
GANDALF v0.4.0 userguide

David Hubber, Giovanni Rosotti & Richard Booth

September 25, 2018

Contents

1 Overview of code 2

2 Download & Installation 3
2.1 Requirements . 3
2.2 Linux . 3
2.3 Mac OS X . 3
2.4 Command-line code compilation . 3
2.5 Python code compilation . 4

3 Makefile options 6

4 Basic usage 8
4.1 Command-line mode . 8
4.2 Running python scripts . 8
4.3 Interactive mode . 8

5 Parameter options 10
5.1 Main simulation parameters . 10
5.2 Unit parameters . 11
5.3 Integration and timestep parameters . 13
5.4 Hydrodynamical parameters . 13
5.5 SPH parameters . 14
5.6 Artificial viscosity parameters . 14
5.7 Meshless finite-volume parameters . 14
5.8 Gravitational parameters . 15
5.9 Neighbour searching and tree parameters . 15
5.10 N-body parameters . 16
5.11 Sink particle parameters . 16
5.12 Radiation parameters . 16
5.13 Radiative feedback parameters . 17
5.14 Boundary parameters . 17
5.15 Initial conditions parameters . 18
5.16 Regularised initial conditions parameters . 19
5.17 Random number generator parameters . 19
5.18 MPI parameters . 20
5.19 Python viewer parameters . 20

6 Input and output file formats 21
6.1 Column format . 21
6.2 SEREN format . 21
6.3 SEREN ‘lite’ format . 23

1

7 Generating initial conditions 25
7.1 ‘On-the-fly’ initial conditions . 25

7.1.1 Creating your own initial conditions generators . 25
7.2 Description of initial conditions . 26

7.2.1 Accretion disc . 26
7.3 Load from external file . 27
7.4 Generate inside python script . 27

8 GANDALF Python library 28
8.1 Interpreter . 28
8.2 Python script - overview of the libraries to import . 28
8.3 GANDALF Python library tutorial . 29

8.3.1 Example 1 - Creating and running a new simulation from a parameter file 29
8.3.2 Example 2 - Creating a simulation and modifying a parameter before running 30
8.3.3 Example 3 - Generating initial conditions using internal routines without a parameters file 31
8.3.4 Example 4 - Running a simulation and plotting results to screen and file 31
8.3.5 Example 5 - Reading a simulation from disc and plotting several snapshots 32
8.3.6 Example 6 - Reading and plotting multiple simulations 34
8.3.7 Example 7 - Overplotting the analytical solution with the simulation results 34
8.3.8 Example 8 - Creating initial conditions directly in the python script 35
8.3.9 Example 9 - Creating initial conditions for N-body simulation in python script 37
8.3.10 Example 10 - Generating rendered images from SPH simulations 38
8.3.11 Example 11 - Plotting in alternative coordinate systems 39
8.3.12 Example 12 - Changing the plotting units . 39
8.3.13 Example 13 - Creating and plotting user-defined quantities 40
8.3.14 Example 14 - Plotting time series of particle properties 41
8.3.15 Example 15 - Creating an animation from simulation snapshot files 41
8.3.16 Example 16 - Retrieving data from the simulation . 42
8.3.17 Example 17 - Creating and plotting user-defined quantities from a function given by the

user . 43
8.3.18 Example 18 - Creating and plotting time series from a function given by the user 44

8.4 Tips and tricks . 44

9 Dust Dynamics 46
9.1 Theory . 46
9.2 Implementations . 47

9.2.1 Test-particle implementation . 47
9.2.2 Full two-fluid algorithm . 47
9.2.3 Advantages, limitations and reasons for caution . 47

9.3 Drag Laws . 48
9.4 IO and initial conditions . 48
9.5 Test Problems . 49
9.6 Dust parameter options . 49

10 Developer notes 50
10.1 Class hieararchy . 50

10.1.1 Simulation class . 50
10.1.2 Hydrodynamics class . 50
10.1.3 SmoothingKernel class . 50
10.1.4 NeighbourSearch class . 50
10.1.5 EOS class . 50
10.1.6 EnergyEquation class . 50
10.1.7 Nbody class . 50
10.1.8 Sinks class . 50

10.2 Templates . 50
10.3 Particle data structures . 51

10.4 Particle array pointers . 51

11 Units and scaling 52
11.1 Calculating scaling factors . 52
11.2 Scaling factors for G=1 . 52
11.3 Temperature scaling factor . 52
11.4 Computing scaling variables in GANDALF . 53
11.5 Converting initial conditions to code units . 53
11.6 Input and output units . 53

12 To-do list 54
12.1 Known bugs . 54
12.2 Proposed features . 54

A Command reference for the python functions 55

1 Overview of code

GANDALF is a new SPH and N-body code written in C++ and Python. Although partly based on some of
the algorithms and code structures used in SEREN (Hubber et al. 2011), it has been written from scratch and
contains many new features and optimisations which significantly improve the speed, functionality and usability
of the code. It has been written for several purposes.

• GANDALF has been written with a fully object-oriented philosophy in C++. This is to improve the
maintainability of the code and also to allow the code to be easily extended in the future with as little
disruption to the original code-base as possible.

• GANDALF can be run in three different modes; as a standard C++ executable run from the command line,
run from a python script or run inside an interactive python environment. Both the script and interactive
python modes include a graphical output that can be used to visualise previously run simulations, or to
interactively visualise simulations as they are run on-the-fly.

• GANDALF contains a variety of SPH algorithms such as conservative ’grad-h’ SPH (Springel & Hernquist
2002, Price & Monaghan 2004) and Saitoh & Makino (2013).

• The N-body component of GANDALF contains a variety of common integration schemes such as 4th/6th-
order Hermite with time-symmetric integration.

• GANDALF can generate initial conditions at run-time, as opposed to SEREN where the initial conditions
had to be prepared a priori to running the simulation. The initial conditions may either be hard-coded into
the C++ code, or set-up via a python script using numpy arrays.

• GANDALF uses additional parameters to switch on various physics options, as well as requiring them to be
activated in the Makefile. In comparison, SEREN controlled physics options exclusively in the Makefile.
Therefore, GANDALF need not be re-compiled everytime a different setting is required.

GANDALF has been developed as a fully open-source project hosted on the site github at the address
https://github.com/gandalfcode/gandalf. Since GANDALF is currently in the beta-testing phase, it
would be very helpful for the authors if new users could provide feedback of any problems with the code, or with
any suggestions for improvements of existing features. Ideally, users would submit bug reports to the GANDALF
github page (https://github.com/gandalfcode/gandalf/issues) since other users can see that a bug has
been identified before sending duplicate bug reports.

2 Download & Installation

The easiest way to download the code is using git. Just cd to the folder you prefer and type:

git clone https://github.com/gandalfcode/gandalf.git

A new folder called “gandalf” will be created in the current directory and a fresh version of the code will be
downloaded inside it. The use of the software version control system git makes easy to stay up-to-date with the
changes in the code while keeping your own version. If you want to know more about git, it is plenty of tutorials
on-line. A good starting point is http://git-scm.com/book/en/v2.

2.1 Requirements

If you are not interested in the Python library, you need only a C++ compiler. In order to use all features in
GANDALF, the following programs and libraries must be installed :

• C++ compiler

• Python 2.7

• swig compatible with python 2.7

• matplotlib compatible with python 2.7

• numpy

• scipy

To reduce the number of needed libraries, we ship together with GANDALF the following packages:

• pyparsing

• cmd2

We thank the authors for writing this software and releasing them under the MIT license.

Finally, in order to generate movies through the Python library, you need to have ffmpeg installed and invokable
from the command line. You do not need it to compile the code or to use it if you are not generating movies.

2.2 Linux

All of these programs/libraries can be found in most standard Linux installations, and if not, will be available to
download from most package managers (e.g. apt-get, yum, pacman).

2.3 Mac OS X

For Mac users, all programs can be installed with either fink, MacPorts or homebrew. It is preferable that all
are downloaded with just the one package manager in order to ensure they are compatible and function together
correctly. Other options for installation are the Anaconda or Enthought Python distributions. A good reference
which compares the available possibilities is the Python4Astronomers website.

2.4 Command-line code compilation

To compile GANDALF only as a C++ executable to be run from the command line without visualisation via the
python program, first set the chosen C++ compiler in the Makefile (see section 3 for a full list of the variables
you can change) by setting the variable CPP (if you leave it blank, you will get the default c++ compiler as
defined by your system) and type

http://python4astronomers.github.io/installation/recommended_options.html

make executable

The code is compiled and linked with the chosen C++ compiler and all python components are ignored. If
you do not have python installed on your system, or are having trouble getting the python components to
function correctly, then the C++ executable can still be compiled and run stand-alone. Differently from other
codes, in GANDALF we adopt the philosophy that the code should be compiled only once. If you need to
change parameters, you can do it by setting them via the parameter files; in most cases no recompilation is
needed. For this reason, if your physical set up does not require modifying the code, it could be that you need to
compile GANDALF only once. If that is the case, you might want to copy the executable to one of your system
directories. In this case, the command

make install

will copy the executable (provided you have already compiled the code) to your /usr/local/bin folder. In this
way you should be able to invoke GANDALF from the command line just typing gandalf (i.e. without the need
to specify the full path). Note that you might need to be root to write to that folder (in this case, use the sudo
command).

2.5 Python code compilation

To compile all code elements including the python components, then complete the following steps :

• Install all python-related programs listed in Section 2

– For Linux machines, python is usually installed by default. The additional python libraries should be
easily installed using either the main package manager, pip or easy install.

– For Mac OS X, python is installed by default. However, it does not have directly compatible versions
of all the required libraries. Therefore, it is required to install an additional version of python 2.7
using a 3rd party package manager like fink, Macports or homebrew.

• Set the required version of python in your Makefile (See Section 3). Since operating systems usually have
more than one version of python installed, it is important to ensure that make uses the correct version when
compiling the code. This is set using the PYTHON variable in the Makefile.

