS, ET ORBI Terræsecretum nobile, dante deo.

Simon Marius "rediscovered" Andromeda nebula in 1614

Catalogues of Nebula: Messier, Herschel, Dreyer (18th & 19th century)

Photo credit: wikipedia, cosmology.carnegiescience.edu

William Parson (Earl of Rosse): Sketch of Whirlpool-Galaxy (M51)

Margaret&William Huggins (1861): Spectroscopy of stars

 \rightarrow transition from astronomy to astrophysics

The Great Debate: "The Scale of the Universe" (1920)

Harlow Shapley (1885-1972): All celestial objects are part of the Milky Way.

Heber Curtis (1872-1942): Milky way is just one "Island Universe" (I. Kant) of many.

Settled by Edwin Hubble (1889-1953) in 1925: Determined distances to NGC6822, M33, and M31, they are outside the Milky Way!!

> Photo credit: American Institute of Physics Niels Bohr Library, astro.virginia.edu, nmspacemuseum.org

1st Seyfert spectrum: 1908 E.A. Fath, phd thesis (NGC 1068)

C.K. Seyfert discovered class of AGN (1943)

M. Schmidt observes 3C 273 and finds that the redshift is too high for a normal star (1963): first quasar

Photo credit: wikipedia/Hubble space telescopy

Active Galactic Nucleus

Refers to the existence of energetic phenomena in the nuclei, or central regions, of galaxies which cannot be attributed clearly and directly to stars.

Quasi-stellar object = QSO Quasar = radioloud QSO Photo credit: Hubble

Seyfert galaxy

Many quasars are found at high redshift:

Higher redshift *z*

- = more distant
- = at an earlier age of the Universe

Absorption lines are redshifted compared to those of the Sun. Source: wikipedia

star formation activity and AGN activity as a function of redshift are correlated!

Both peak at z ~ 1-2!

What powers the AGN???

 $E = \eta M c^2$

 $\mathbb{L} = dE/dt$

Conversion of mass into enery with efficiency η

Lynden-Bell (1969) Formulae from Peterson (1997)

I. and II. result in: $L = \eta \dot{M} c^2$,

M = dM/dt

accretion rate

To fule a typical Seyfert type AGN one needs:

with

$$\dot{M} = \frac{L}{\eta c^2} \approx 1.8 \times 10^{-3} \left(\frac{L_{44}}{\eta}\right) M_{\odot} \text{ yr}^{-1}.$$

Accretion efficiency

The potential energy of the mass *m* at a distance *r* to the central source with mass M is given by: U = GMm/r. $\eta \propto M/r$ $L \approx \frac{dU}{dt} = \frac{GM}{r}\frac{dm}{dt} = \frac{GM\dot{M}}{r}$ From The compactness one finds: of the mass distribution $L = \eta \dot{M} c^2$. is essential for and the efficieny of the accretion process

Compactness is maximum for black holes. Fore these objects the efficiency η is also maximum.

Accretion efficiency

Compactness is maximum for black holes. Fore these objects the efficiency η is also maximum.

Characteristic scale for the object:

 $\eta \propto M/r$

$R_{\rm S} = \frac{2GM}{c^2}$ $\approx 3 \times 10^{13} M_8 \text{ cm}$ $\approx 10^{-2} M_8 \text{ light days}$

 M_8 is the black hole mass in units of $10^8 M_{\odot}$.

Typical accretion rate

 $5R_{\rm S}$

Variability time scale in the UV indicates that most of the mass **m** originates from within

$U = \frac{GMm}{5R_{\rm S}} = \frac{GMm}{10GM/c^2} = 0.1mc^2$

 $\eta pprox 0.1$ efficiency to produce the observed luminisity through accretion

 $\eta = 0.007$ efficiency of nuclearsynthesis processes

$$L_{\rm QSO} \approx 10^{46} \, {\rm ergs} \, {\rm s}^{-1}$$

Angular momentum

Specific angular momentum $\left|\mathbf{L}\right|/m = (GMr)^{1/2}$

From an orbit comparable to that of the sun:

 $M = 10^{11} M_{\odot}$ and $r = 10 \, \text{kpc.}$

To within:

 $\sim 0.01 \,\mathrm{pc}$ of a $10^7 \,M_\odot$ central black hole

The angular momentum of an object has to decrease by a factor of

$$(10^7 \times 0.01 \text{ pc}/10^{11} \times 10^4 \text{ pc})^{1/2} \approx 10^{-5}$$

It has to lose 99.999% of its initial angular momentum!!

Angular momentum

What removes angular momentum???

- Galaxy-galaxy interaction (major merger/minor merger)
 Disk instabilities (e.g. stellar bars)
- Star formation/Stellar winds??

Relation of AGN activity and host galaxy morphology!!!

How do the spectra look like?