Also, make requires the location of the python and numpy libraries. In most cases, make will be able to
locate these libraries automatically (see description of Makefile options in section 3). However, if there is
a problem, or you wish to use an alternative version of these libraries installed elsewhere on your system,
then these can be set by the PYLIB and NUMPY variables in the Makefile.

• To compile all components of the code, including the python libraries with swig, type

make or (equivalently) make all

• You now need to tell python how to find GANDALF when you want to use it. You have two options:

– Add the location of the folder containing the main GANDALF directory to the PYTHONPATH
environment variable. If you are using bash or related shells, then add the line

export PYTHONPATH=XXX/YYY:$PYTHONPATH

to your .bashrc (or .bash profile on a Mac) script where XXX/YYY/gandalf is the absolute
path of the GANDALF directory (note that you must not include “gandalf” in the folder name!). If
you are using csh, tcsh or related shells, then add

setenv PYTHONPATH ‘‘XXX/YYY:$PYTHONPATH’’

to your relevant shell configuration file. Remember that you have to close and reopen the shell for
this change to take effect, or to source the shell configuration file. In this case, python will use the
version of GANDALF present in the folder you specified. Note that this requires the folder to be
called gandalf; if you give another name, python will not be able to find GANDALF.

– If you know you will not be making changes to GANDALF, consider installing GANDALF in one
of your system folders. In this case, just type

make installpython

and the GANDALF python library will be installed (this requires that you have already used make
to compile the code). In this case, there is no need to set the variable PYTHONPATH. Also, the folder
where you keep your original code does not need to have any special name. If later you do make
changes to the code, remember to re-run this command - otherwise the installed version remains the
old one! Note that you might need to be root (or to use sudo) to run this command.

3 Makefile options

The GANDALF Makefile is used to select options which are used to compile the code with. If the user wishes
to change any compile-time options, the code must be recompiled from scratch by typing make clean and then
make. For users of SEREN, the GANDALF Makefile has been simplified with many options either not present
(since various specialist algorithms have not been implemented) or have been transferred to the parameters file.
This has been done in order to make it less likely that the wrong Makefile options are used in simulations, and
also to stop the need to recompile the code completely so often when using slightly different options.

Note that the Makefile in the root folder is just a convenience to set the variables you need - the actual Makefile
is contained in the src folder.

• CPP : C++ compiler. If left blank (default), uses the default defined by your system. Depending on the
values set here, we try to guess the compiler flags for your system. If you want to use a compiler different
from the ones we support, you need to manually set the flags in the Makefile in the src folder. Note also
that when using MPI we assume that you use g++/clang. If this is not the case, you need to manually edit
the compiler flags in the Makefile in the src folder.

g++ : GCC C++ compiler
icpc : Intel C++ compiler
clang : CLANG compiler
mpic++ : Compiles the code with MPI.

As an alternative, if you do not have the MPI compiler wrappers available (mpic++) you can enable MPI
by adding the line

MPI=1

to the makefile. However, be warned that you may need to specify the location of the MPI header file,
mpi.h, for compilation to succeed. You can do this by adding a line of the following form.

INCLUDE = -I/path/to/mpi_header_directory

Similarly, you may find that the default paths to the MPI library (-lmpi -lmpi++) may need to be changed
in src/Makefile. Where possible we highly recommend using the MPI compiler wrapper, mpic++.

• PYTHON : name of python command-line executable (e.g. python, python2.7)

• COMPILER MODE : Set compiler flags for production or debug runs
DEBUG : Set all debug compiler options, including flags to use gdb debugger and full warning output (-Wall)
STANDARD : Standard optimisation options (-O3)
FAST : -O3 + fast flag options. Uses ’potentially unsafe’ fast maths optimisation.

• PRECISION : Floating point precision
SINGLE : 32-bit precision floating point variables
DOUBLE : 64-bit precision floating point variables

• PYSNAP PRECISION: Precision when using the python library (see section 8). The values returned by
python will be in either single or double precision, depending on the value selected here. Note that this
has nothing to do with the precision of the snapshots written to the disc! Most of the times one wants to
match the precision used in the calculation. But to reduce the memory footprint required in the analysis,
one might want to read the data in single precision even if it is stored in double precision on the disc.

SINGLE : 32-bit precision floating point
DOUBLE : 64-bit precision floating point

• OPENMP : Activate OpenMP directives during compilation (0 or 1)

• OUTPUT LEVEL : Amount of output produced by code
0 : No additional output
1 : Minimal output of main-loop routines
2 : Code routine marker output for all steps

• DEBUG LEVEL : Amount of extra debug checking done by code
0 : No extra debugging computations and output
1 : Activate assert debug statements in code
2 : Activate extra (expensive) debugging computations in code

• FFTW : Include FFTW (Fast Fourier transform) library for initial conditions (0 or 1). The
FFTW LIBRARY and FFTW INCLUDE variables should contain the library links and include directory
if different from the standard Linux directories (otherwise leave blank).

• GSL : Include GSL (GNU Scientific library) which is required for Ewald forces (0 or 1). The
GSL LIBRARY and GSL INCLUDE variables should contain the library links and include directory if
different from the standard Linux directories (otherwise leave blank).

• PYLIB : Path to directory that includes prefered python libraries. If left blank, make will use python
routines to locate the libraries automatically.

• NUMPY : Path to directory that includes prefered numpy libraries. Ase with PYLIB, If left blank, make
will use python routines to locate the library locations automatically.

• GTEST : Path to directory containing Google test suite library for unit testing (Currently set witu environ-
ment variable)

4 Basic usage

GANDALF can be run in three principle modes.

• Command-line mode, where the code is run as a C++ executable via the command line with a parameters
file that selects which code options are used,

• via a python script where the code is run in a python environment with various plotting options available
as well as running the code,

• in interactive mode where all the code and plotting options can be run directly by typing them into an
interactive python shell.

4.1 Command-line mode

To run a simulation with the C++ executable on the command line, type :

./gandalf PARAMSFILE

where PARAMSFILE is the name of the parameters file for that simulation. If that parameters file does
not exist in the current directory, or contains invalid parameter options, then the program will quit citing an error
message. If the parameters file exists, then the code will parse the file, set-up the simulation and then run to
completion.

4.2 Running python scripts

Any python script using the GANDALF python API can be run directly from the command-line as any regular
python script. To run the script PYTHONSCRIPT.py, type

python PYTHONSCRIPT.py

or, depending on the default version of python on your system (e.g. installing matplotlib with fink on Mac OS X),

python2.7 PYTHONSCRIPT.py

The code will remain inside the python environment until the script is fully executed. Python typically
checks that the entire file has valid syntax before running each command.

4.3 Interactive mode

To open the interactive viewer, type :

python analysis/gandalf interpreter.py

or, depending on the default version of python on your system (e.g. installing matplotlib with fink on Mac OS X),

python2.7 analysis/gandalf interpreter.py

The code should open with a splash screen containing the code title followed by a command prompt of
the form ’gandalf >’’. To run a simulation defined by a parameter file, then type

newsim PARAMSFILE

and then

run

The current simulation can be plotted at any point by using simple commands such as, for example,

plot x y

For a list on available commands, type help in the command line. For more detailed information on the
functionality of a particular command, type help command. For more information on interactive python
commands, see Section 8.

5 Parameter options

With the exception of a few compiled-time options that are selected in the Makefile, all physics and code feature
options are controlled from the parameters file, including the dimensionality, simulation type and SPH options.
We list here all possible parameters, including all possible options for those parameters with a limited choice. We
note that a parameters file need not contain a value for each parameter, in which case the default value is taken.

5.1 Main simulation parameters

• ndim : Simulation dimensionality (1, 2 or 3)

• sim : Simulation type
sph = SPH (+ N-body) algorithm (default : ‘grad-h’ SPH)
gradhsph = ‘grad-h’ SPH simulation (+ N-body)
sm2012sph = Saitoh & Makino (2012) SPH (+ N-body)
meshlessfv = Meshless Finite-Volume algorithm (default : ‘mfvmuscl’)
mfvmuscl = Meshless FV MUSCL integration simulation
mfvrk = Meshless FV Runge-Kutta integration
nbody = N-body only simulation

• nbody : Main N-body integration algorithm
lfkdk = 2nd-order Leapfrog kick-drift-kick
lfdkd = 2nd-order Leapfrog drift-kick-drift
hermite4 = 4th-order Hermite scheme
hermite4ts = Time-symmetric 4th-order Hermite scheme

• ic : Simulation initial conditions
file = Load initial conditions from external file
bb = Boss-Bodenheimer (1979) test
binary = Simple binary star test
binaryacc = Binary accretion test
blastwave = Blastwave test
bondi = Spherically symmetric Bondi accretion test
box = Create a uniform box of gas
cdiscontinuity = Contact discontinuity test
disc = Accretion disc initial conditions
ewaldcylinder = Cylinder for 1D Ewald gravity test
ewaldsine = Sinusoidal density for 3D Ewald gravity test
ewaldslab = Slab for 2D Ewald gravity test
gresho = Gresho-Chan vortex test
khi = Kelvin-Helmholtz instability test
noh = Noh problem initial conditions
plummer = Plummer sphere test
quadruple = Simple hierarchical quadruple star test
sedov = Sedov blast-wave test
shearflow = Shear flow test
shocktube = Shocktube test
soundwave = 1D soundwave perturbation
sphere = Uniform density sphere
spitzer = Ionised bubble Spitzer expansion test
triple = Simple hierachical triple star test
turbcore = Turbulent spherical, self-gravitating core
python = Generate initial conditions from python

• run id : Simulation run id string

• in file : Input filename (when ic = file)

• in file form : Format of initial conditions file
column = Simple column data format
sf/seren form = SEREN ASCII format
su/seren unform = SEREN binary format

• out file form : Format of outputted snapshot files
column = Simple column data format
sf/seren form = SEREN ASCII format
su/seren unform = SEREN binary format

• tend : Termination time of the simulation (given in tunits)

• tmax wallclock : Maximum allowed wallclock time for simulation before being terminated

• dt snap : Snapshot time interval (given in tunits)

• tsnapfirst : Time of first snapshot (given in tunits)

• Nstepsmax : Maximum no. of steps in simulation before termination

• noutputstep : Frequency of screen output (in units of integer steps)

• ndiagstep : No. of complete block steps between diagnostic output

• nrestartstep : No. of full block steps before producing restart dump

• litesnap : Output ‘lite’ snapshots (for generating movies)? (0 or 1)

• dt litesnap : Lite snapshot time interval (given in tunits)

• tlitesnapfirst : Time of first lite snapshot (given in tunits)

5.2 Unit parameters

• dimensionless : Are all quantities dimensionless? (0 or 1)

• routunit : Position unit
pc/kpc/mpc = parsec/kiloparsec/megaparsec
au = astronomical unit
r sun = Solar radius
r earth = Earth radius
cm/m/km = centimetre/metre/kilometre

• moutunit : Mass unit
m sun = Solar mass
m jup/m earth = Jupiter mass/Earth mass
g/kg = gram/kilogram

• toutunit : Time unit
yr/myr/gyr = year/megayear/gigayear
day = day
sec = second

• voutunit : Velocity unit
cm s/m s/km s = centimetres/metres/kilometres per second
au yr = astronomical units per year

• aoutunit : Acceleration unit
cm s2/m s2/km s2 = cm/m/km per second squared
au yr2 = astronomical units per year squared

• rhooutunit : Density unit
m sun pc3 = Solar masses per parsec cubed
kg m3 = kilogrammes per metre cubed
g cm3 = grammes per centimetre cubed

• sigmaoutunit : Column/surface density unit
kg m2 = kilogrammes per meter squared

• pressoutunit : Pressure unit
Pa = pascals/newtons per square metre
bar = bars

• foutunit : Force unit
N = newtons
dyn = dynes

• Eoutunit : Energy unit
J/GJ = joules/gigajoules
erg = ergs
eV = electron volts
104̂0erg = 1040 ergs

• momoutunit : Momentum unit
m sunkm s = Solar masses kilometres per second
m sunau yr = Solar masses A.U. per year
kgm s = Kilogram metres per second
gcm s = Gram centimetres per second

• angmomoutunit : Angular momentum unit
m sunkm2 s = Solar masses kilometres squared per second
m sunau2 yr = Solar masses A.U. squared per year
kgm2 s = Kilogram metres squared per second
gcm2 s = Gram centimetres squared per second

• angveloutunit : Angular velocity unit
rad s = Radians per second

• dmdtoutunit : Mass (accretion) rate unit
m sun myr = Solar masses per megayear
m sun yr = Solar masses per year
kg s = kilogrammes per second
g s = grammes per second

• Loutunit : Luminosity unit
L sun = Solar luminosity
W = watts
erg s = ergs per second

• kappaoutunit : Mass opacity unit
m2 kg = metre squared per kilogram
cm2 g = centimetre squared per gram

• Boutunit : Magnetic field unit
tesla = tesla
gauss = gauss

• Qoutunit : Charge unit
C = coulomb
e = electron charge

• Jcuroutunit : Current density unit
C s m2 = coloumb per second per metre squared

• uoutunit : Specific energy unit
J kg = Joules per kilogram
erg g = ergs per gram

• dudtoutunit : Heating rate unit
J kg s = Joules per kilogram per second
erg g s = ergs per gram per second

• tempoutunit : Temperature unit
K = Kelvin

5.3 Integration and timestep parameters

• accel mult : Acceleration timestep multiplier

• courant mult : Courant timestep multiplier

• visc mult : Viscosity timestep multiplier

• nbody mult : N-body timestep multiplier

• subsys mult : Sub-system N-body timestep multiplier

• Nlevels : No. of initial timestep levels

• level diff max : Maximum allowed SPH neighbour timestep difference

• sph single timestep : Constrain all SPH particles to a single timestep level

• nbody single timestep : Constrain all N-body particles to a single timestep level

5.4 Hydrodynamical parameters

• hydro forces : Compute hydro forces? (1 or 0)

• gas eos : Gas particles equation-of-state
energy eqn = Solve energy equation
isothermal = Isothermal EOS
barotropic = Barotropic EOS (i.e. for mimicing isothermal + adiabatic phase during protostellar collapse)
barotropic2 = Similar to barotropic, but using discrete power laws rather than smooth change
rad ws = EOS relating to Stamatellos et al. (2007) cooling method
disc locally isothermal = Locally isothermal equation of state, to be used with the disc setup.

• energy integration : Energy integration scheme (only applicable if solving the energy equation)
null = Energy equation not integrated separately
rad ws = Integrate energy terms using Stamatellos et al. (2007) method

• energy mult : Explicit energy integration timestep multiplier

• gamma eos : Ratio of specific heats for gas

• temp0 : (Isothermal) temperature (isothermal or barotropic EOS)

• mu bar : Mean gas particle mass (in units of hydrogen mass)

• rho bary : Adiabatic density turnover in barotropic EOS (in g/cm3̂)

• eta eos : Polytropic exponent (for barotropic EOS)

• radws table : Name of EOS file for Stamatellos et al. (2007) cooling method

• temp ambient : Ambient temperature (for rad ws method)

• lombardi method : Use the Lombardi et al. (2015) metric for rad ws method

5.5 SPH parameters

• sph integration : SPH particle integration scheme
lfkdk = 2nd-order Leapfrog kick-drift-kick
lfdkd = 2nd-order Leapfrog drift-kick-drift

• kernel : SPH kernel function
m4 = M4 Cubic spline kernel
quintic = Quintic spline kernel
gaussian = Gaussian kernel (truncated at 3h)

• tabulated kernel : Tabulate kernel function (1 or 0)

• h fac : Particles-per-smoothing length factor (eta in papers)

• h converge : Smoothing length iteration convergence tolerance

5.6 Artificial viscosity parameters

• avisc : Artificial viscosity options
none = No artificial viscosity
mon97 = Monaghan (1997) viscosity

• acond : Artificial conductivity options
none = No artificial conductivity
price2008 = Price (2008) conductivity
wadsley2008 = Wadsley et al. (2008) conductivity

• time dependent avisc : Aritificial viscosity switch
none = No switch, artificial viscoisty always set to alpha visc.
mm97 = Morris & Monaghan (1997) switch
cd2010 = Advanced switch by Cullen & Dehnen (2010), using the balsar swith

• alpha visc : (Maximum) value of alpha viscosity parameter

• alpha visc min : Minimum value of alpha for time-dependent viscosity

• beta visc : Value of beta viscosity as a multiple of alpha

5.7 Meshless finite-volume parameters

• riemann solver : Riemann solver in FV scheme
exact = Exact Riemann solver (e.g. Toro 1999)
hllc = HLLC approximate Riemann solver

• slope limiter : Slope limiter for TVD condition
null = No limiting
zeroslope = Set all slopes to zero (effectively 1st order Godunov)
balsara2004 = Balsara (2004) slope-limiter
springel2009 = Original AREPO (Springel 2009) slope limiter
tess2011 = TESS slope limtier
gizmo = Original GIZMO paper (Hopkins 2015) slope limiter
minmod = simplified implementation of minmod slope limiter

• zero mass flux : Use Meshless-Finite Mass (MFM) scheme to prevent mass-flux between particles?
Should be activated if self-gravity or star/sink particles are used in conjunction with any MFV scheme. (1
or 0)

• static particles : Use static particles (Eulerian approach)? (1 or 0)

• time step limiter : Use an additional limiter on the time-steps
none = No additional limiter
conservative = Predictive global timestep limiter of Springel (2009)
simple = Saitoh & Makino type limiter. Reduces the time step if it is detected to be too large.

• shear visc Enable viscosity with constant kinematic shear viscoity

• bulk visc Enable viscosity with constant kinematic bulk viscoity

5.8 Gravitational parameters

• self gravity : Compute gravitational forces? (1 or 0)

• kgrav : Direction of (external) gravitational acceleration (0, 1 or 2)

• grav kernel : Form of gravitational softening
mean h = Mean smoothing length softening

• external potential : External gravitational potential
none = No external potential
vertical = Constant gravitational field
plummer = Plummer background potential

• avert : Veritcal (constant) gravitational acceleration

• rplummer extpot : Background Plummer potential radius

• mplummer extpot : Background Plummer potential mass

5.9 Neighbour searching and tree parameters

• neib search : Neighbour searching algorithm
bruteforce = Brute-force (i.e. summation over all particles)
kdtree = Balanced kd-binary tree
octtree = Barnes-Hut octal tree

• gravity mac : Gravity-tree cell-opening criteria (N.B. always defualts to geometric for now). The
eigenmac and gadget2 criteria are more accurate for a given computational cost.

geometric = Standard Barnes-Hut geomtric opening angle criterion. This can fail in pathalogical cases,
such as when the forces nearly balance.

eigenmac = Compute eigenvalues of quadrupole moment tensor for MAC (Hubber et al. 2011)
gadget2 = Relative opening criterion based on comparing estimate of force error to the previous

accleleration (Springel 2005).

• multipole : Multipole expansion for tree-gravity
monopole = Monopole-only terms for cell gravity
quadrupole = Include quadrupole moment terms for cell gravity
fast monopole = Compute monpoles more efficiently using Taylor expansion about cell COM

• Nleafmax : Maximum no. of particles allowed in tree leaf cell

• ntreebuildstep : Integer steps inbetween tree re-builds

• ntreestock : Integer steps inbetween tree re-stocks

• thetamaxsqd : Maximum tree gravitational walk opening angle (squared)

• macerror : MAC error tolerance for individual cells

5.10 N-body parameters

• sub systems : Identify and integrate sub-systems separately? (0 or 1)

• sub system integration : Main N-body integration algorithm
lfkdk = 2nd-order Leapfrog kick-drift-kick
hermite4 = 4th-order Hermite scheme
hermite4ts = Time-symmetric 4th-order Hermite scheme

• Npec : No. of P(EC)n iterations in time-symmetric scheme (if non time-symmetric scheme is used, auto-
matically sets to 1)

• nbody softening : Use SPH kernel-softening between star particles? (0 or 1)

• binary stats : Output binary statistics? (1 or 0)

• nsystembuildstep : Integer steps inbetween re-building the sub-system tree.