Spectral classification:

Seyfert 2: only "narrow" components (200-900km/s) Seyfert 1: additional "broad" components (1000-10000km/s of permitted lines

Credit: Peterson (1997)

The Unified Model of AGN

Urry&Padovani (1995)

BLR: r ~ 10 light days FWHM ~ 5000 km/s M ~ 10⁻³ M_{sun}

 $M_{BH} = rv^2/G = 10^7 - 10^8 M_{sun}$

Broad H-recombination lines CIII], CIV, HeII density: n=10¹¹ cm⁻³

NLR:

r ~ 10-100 pc FWHM ~ 200 - 900 km/s M ~ 10⁵ M_{sun}

forbidden lines [OII], [OIII],[NII] ... ionization cones density: n=10³-10⁶ cm⁻³

How to determine black hole mass?

Virial theorem:

$$M_{\rm BH} = f \frac{RV^2}{G}$$

- R radius of the BLR
 V characteristic velocity (e.g. vel dispersion)
- G gravitational constant f – scale factor (geometry of BLR)

Components of galaxies

<u>Bar:</u> actively star forming ²/₃ of all galaxies barred Bulge: mostly red/old stars, pressure supported (spherical)

AGN/nuclear point source

Disk (with spiral arms): mostly blue/young stars, rotation supported

K-band image of the low-luminosity QSO (LLQSO) HE 2211-3903

BH - host galaxy (bulge) relations

Relations between BH mass and *bulge* properties have been found in the last 15 years:

- mass M.
- velocity dispersion
- Iuminosity (optical, NIR)

BH - host galaxy (bulge) relations

Relations between BH mass and *bulge* properties have been found in the last 15 years:

- mass M.
- velocity dispersion
- Iuminosity (optical, NIR)

But: $M_{BH}/M_{bulge} \sim 0.1\%$

This relation has not been expected! \rightarrow SMBH - host galaxy coevolution ?! Gebhardt et al. 2000

Decomposition of galaxies

We use "BUlge/Disk Decomposition Analysis (BUDDA)" by Dimitri Gadotti (ESO)

HE2211-3903

- Decomposition into Bulge, Disk, Bar, AGN according to their light profiles
- Results in scaling parameters and fluxes/luminosities of the components (particularly: bulge luminosity!)

			H	
Dialog		(
Files Parameters				
	Load input values			2 10 10 10 10 10 10 10 10 10 10 10 10 10
General Informatio	n	Ô		
x & y pixels	0	0	M.	
pixel size	0.000			
central x	0.00 +/-	0.00		
central y	0.00 +/-	0.00		
Disk-Component			L/X	x offset (arcsec) x offset (arcsec) x offset (arcsec)
1st disk int	0.00 +/-	0.00	NE	
2nd disk int	0.00 +/-	0.00	15	
1st disk rad	0.00 +/-	0.00	· · · · · · · · ·	
2nd disk rad	0.00 +/-	0.00		
disk truncation	0.00 +/-	0.00		- bar -0.5 - 1 - 1 - 1 - 5
position angle	0.00 +/-	0.00		2 15 - agn - 0.6
ellipticity	0.00 +/-	0.00		
height scale	0.00 +/-	0.00		
ellipse index	0.00 +/-	0.00		
minimum rad	0.00 +/-	0.00	Peen	
Bulge-Component				21 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10121416
bulge int	0.00 +/-	0.00		r(arcsec) r(arcsec)
bulge rad	0.00 +/-	0.00	-	
position angle	0.00	0.00		T
				BUDDA fit of HE 2211-3903
		OK Cancel		
				araphical interface of the BUDDA wrapper
			111111	(DLDDA: D. Osdatti umannam O. Dusah (L.Z. (h.c.))
			111111	(BUDDA: D. Gadotti, wrapper: G. Busch/J. Zuther)

Near-infrared astronomy

Near-infrared (NIR): 0.78 - 3µm

Advantages:

- traces stellar mass better (less affected by young stars)
- Iess affected by extinction

Example: Galactic Center optical: 30 mag extinction (factor of ~5x10¹⁰) NIR *K*-band: 2-3 mag extinction (factor of ~10)

bulge magnitude and black hole mass are correlated!

Data collected by: Kormendy&Ho 2013, ARA&A 51, 511.

bulge magnitude and black hole mass are correlated!

LLQSOs are under the relation!

In agreement with studies in the optical: e.g. Nelson+04, Kim+08, Bennert+11

But first time observed in the near-infrared.

LLQSOs are under the relation!

Possible reasons:

Overluminous bulges (through star formation?)

LLQSOs are under the relation!

Possible reasons:

- Overluminous bulges (through star formation?)
- Undermassive black holes

LLQSOs are under the relation!

Possible reasons:

- Overluminous bulges (through star formation?)
- Undermassive black holes

Implications for understanding of black hole - bulge coevolution!!

Summary and open questions

- AGN belong to the most extreme objects in the Universe Accretion onto supermassive black hole produces vast amount of energy!
- → Where does the mass come from??
- \rightarrow How does it lose angular momentum??

AGN play an important role in galaxy evolution

- There exist strong correlations between BH mass and host galaxy properties!
- \rightarrow What drives the co-evolution of BH and host galaxy??
- \rightarrow What was first: BH or host galaxy??

Nuclear activity influences host also today

Central regions of active galaxies contain younger stars than inactive counterparts!

- \rightarrow What are conditions of circumnuclear star formation??
- \rightarrow Does/How does the AGN quench star formation??