• gpefrac : Maximum fraction of total gravitational potential energy from external sources to allow sub-
system.

5.11 Sink particle parameters

• sink particles : Do stars/sinks accrete? (0 or 1)

• create sinks : Create new sink particles? (0 or 1)

• smooth accretion : Use smooth accretion? (0 or 1)

• fixed sink mass : Fixed sink mass, even when accreting? (0 or 1)

• extra sink output : Extra output of sink particles? (0 or 1)

• rho sink : Sink particle creation density (in cgs units)

• alpha ss : Sunyaev-Shakura alpha for smooth disc accretion

• sink radius : Sink particle radius (in units of smoothing length)

• smooth accrete frac : Smooth accretion instantaneous accretion mass frac.

• smooth accrete dt : Smooth accretion instantaneous accretion timestep frac.

• sink radius mode : How to calculate new sink radius
hmult = sink radius a multiple of SPH particle smoothing length
fixed = sink radius is fixed for all new sinks

5.12 Radiation parameters

• radiation : Main radiation algorithm used
none = No radiation field
ionisation = Multiple source ionising radiation

• Nphoton : No. of photon packets (for Monte-Carlo radiation transport)

• mu ion : Mean-gas particle mass for ionised gas

• temp ion : Temperature of ionised gas

• arecomb : Recombination coefficient (in cgs units)

• Ndotmin : No. of ionising photons per second

• NLyC : No. of ionising photons per second

5.13 Radiative feedback parameters

• rad fb : Turn on radiative feedback for supported specific internal energy integration methods.

• ambient heating : Add heating from an ambient background defined by temp ambient

• disc heating : Add heating from a temperature profile with a central star (1) or binary (2)

• sink heating : Add accretion heating from sinks (except central objects from disc heating)

• sink fb : Type of heating from sinks (except central objects)
continuous = Heating from accretion as mass is accreted
episodic = NOT IMPLEMENTED

• r smooth : Smoothing radius for disc heating temperature profile

• temp q : Power index for primary in disc heating temperature profile

• temp q secondary : Power index for secondary in disc heating temperature profile

• temp au : Temperature at 1 AU for primary in disc heating temperature profile

• temp au secondary : Temperature at 1 AU for secondary in disc heating temperature profile

• f acc : Fraction of energy converted to heating from accretion (use with sink heating)

• r star : Radius of star (Msink > 80 M jup) in solar radii (use with sink heating)

• r bdwarf : Radius of brown dwarf (13 > Msink > 80 M jup) in solar radii (use with sink heating)

• r planet : Radius of planet (Msink < 13 M jup) in solar radii (use with sink heating)

5.14 Boundary parameters

• boundary lhs[0] : Boundary conditions for LHS of x-dimension

• boundary rhs[0] : Boundary conditions for RHS of x-dimension

• boundary lhs[1] : Boundary conditions for LHS of y-dimension

• boundary rhs[1] : Boundary conditions for RHS of y-dimension

• boundary lhs[2] : Boundary conditions for LHS of z-dimension

• boundary rhs[2] : Boundary conditions for RHS of z-dimension For all boundaries:
open = open boundaries (i.e. extends to infinity)
periodic = periodic wrapping between LHS & RHS boundary
wall = wall at boundary (i.e. reflection of particles)

• boxmin[0] : Location of LHS x-boundary

• boxmax[0] : Location of RHS x-boundary

• boxmin[1] : Location of LHS y-boundary

• boxmax[1] : Location of RHS y-boundary

• boxmin[2] : Location of LHS z-boundary

• boxmax[2] : Location of RHS z-boundary

5.15 Initial conditions parameters

• particle distribution : Particle configuration when generating uniform density fluids on the fly
random = Particle positions generated with random number generator
cubic lattice = Particle positions generated on a uniform cubic lattice
hexagonal lattice = Particle positions generated on a hexagonal closed-packed array

• smooth ic : Smooth any particle quantities around discontinuities

• com frame : Translate ICs to COM frame before starting simulation

• Nhydro : No. of hydrodynamical particles

• Nhydromax : Maximum no. of hysrodynamical particles

• Nstar : No. of star particles

• Nstarmax : Maximum no. of star particles

• Nlattice1[0] : No. of ptcls on lattice 1 in x-dimension

• Nlattice1[1] : No. of ptcls on lattice 1 in y-dimension

• Nlattice1[2] : No. of ptcls on lattice 1 in z-dimension

• Nlattice2[0] : No. of ptcls on lattice 2 in x-dimension

• Nlattice2[1] : No. of ptcls on lattice 2 in y-dimension

• Nlattice2[2] : No. of ptcls on lattice 2 in z-dimension

• vfluid1[0] : x-velocity of fluid 1

• vfluid1[1] : y-velocity of fluid 1

• vfluid1[2] : z-velocity of fluid 1

• vfluid2[0] : x-velocity of fluid 2

• vfluid2[1] : y-velocity of fluid 2

• vfluid2[2] : z-velocity of fluid 2

• rhofluid1 : Density of fluid 1

• rhofluid2 : Density of fluid 2

• press1 : Pressure of fluid 1

• press2 : Pressure of fluid 2

• amp : Amplitude of applied perturbation

• lambda : Wavelength of applied perturbation

• kefrac : Fraction of energy that is kinetic (Sedov test)

• radius : Radius of cloud

• angvel : Angular velocity of cloud (in radians per second)

• mcloud : Mass of cloud

• rplummer : Plummer radius

• mplummer : Total mass of plummer sphere

• rstar : (Softening) radius of star particles

• cdmfrac : Fraction of mass in cdm particles

• gasfrac : Fraction of mass in gas particles

• starfrac : Fraction of mass in star particles

• m1 : Mass of star 1

• m2 : Mass of star 2

• m3 : Mass of star 3

• m4 : Mass of star 4

• abin : Semi-major axis of binary orbit 1

• abin2 : Semi-major axis of binary orbit 2

• ebin : Orbital eccentricity of binary orbit 1

• ebin2 : Orbital eccentricity of binary orbit 2

• phirot : Phi Euler rotation angle

• thetarot : Theta Euler rotation angle

• psirot : Psi Euler rotation angle

• vmachbin : Speed of binary COM through ambient gas

• alpha turb : Turbulent energy (as multiple of gravitational energy)

• power turb : Power spectrum slope of initial turbulent velocity field

• asound : Sound speed

• zmax : ??

• DiscIc: There are multiple parameters prefixed with this string; they contol the accretion disc setup.
Please refer to section 7.2.1 for an extensive explanation.

5.16 Regularised initial conditions parameters

• regularise particle ics : Regularise particle initial conditions before main simulation

• regularise smooth density : Regularisation uses the smoothed density field

• Nreg : No. of regularisation iterations

• alpha reg : Glass-creation regularisation factor (0 = no glass; > 0 = glass-like)

• rho reg : Density-field regularisation factor (> 0 = iterates to required density field)

• Nreg : No. of regularisation iterations

5.17 Random number generator parameters

• rand algorithm : Random number generator algorithm
none = No algorithm selected; use intrinsic generator

(not recommended since this is system dependent and is not reproducable on different machines)
xorshift = Xorshift generator (see Numerical recipes, Ed 3, Chapter 7 for details)

• randseed : Random number seed

5.18 MPI parameters

• mpi decomposition : Mode of MPI decomposition
kdtree = Use simple KD-tree decomposition

• pruning level min : Minimum level to prune exported trees

• pruning level max : Maximum level to prune exported trees

5.19 Python viewer parameters

• dt python : Time interval (in seconds) between view window updates

6 Input and output file formats

GANDALF supports several simple file formats for reading in initial conditions or outputting snapshots for
visualisation and analysis.

6.1 Column format

The column format is the simplest snapshot file format in GANDALF and consists of a simple header plus a fixed
column-data format with particle data. It is designed for ease-of-use in quickly generating initial conditions, or
perhaps porting initial conditions from other codes/generators. It is certainly not designed as a long-term format
for use in large simulations, partly due to being an ASCII file which can quickly get unfeasibly large for big
simulations.

The header comprises of four lines, each with one variable in the following order :

• Nhydro : No. of hydro particles

• Nstar : No. of star/sink particles

• ndim : Dimensionality of snapshot data

• t : Time of snapshot

Each of the 4 header variables is preceded by a hash (‘#’) in order that simple plotting programs (e.g. gnuplot)
will ignore the headers allowing the particle data to be simply plotted. Older versions of GANDALF may not
have this hash but nevertheless should still easily be read-in by the code.

The particle data is then split up into Nhydro + Nstar rows, hydro particles first and then star particles. The data
columns are ordered as :

• x [,y, z] : Particle position vectors (depending on value of ndim)

• vx [,vy, vz] : Particle velocity vectors (depending on value of ndim)

• m : Particle mass

• h : Particle smoothing length (for stars also; radius = 2/3 h depending on kernel)

• rho : Particle density (set to 0 for stars)

• u : Particle specific internal energy (set to 0 for stars)

Since the column format was only designed for simple IO and plotting, it is a rather minimalistic format that
does not necessarily contain all the required data or options for full simulations. For example, all stars are
automatically set to being sinks. Therefore it is not recommended for long-term use other than simple plotting
(e.g. for debugging or developing/transfering ICs).

6.2 SEREN format

The SEREN format is a legacy format from the original SEREN code which is currently the main format for use
in GANDALF. There are two different version of the SEREN format;

• seren form or sf : ‘Formatted’ (i.e. ASCII)

• seren unform or su : ‘Unformatted’ (i.e. binary)

The format consists of a large multi-part header with different data types, including information about the units
used as well as the particle data and star/sink data arrays. The full header array sizes are given below. In the
formatted/ASCII case, each array element is printed on a separate line but is compressed as a single stream. For
any fields not given below, assume the quantity to be unused and therefore defaulted to zero in the header. The
header reads as follows:

• format id : A string identifying the exact format type (for verification)

• pr : Floating point precision (4 = single precision, 8 = double precision)

• ndim : Spatial dimensionality

• vdim : Velocity dimensionality

• bdim : Magnetic field dimensionality

• idata[50] : Integer variables

– idata[0] = Nhydro : No. of hydro particles (SEREN = pgas)

– idata[1] = Nstar : No. of star/sink particles (SEREN = stot)

– idata[2] = N/A in GANDALF (SEREN = pboundary : No. of static boundary particles)

– idata[3] = N/A in GANDALF (SEREN = picm : No. of ‘inter-cloud medium’ particles)

– idata[4] = Ngas : No. of self-gravitating gas particles (SEREN = pgas)

– idata[5] = Ncdm : No. of self-gravitating cdm particles (SEREN = pcdm)

– idata[6] = Ndust : No. of dust particles (SEREN = pdust)

– idata[7] = N/A in GANDALF (SEREN = pion : No. of particles)

– idata[19] = nunit : No. of unit variables in header

– idata[20] = ndata : No. of data arrays in snapshot file

– idata[29] = N/A in GANDALF (SEREN = dmdt range : No. of accretion rate variables in sink
array)

– idata[30] = N/A in GANDALF (SEREN = pgas orig : Original no. of gas particles)

– idata[31] = N/A in GANDALF (SEREN = pp gather : Average/exact no. of neighbours)

– idata[39] = N/A in GANDALF (SEREN = rank : MPI process that created the file)

– idata[40] = N/A in GANDALF (SEREN = Nmpi : Total no. of MPI processes)

• ilpdata[50] : Long integer variables

– ilpdata[0] = Noutsnap : No. of snapshot files created (SEREN = snapshot)

– ilpdata[1] = Nsteps : No. of complete integration steps (SEREN = nsteps)

– ilpdata[2] = N/A in GANDALF (SEREN = ntempnext : Integer time for next temporary snapshot)

– ilpdata[3] = N/A in GANDALF (SEREN = ndiagnext : Integer time for next diagnostic output)

– ilpdata[4] = N/A in GANDALF (SEREN = nsnapnext : Integer time for next integer snapshot)

– ilpdata[5] = N/A in GANDALF (SEREN = nsinknext : Integer time for next sink output)

– ilpdata[10] = Noutlitesnap : No. of lite snapshots (N/A in SEREN)

• rdata[50] : Standard precision floating-point variables

– rdata[0] = h fac : ‘No. of particles per smoothing length’ factor in h-rho iteration (SEREN = h fac)

– rdata[1] = N/A in GANDALF (SEREN = gamma : Ratio of specific heats for gas)

– rdata[2] = N/A in GANDALF (SEREN = mu bar : Mean gas particle mass (in units of mh))

– rdata[3] = N/A in GANDALF (SEREN = hmin : Minimum smoothing length)

• ddata[50] : Double precision floating-point variables

– ddata[0] = t : Simulation time when snapshot was created (SEREN = time)

– ddata[1] = tsnaplast : Time that previous snapshot was created (SEREN = lastsnap)

– ddata[2] = mmean : Average mass of gas particles (SEREN = mgas orig)

– ddata[10] = tlitesnaplast : Time when previous lite snapshot was created (N/A in SEREN)

• unit data[nunit] : Strings identifying the chosen input unit for each physical quantity. Note that this
does not necessarily have to be the same as the chosen output units (See Section 11). In unformatted/binary
files, the strings are set to a default maximum length of 20 characters (with white space padding at the end).

• data id[ndata] : Strings identifying the physical quantities contained in the particle arrays that follow
the header. Note that vector quantities are written grouping together the different components for each
component, rathern than different ndim scalar values (e.g., in 2d x and y of a given particle are written
one after the other, and after come the x and y of another particle). As with the unit data array using
unformatted/binary file, the strings are set to a default maximum length of 20 characters (with white space
padding at the end).

– porig : Original (unique) particle ids

– r : Hydro particle positions

– m : Hydro particle masses

– h : Hydro particle smoothing lengths

– v : Hydro particle velocities

– rho : Hydro particle densities

– u : Hydro particle specific internal energies

– sink v1 : Star/sink particle data (N.B. a more complicated data structure due to the various star/sink
properties in SEREN; recommended to look at the source code for more info)

• typedata : Information on each particle array, such as the variable type, unit type, etc.. For the data held
in array idata, the data information in each field is :

– typedata[idata][0] : Dimensionality of array (i.e. 1 to ndim)

– typedata[idata][1] : i.d. of first particle in array in Fortran (i.e. normally 1 as opposed to 0 in C/C++)

– typedata[idata][2] : i.d. of last particle in array in Fortran (i.e. normally Nhydro as opposed to
Nhydro - 1 as in C/C++)

– typedata[idata][3] : Variable type of array (1 : bool; 2 : integer; 3 : long integer; 4 : float; 5 : double)

– typedata[idata][4] : Physical unit of array (same i.d. as unit data array index plus one due to
Fortran array convention)

The headers, in particular data id and typedata, contain all the information about what type of data is con-
tained in the particle arrays. The particle arrays come immediately after the end of the header.

6.3 SEREN ‘lite’ format

The SEREN ‘lite’ format is a minimised version of the SEREN format designed for creating many snapshots
for movies. It has various restrictions which do NOT make it useful for other forms of analysis or restarting
simulation, such as :

• No velocity information (only contains position, mass, smoothing length, density and specific internal
energy)

• Hard-wired to single precision to obtain the smallest file-size in binary format

It can used simulataneously with the other more complete formats, which can instead be used for the analysis or
for restarting. There are three parameters which control the usage of the lite formats, litesnap, dt litesnap
and tlitesnapfirst (See parameter tables)

7 Generating initial conditions

There are three main ways of generating initial conditions in GANDALF.

7.1 ‘On-the-fly’ initial conditions

It is possible to generate initial conditions ‘on-the-fly’ using internal subroutines in GANDALF. At present, the
following initial conditions are included in the code :

Hydrodynamical simulations :

- bb : Boss-Bodenheimer test
- binaryacc : Binary accretion simulation
- blastwave : 1D blastwave test
- bondi : Spherically symmetric Bondi accretion test
- box : Create uniform box
- cdiscontinuity : Contact-discontinuity test
- disc : Accretion disc. See section 7.2.1.
- ewald : Several tests of Ewald gravity
- gresho : Gresho vortex test
- khi : Kelvin-helmholtz instability
- noh : Noh shock test
- plummer : Plummer sphere (stars + gas, or just gas)
- sedov : Sedov blastwave test
- shearflow : Shearing flow test
- shocktube : Simple two-fluid shocktube test
- soundwave : Simple 1D sound-wave perturbation test
- sphere : Create uniform density sphere
- spitzer : Spitzer expansion of HII region test
- turbcore : Create uniform density core with turbulent velocity field

N-body simulations :

- binary : Simple circular binary system test
- burrau : Burrau Pythagorean test
- figure8 : Simple 3-body figure-8 test
- plummer : Plummer sphere (stars + gas, or just stars)
- quadruple : Simple hierarchical quadruple system test
- triple : Simple hierarchical triple system test

7.1.1 Creating your own initial conditions generators

The subroutines that create the initial conditions are all contained in the Ic class. This class is essentially a
container for all subroutines and helper functions in one place. If the user wishes to create their own initial
conditions subroutines inside GANDALF, then there are 3 important files that must be editted.

• src/Headers/IC.h : this file contains the class definition for the Ic class. The function prototype for
any new IC generating function should be placed in this class, e.g.

void MyNewInitialConditions(void);)

• src/Common/Ic.cpp : this file contains all the functions contained in the Ic class, including the helper
functions. The full code for generating the initial conditions should be placed in this file, e.g.

void Ic::MyNewInitialConditions(void) {....}

• src/Common/SimulationIC.hpp : Interface file that links (and calls) the IC class functions from the
main simulation class. In this file, you will need to add your own function call (together with the ‘if’
statement to call the function), e.g.

else if (ic == ‘‘myic’’) {icGenerator.MyNewInitialConditions();}

To select your own initial conditions when running GANDALF, you simply set the ic parameter in your param-
eters file to the chosen string, e.g. ic = myic .

7.2 Description of initial conditions

7.2.1 Accretion disc

If “ic” is set to “disc”, a standard thin accretion disc (e.g., ?) will be generated. See table 1 for a summary of
the parameters. This setup can be used in 2-d (that is, vertically integrated) or in 3-d. Currently the setup only
works in dimensionless units. A star with a mass of 1 is created at the origin of the coordinate system. The disc
will extend in radius from “DiscIcRin” to “DiscIcRout”. The disc has an initial power-law surface density profile
Σ ∝ r−p, where the value of the exponent p is given by the parameter “DiscIcP”. The normalization is fixed by
the parameter “DiscIcMass”, which is the total mass of the disc (relative to the star). This setup is designed to use
a locally isothermal equation of state, where the sound speed follows a power-law with radius: cs ∝ r−q, where
the exponent q is given by the parameter “DiscIcQ”. This equation of state is selected if “gas eos” has the value
“disc locally isothermal”. The setup emits a warning if one uses a different equation of state. When running in
3-d, the disc is assumed to be vertically isothermal and in hydrostatic equilibrium in the vertical direction, that
is, ρ ∝ exp(−z2/2H2), where H = cs/Ω and Ω is the keplerian angular frequency. The normalization of the
sound speed is set by the parameter “DiscIcHr”, which sets the aspect ratio H/r at the inner radius of the disc.
Notice that we use random placement to initialise the disc; the initial density structure will thus be noisy. This in
general not an issue since the particles typically rearrange themselves over one orbit. However, please keep this
into account if you a need a structure with little noise already in the initial conditions.

The setup also supports the option of embedding a planet in the disc. This is selected if the parameter “DiscIc-
Planet” takes a value of 1. The planet will be on a keplerian orbit; see table 7.2.1 for setting the orbital parameters
and planet mass. The setup does not currently support multiple planets, but it would be very straightforward to
extend it - please contact the authors if you are interested in it.

As explained in chapter 9, GANDALF can solve for the dust dynamics in addition to the gas dynamics. If you
wish to follow also the dust dynamics, the parameter “NDust” controls the number of dust particles and the
parameter “DustGasRatio” gives the mass ratio between the dust and the gas. Notice that when using dust the
parameter “DiscIcMass” refers to the total (i.e., gas+dust) mass of the disc. Other choices of the dust algorithm
are described in chapter 9.

Finally, the star and the planet will accrete mass from the disc if sink particles are switched on in the disc. This
is controlled by the normal parameter “sink particles”. The accretion radius of the star is always fixed to the
inner radius of the disc; the accretion radius of the planet instead is controlled by the parameter “DiscIcPlane-
tAccretionRadiusHill”, which sets the accretion radius in units of the Hill radius of the planet. Notice that, if the
planet accretes, effectively its gravity is not smoothed, since we smooth the gravitational potential only inside the
accretion radius. If you are not using sink particles, instead, the parameter “DiscIcPlanetAccretionRadiusHill”
expresses the smoothing length of the gravitational potential. Currently is not possible to let only the star accrete
and not the planet (or viceversa); please contact the authors if you require this behaviour.

Table 1 lists all the parameters discussed so far and their default values. Most of the default values come from
the standard setup of ?; note however that we use a surface density ∝ r−1 rather than a flat one. We also do not
employ ghost particles at the inner and outer boundary.

Parameter name Description Default value
DiscIcMass Disc mass 0.01
DiscIcP Power-law exponent of the surface density 1
DiscIcQ Power-law exponent of the sound speed 0.5
DiscIcRin Inner radius of the disc 0.4
DiscIcRout Outer radius of the disc 2.5
DiscIcHr Aspect ratio of the disc at the inner radius
DiscIcPlanet Wheter the setup contains a planet (0 or 1) 1
DiscIcPlanetRadius Semi-major axis of the planet 1
DiscIcPlanetEccen Eccentricity of the orbit 0
DiscIcPlanetIncl Inclination of the orbit (in degrees) 0
DiscIcPlanetMass Mass of the planet 1e-3
DiscIcPlanetAccretionRadiusHill Accretion radius of the planet (in units of the Hill radius) 0.4
NDust Number of dust particles 0
DustGasRatio Dust to gas ratio when using dust 0.01

Table 1: Summary of the parameters controlling the disc setup and their default values

7.3 Load from external file

GANDALF can load two main file formats; simple ASCII column format and SEREN format. These are de-
scribed in detail in Section 6. In order to read from file, you must set the following parameters :

• ic = file : Tell GANDALF to ignore initial conditions generators and read from file instead

• in file = .. : The name of the initial conditions file

• in file form = column/sf/su : The format of the initial conditions file

7.4 Generate inside python script

GANDALF can generate initial conditions if using python scripts. The initial conditions can be first set in numpy
arrays and then imported into the C++ code in order to perform the simulation. More information is given about
this method, including detailed examples, in Section 8.3.

8 GANDALF Python library

The GANDALF Python library can be used to control a simulation via a Python script. In addition, it also
provides routines for performing analysis tasks. Combined with the power of the Python language, this allows
you to use it for many purposes. Some examples are listed below:

• Load in previously run simulations for analysis and producing visualisation

• Load in multiple previously run simulations for comparisons

• Prepare often-run simulations including the analysis in a single script

• Run batches of simulations (e.g. a parameter study) with a single controlling script

• Run or analyse simulations interactively through the interpreter

• Generate initial conditions directly in python (instead of via a file or in C++) and run the simulation

It also provides an easier entry into using SPH and N-body than other codes which require more investigation of
the code mechanics and file formats before even basic simulations can be run.

There are two main ways to use the Python side of GANDALF; (a) an interpreter, which works similarly to
a shell (e.g. bash, csh) (b) a python script. The interpreter understands a specific set of commands to load a
simulation and plot quantities. You can use it for example to quickly read the output of a simulation and do a
simple plot to check what is happening. Using a Python script instead is more powerful since, in addition to the
same commands supported by the interpreter, you have the full power of Python at your disposal. For example
you can access the raw particle data, compute additional particle properties, generate the initial conditions, and
much more. The library will take care of the boring details such as reading the snapshots and extracting the data;
you can concentrate on what to do with the data and on the science, and forget about the details.

The Python files for both the library and the interpreter are contained in the gandalf/analysis sub-directory.
We explain briefly in the next sections how to run the interpreter or import the GANDALF library (if you are
writing a script) and then an extensive tutorial follows which should clarify how to use the library.

8.1 Interpreter

The interpreter is located in the analysis/ folder in the main directory of GANDALF. To start the interpreter, type
from the main GANDALF folder:

python analysis/gandalf interpreter.py.

A list of commands available for the python interpreter can be printed by typing the ’help’ command.
Furthermore, typing ’help command’ gives more information on the chosen command. The commands have a
streamlined syntax so that you can perform the tasks you need with as little typing as possible. For example, to
render the density of the sph particles in a 2d simulation, you can just issue the command render x y rho.
Under the hood, this is translated in the python code render('x','y','rho').

8.2 Python script - overview of the libraries to import

The GANDALF Python library contains a number of modules that can be imported in to provide the desired
functionality.

• gandalf.analysis.facade
This module is the main front-end to the GANDALF Python library and contains the Python-wrapped C++

executable and all functions required to set-up and run simulations. This module must always be imported
in GANDALF Python scripts.

• gandalf.analysis.compute
This module contains all extra and user-defined routines for computing important quantities from the sim-
ulation snapshot data. Currently contains routines for computing centre-of-mass properties, L1 error norm
(when provided with an analytical solution) and the Lagrangian radius.

• gandalf.analysis.data_fetcher
This module contains routines for exporting data from the C++ code to Python, generating custom data
(e.g. time evolution) from snapshot data and generating user-defined data quantities from raw particle data.

8.3 GANDALF Python library tutorial

The GANDALF Python library contains a variety of commands that are used to create and run new sim-
ulations, load in old simulations from the disk, analyse and plot results and more. A full list of all
of these commands is given in Appendix A. The same information can be found in the source code file
gandalf/analysis/facade.py. Also, when running the interpreter, information on interactive commands
can be obtained by typing help for a full list of available commands, or help command for information on that
particular command. Finally, as common in Python, if running through a script one can get the documentation
string of a function in the special variable called __doc__.

We provide here a short tutorial demonstrating from the most basic to the more advanced functionality of the
Python library. These examples are also contained in the gandalf/examples sub-directory and should run as
typed, although it is also useful for the user to write the examples themselves if unfamiliar with python syntax.

8.3.1 Example 1 - Creating and running a new simulation from a parameter file

This first example demonstrates how to set-up and run a new simulation from a given parameters file (nominally
called params.dat in these examples).

#==

example01.py

Basic example to run a simulation from a parameters file.

#==

from gandalf.analysis.facade import *

Create simulation object from parameters file

sim = newsim("adsod.dat")

Perform all set-up routines and then run simulation to completion

setupsim()

run()

The first command

from gandalf.analysis.facade import *

loads in all definitions and functions from the GANDALF python frontend, facade.py. Note that this
assumes that the PYTHONPATH environment variable has been correctly set-up. Otherwise, the full absolute path
of the facade.py file must be given. The second command

sim = newsim(‘adsod.dat’)

reads in the parameters file ’adsod.dat’ and creates a new simulation from those parameters and re-
turns a Python object, sim, which can be used to refer to that simulation in Python (N.B. the user can use any
name for this object, as long as it does not clash with another GANDALF or Python object). In this case, it is
assumed the parameters file is selecting an initial conditions generator in the main code to generate the particles
in the simulation. In order to fully set-up the simulation so it is ready to be run, the command

setupsim()

must be run. Finally, to run the simulation to completion, we must execute the command

run()

The code will run until the specified endtime and then exit the python environment.

If run through the interpreter, the same example would look like:

newsim adsod.dat

setupsim

run

8.3.2 Example 2 - Creating a simulation and modifying a parameter before running

This example demonstrates how to modify parameters in Python that have been loaded in from a given
parameters file.

#==

example02.py

Example to prepare a simulation from a parameters file, modify a parameter ,

then run the simulation to completion.

#==

from gandalf.analysis.facade import *

Create simulation from parameters file and modify a single parameter

sim = newsim("adsod.dat")

sim.SetParam("tend",1.5)

Process modified parameters , set-up simulation and run to the end.

setupsim()

run()

The first two lines of this example are the as the first example, where we import the GANDALF Python frontend
and then create a new simulation from the parameters file ‘adsod.dat’. Once loaded in, we can now modify
parameters with the command

sim.SetParam(parameter name,new value)

In this case, we set the parameter tend (the total simulation run-time) to the value 2.0 with
sim.SetParam(`tend',2.0). Once all parameters have been modified, then we can set-up the simula-
tion fully with setupsim() and run it with run(). Note that if we attempt to modify any parameters AFTER
calling setupsim(), then the code will terminate with an exception. It is not possible to change the parameters
of a simulation through the interpreter.

8.3.3 Example 3 - Generating initial conditions using internal routines without a parameters file

In this example, we will create and run a simulation without needing to load-in an external parameters file.

#==

example03.py

Example to create a `blank' simulation object, set all important parameters ,
then run the simulation to completion.

#==

from gandalf.analysis.facade import *

Create `blank' simulation object (2-dimensional SPH)
sim = newsim(ndim=2,sim="sph")

Set all important simulation parameters in order to create a grad-h SPH

simulation of a 2D Sedov blast test initially from a 64x64 lattice.

sim.SetParam("ic","sedov")

sim.SetParam("run_id","SEDOV1")

sim.SetParam("Nlattice1[0]",64)

sim.SetParam("Nlattice1[1]",64)

sim.SetParam("boxmin[0]",-1.0)

sim.SetParam("boxmin[1]",-1.0)

sim.SetParam("boxmax[0]",1.0)

sim.SetParam("boxmax[1]",1.0)

sim.SetParam("boundary_lhs[0]","periodic")

sim.SetParam("boundary_rhs[0]","periodic")

sim.SetParam("boundary_lhs[1]","periodic")

sim.SetParam("boundary_rhs[1]","periodic")

sim.SetParam("dimensionless",1)

sim.SetParam("Nlevels",10)

sim.SetParam("tend",0.5)

sim.SetParam("tsnapfirst",0.0)

sim.SetParam("dt_snap",0.1)

Now perform all set-up routines and run simulation

setupsim()

run()

In this example, we call the newsim function passing the dimensionality of the simulation instead of a parameter
file. Therefore the line sim = newsim(ndim=2,sim=`sph') sets up a 2-dimensional SPH simulation, but
is otherwise unspecified because no other parameters have been set. Next, we can set all the parameters that
would have otherwise been set in the parameters file. In this example, we set up an SPH simulation with initial
conditions to perform the Sedov blast-wave test (sim.SetParam(`ic',`sedov')); (See Section 5 for a full
description of all parameters). Once all parameters have been set, we can fully set-up and run the simulation with
setupsim() and run().

8.3.4 Example 4 - Running a simulation and plotting results to screen and file

In this example, we show how to plot particle data interactively during a live simulation.

#==

example04.py

Example to create a simple 2D random cube of particles and plot the x-y

coordinates to screen as the simulation progresses.

#==

from gandalf.analysis.facade import *

Create simulation object from `glass.dat' parameters file
sim = newsim("glass.dat")

Set the time interval where the matplotlib window is updated in seconds

sim.SetParam("dt_python",2.0)

Set-up simulation , plot the x-y coordinates and run the simulation

setupsim()

plot("x","y")

run()

Finally, save the figure to file

savefig("figure.eps")

block()

In this simulation, we will run a live simulation while also plotting particle data in a matplotlib window as the
simulation is still running. We first create the simulation as in previous examples with newsim. We then set the
value of the dt python which is the time between python/matplotlib window updates. After the setupsim()
command, we can then plot the initial conditions from the simulation using the command

plot(x,y)

where x and y are the x- and y-axis plotting variables (N.B. these can be any variables, not necessarily x
and y. e.g. plot(‘y’,‘z’)). If we now run the simulation with run(), the simulation will compute as normal
while updating the plot window every dt python seconds (in this casem every 2 seconds). After the simulation
has finished, we can save the final plot to file with the command

savefig(filename)

where filename is the intended filename including the file extension. matplotlib automatically deter-
mines the correct file format from the extension (e.g. typing savefig(`fig1.png') will automatically save
the window to a png file without need for additional arguments). The use of block() in the last line is needed
because otherwise python would exit immediately from the script. Instead, the function pauses the script so that
you can look at the plot. Pressing Enter (or any other key) causes to script to continue (and so in this case to
terminate as there is no other instruction afterwards).

This same example can also be run through the interpreter (apart for changing the dt python parameter). Note
that there is no need to call block as the interpreter already pauses after each command in order to wait for the
next one:

newsim glass.dat

setupsim

plot x y

run

savefig figure.eps

8.3.5 Example 5 - Reading a simulation from disc and plotting several snapshots

In this example, we load in a previously run simulation from the disk and generate various plots.

#==

example05.py

Example to load in a previously run simulation from the disk,

#==

from gandalf.analysis.facade import *

Load simulation with run_id `ADSOD1' (run in example 1)
loadsim("ADSOD1")

Plot x vs. density for first snapshot and save to eps file

plot("x","rho",snap=0)

savefig("snap1.eps")

Plot x vs. density for second snapshot and save to eps file

plot("x","rho",snap=1)

savefig("snap2.eps")

Plot x vs. density for first and second snapshots and save to eps file

plot("x","rho",snap=0)

addplot("x","rho",snap=1)

savefig("snap12.eps")

block()

Instead of a creating a new simulation with the newsim function, we will load in a previous run simulation with
the command

loadsim(runid)

where runid is the simulation run identification string. Note, this assumes that all files from that simu-
lation are present in the folder, including the runid.param file which contains all the parameters used to run the
simulation. In this case, we load a simulation with the runid ADSOD1 with the command loadsim(`ADSOD1').
We can then plot particular snapshots of the simulation using the plot command with the optional snap
argument. Therefore to plot the first snapshot, type plot(‘x’,‘y’,snap=0), to plot the second snapshot,
type plot(‘x’,’y’,snap=1), etc.. Note that Python uses C-style indexing, i.e. starting from zero, unlike
other conventions like in FORTRAN where indexing starts from one. If we wish to overplot one snapshot over
another, we first plot the first snapshot and then use the command

addplot(‘x’,‘y’,snap=1)

to add the second snapshot plot over the first one. This behaviour can also be replicated by adding the
overplot optional boolean argument to plot, i.e. plot(`x',`y',snap=1,overplot=True).

It is possible to run this example too through the interpreter:

loadsim ADSOD1

plot x rho snap=0

savefig snap1.eps

plot x rho snap=1

savefig snap2.eps

plot x rho snap=0

addplot x rho snap=1

savefig snap12.eps

From now on, we stop providing also the code for the interpreter. As you have seen, the conversion is
trivial to do.

8.3.6 Example 6 - Reading and plotting multiple simulations

In this example, we show how to read in multiple simulations to make comparison plots.

#==

example06.py

Load in an old simulation from the disk, run a new simulation and then

plot both simulations in the same plot for comparison.

#==

from gandalf.analysis.facade import *

Load in Sod test simulation (run in example 1)

sim0 = loadsim("ADSOD1")

Create new simulation object from `adsod.dat' parameters file, but modify
to use no artificial viscosity and then run to completion.

sim1 = newsim("adsod.dat")

sim1.SetParam("run_id","ADSOD2")

sim1.SetParam("avisc","none")

setupsim()

run()

Plot Sod test results, with (sim=0) and without (sim=1) artificial viscosity ,

on same figure and then save to eps file.

plot("x","rho",sim=0,snap=2)

addplot("x","rho",sim=1,snap=2)

savefig("sod12.eps")

block()

Multiple simulations can be loaded into GANDALF using the loadsim command. However, they must be
returned to objects with different names; in this case, we name them sim0 and sim1 (to follow the C-style num-
bering convention). A snapshot from a particular simulation can be plotted by adding the optional argument sim
to the plot command, i.e. plot(`x',`rho',sim=0,snap=0) to plot the first snapshot in the first simulation.
The second simulation is then over-plotted with the command addplot(`x',`rho',sim=1,snap=0). In this
example, we load in an old simulation (as run in example 1) and then run a new simulation (the same initial
conditions but without any artificial viscosity) and then plot the results on the same window and to an eps file.

8.3.7 Example 7 - Overplotting the analytical solution with the simulation results

In this example, we demonstrate how to overplot analytical solutions over particle plots.

#==

example07.py

Overplot the analytical solution of a known problem while simulatneously

running the simulation.

#==

from gandalf.analysis.facade import *

Create the new simulation object

sim = newsim("adsod.dat")

sim.SetParam("dt_python",2.0)

setupsim()

Plot both the simulation results along with the analytical solution

(N.B. the analytical solution is overplotted by default).

plot("x","rho")

plotanalytical("x","rho")

Set the limits of the x-axis plot

limit("x",-1.1,1.1)

Finally run the simulation to completion

run()

block()

For some sets of initial conditions (e.g. shocktubes), the analytical solution is provided in one of the python
modules (gandalf.analysis.analytical). The python module will read in the values specified in the
simulation parameters file and return the correct solution for that given snapshot time. To overplot a specified
quantity (e.g. x vs density), then use the command

plotanalytical(‘x’,‘rho’)

Another useful command to set the limits of any plot quantity is

limit(quantity,min,max)

where quantity is a string of the quantity and min and max define the range of the plot. In this exam-
ple, limit(`x',-1.1,1.1)

8.3.8 Example 8 - Creating initial conditions directly in the python script

In this example, we demonstrate how to generate some simple initial conditions inside a python script. For
simplicity, we start with a simple 1D shocktube example.

#==

example08.py

Create initial conditions for SPH simulation inside the python script, and

then run the simulation to completion while plotting results.

#==

from gandalf.analysis.facade import *

import numpy as np

import time

Set basic parameters for generating initial conditions

Nhydro = 200

vfluid = 4.0

xmin = -1.5

xmax = 1.5

Set uniform line of Nhydro particles between the limits of xmin and xmax

in local numpy arrays

deltax = (xmax - xmin) / Nhydro

x = np.linspace(xmin + 0.5*deltax,xmax - 0.5*deltax,num=Nhydro)

m = np.ones(Nhydro)*(xmax - xmin)/Nhydro

Set velocities of shock-tube so v = vfluid for x < 0 and -vfluid for x > 0

vx = np.ones(Nhydro)*vfluid

vx[x > 0.0] = -vfluid

Create new 1D simulation object and set parameters

sim = newsim(ndim=1,sim='sph')
sim.SetParam('ic','python')
sim.SetParam('gas_eos','isothermal')
sim.SetParam('Nhydro',Nhydro)
sim.SetParam('tend',0.2)
sim.SetParam('dt_snap',0.05)
sim.SetParam('dimensionless',1)
sim.SetParam('vfluid1[0]',vfluid)
sim.SetParam('vfluid2[0]',-vfluid)
sim.SetParam('boxmin[0]',xmin)
sim.SetParam('boxmax[0]',xmax)
sim.SetParam('run_id','SHOCKTUBE1')

Call setup routines and import particle data

sim.PreSetupForPython()

sim.ImportArray(x,'x')
sim.ImportArray(vx,'vx')
sim.ImportArray(m,'m')
setupsim()

Plot the density of all particles near the shock

plot("x","rho")

plotanalytical("x","rho",ic="shocktube")

limit("x",-0.17,0.17,window="all")

limit("rho",0,21.0,window="all")

Run simulation and save plot to file

run()

savefig("shocktube.png")

block()

As well as importing the GANDALF Python library, we must also import the NUMPY library, which is a
popular mathematical library in Python for handling arrays, with the command

import numpy as np

We first create the initial conditions in Python before exporting the data to the C++ part of the code.
This can be done by creating NUMPY arrays for each variable, e.g. x, m, etc.. Note that even for vector
quantities (e.g. position, velocity), we must allocate separate 1D NUMPY arrays for each component, for
example the commands

a1 = np.zeros(N),
a2 = np.ones(N),
a3 = np.linspace(0.0,1.0,num=N)

return NUMPY arrays of size N with all zeros, all ones, and uniform values between 0 and 1 respectively
(See NUMPY website and documentation for more information on NUMPY functions). For this simple
shocktube test, we set all velocities left of the shock interface to 4.0 and right of the shock interface to −4.0 with
the commands vx = np.ones(Nsph)*4.0; vx[x > 0.0] = -4.0.

We then create an undefined 1D simulation object with sim = newsim(ndim=1) and set various parameters
determing the simulation type, integration scheme, equation of state, etc.. We must then inform the code that
we intend to generate initial conditions in the python script (and not say from an external file or one of the
internal C++ routines) by the command sim.SetParam('ic','python'). We must also inform the code of
the number of SPH particles to be used with the command sim.SetParam('Nsph',Nsph), in order to allocate

enough memory for the simulation (N.B. Nsph is simply a local Python variable in this example. This can be any
other variable, or even simply an integer number).

The last step before importing the arrays to C++, we must initialise various things in the code, including
importantly allocating memory for the particles, by calling the function

sim.PreSetupforPython()

Next, we can import the array into the C++ arrays by the command

sim.ImportArray(numpyarray,varname)

where numpyarray is the local NUMPY array and varname is a string containing the C++ variable
name. For example, to import the x-positions, we call the command sim.ImportArray(x,'x'). Once all
arrays have been called, we can finally call the setupsim function and plot and run the simulation to completion.

8.3.9 Example 9 - Creating initial conditions for N-body simulation in python script

In this example, we demonstrate how to generate some simple initial conditions for pure N-body simulation
inside a python script.

#==

example09.py

Create initial conditions for pure N-body simulation inside the python

script, and then run the simulation to completion while plotting results.

#==

from gandalf.analysis.facade import *

import numpy as np

import time

Create empty numpy arrays for setting star initial conditions

Nstar = 3

x = np.zeros(Nstar)

y = np.zeros(Nstar)

vx = np.zeros(Nstar)

vy = np.zeros(Nstar)

m = np.zeros(Nstar)

h = 0.000001*np.ones(Nstar)

Set values for each star individually (Note all velocities initially zero)

m[0] = 3.0; x[0] = 1.0; y[0] = 3.0

m[1] = 4.0; x[1] = -2.0; y[1] = -1.0

m[2] = 5.0; x[2] = 1.0; y[2] = -1.0

Create new 1D simulation object and set parameters

sim = newsim(ndim=2,sim='nbody')
sim.SetParam('ic','python')
sim.SetParam('nbody','hermite4ts')
sim.SetParam('sub_systems',0)
sim.SetParam('Npec',3)
sim.SetParam('Nlevels',1)
sim.SetParam('Nstar',Nstar)
sim.SetParam('tend',80.0)
sim.SetParam('dt_snap',1.0)
sim.SetParam('noutputstep',128)

sim.SetParam('ndiagstep',2048)
sim.SetParam('dimensionless',1)
sim.SetParam('run_id','BURRAU1')
sim.SetParam('out_file_form','su')

Call setup routines and import particle data

sim.PreSetupForPython()

sim.ImportArray(x,'x','star')
sim.ImportArray(y,'y','star')
sim.ImportArray(vx,'vx','star')
sim.ImportArray(vy,'vy','star')
sim.ImportArray(m,'m','star')
sim.ImportArray(h,'h','star')
sim.SetupSimulation()

Plot the density of all particles near the shock

plot("x","y",type="star")

limit("x",-30.0,30.0,window="all")

limit("y",-20.0,40.0,window="all")

Run simulation and save plot to file

run()

block()

8.3.10 Example 10 - Generating rendered images from SPH simulations

In this example, we show how to generate rendered images of some quantity. Note that rendered plots can only
be created for simulations using 2 or 3 dimensions.

#==

example10.py

Create a rendered image during an interactive simulation.

#==

from gandalf.analysis.facade import *

Create simulation object from Kelvin-Helmholtz parameters file

sim = newsim("khi.dat")

setupsim()

Generate rendered image of density field on the x-y plane with a

resolution of 128 x 128 pixels.

render("x","y","rho",res=128)

limit("x",-0.5,0.5)

limit("y",-0.5,0.5)

limit("rho",1.0,2.0)

run()

block()

A rendered plot of the density on the x-y plane can be created using the command

render(‘x’,‘y’,‘rho’)

The first argument specifies the x-coordinate, the second argument the y-coordinate and the third argu-
ment the rendered quantity. An important optional argument is res which specifies the resolution (in pixels) of

the rendered image in each dimension. If the image is not square, then the user may pass the resolution in each
dimension in parenthesis, e.g. render(`x',`y','rho',res=(128,64)).

8.3.11 Example 11 - Plotting in alternative coordinate systems

In this example, we show how to plot in alternative coordinate systems (i.e. other than Cartesian coordinates).

#==

example11.py

Plot particle quantities in an alternative coordinate system.

#==

from gandalf.analysis.facade import *

Create simulation object from Kelvin-Helmholtz parameters file

sim = loadsim("SEDOV1")

Plot the density as a function of radial position

plot("R","rho",snap=5)

block()

Once the simulation has been loaded or set-up as usual, then it is possible to plot in 3 pre-defined coordinate
systems, Cartesian, spherical polar and cylindrical polar coordinates, or even a mixture. Cartesian coordinates
are represented by the strings, x, y, z; sphericial polar coordinates by the strings r, theta, phi; cylindrical
coordinates by the strings R, phi, z. For example, to plot the density as a function of radius (for spherically
symmetric simulations), then we can use the command

plot(‘r’,‘rho’)

8.3.12 Example 12 - Changing the plotting units

In this example, we show how to plot using different units to those used in the simulation or provided in the
snapshot files.

#==

example12.py

Plot particle quantities in an alternative coordinate system.

#==

from gandalf.analysis.facade import *

from matplotlib.colors import LogNorm

Create simulation object from Boss-Bodenheimer parameters file

sim = newsim("bossbodenheimer.dat")

sim.SetParam("tend",0.02)

setupsim()

Run simulation and plot x-y positions of SPH particles in the default

units specified in the `bossbodenheimer.dat' parameters file.

plot("x","y")

addplot("x","y",type="star")

limit("x",-0.007,0.007)

limit("y",-0.007,0.007)

window()

render("x","y","rho",res=256,#norm=LogNorm(),

interpolation='bicubic')
limit("x",-0.007,0.007)

limit("y",-0.007,0.007)

run()

block()

After pressing return, re-plot last snapshot but in new specified units (au).

window(1)

plot("x","y",xunit="au",yunit="au")

window(2)

render("x","y","rho",res=256,#norm=LogNorm(),

interpolation='bicubic')
limit("x",-0.007,0.007)

limit("y",-0.007,0.007)

block()

In order to plot quantities using a different unit to the default, the optional arguments xunit and yunit must be
appended to the argument list for the relevant plotting command. These arguments contain strings of the required
unit (See section 5.2 for the list of available units).

8.3.13 Example 13 - Creating and plotting user-defined quantities

In this example, we show how to create new quantities to be plotted as regular quantities by the python library.

#==

example13.py

Create a new user-defined quantity and plot on window.

#==

from gandalf.analysis.facade import *

Load in simulation frmo disk

sim = loadsim("ADSOD1")

Create new quantity, specific kinetic energy of particles , including the

scaling factor (specific energy) and latex label.

CreateUserQuantity("ke","0.5*vx*vx",scaling_factor="u",

label="$\\frac{1}{2}vˆ2$")

Plot defined quantity along with internal energy

plot("x","ke",snap=2)

limit("ke",0.0,2.7)

addplot("x","u",snap=2)

block()

We can create new quantities from existing particle properties using the command

CreateUserQuantity(quantity name,quantity formula)

where quantity name is the new string name of the derived quantity and quantity formula is string

containing an algebraic formula that defines the new quantity. In our example, we create a new quantity to
compute the kinetic energy of a particle with the algebraic formula 0.5*m*vx*vx. For 2D and 3D simulations,
this would become 0.5*m*(vx*vx + vy*vy) and 0.5*m*(vx*vx + vy*vy + vz*vz) respectively. Note
that the algebraic formula can also use parameters by using the same string as defined in the parameters file.

The new quantity can then be plotted as any other regular quantity, e.g. plot(‘x’,‘ke’). Two important
optional arguments are scaling factor, which defines the string of the unit (e.g. in this case E since ke is an
energy), and label, which is a latex string used on the plots (e.g. frac{1}{2}mv2̂).

8.3.14 Example 14 - Plotting time series of particle properties

In this example, we show how to plot a time series of particle quantities from each snapshot recorded in the
simulation buffer. This can be used to plot useful quantities versus time (e.g. mass of a sink versus time), or x-y
tracks of a particle as it moves in space.

#==

example14.py

Plot quantities of single particles as a function of time through all

snapshots in the simulation.

#==

from gandalf.analysis.facade import *

Load in simulation from disk (from example 12)

sim = loadsim("BB1")

Plot the density of particle `100' as a function of time
time_plot("t","rho",id=100,linestyle="-")

block()

Now plot x-y track of particle 100 as it moves across computational domain

time_plot("x","y",id=100,linestyle="-")

block()

In order to plot a time series of some particle property, we use the command

time plot(‘t’,‘rho’,id=0)

where id is the unique/original id of the particle to be plotted. If no id is given, then an error is returned
and nothing will be plotted on screen.

8.3.15 Example 15 - Creating an animation from simulation snapshot files

In this example, we show how to generate a movie from a series of snapshot files loaded into memory.

#==

example15.py

Generate a movie from the snapshots of the simulation

#==

from gandalf.analysis.facade import *

#Load in simulation from the disk (run in example01.py)

sim = loadsim('ADSOD1')

#Make a plot

plot('x','rho')

#Loop over all the snapshots and produce a movie

make_movie('MOVIE1.mp4')
block()

Before generating a movie, we must first specify the plot commands that are to be used to generate the movie, for
example with the regular plot command plot('x','rho'). Once the commands to generate the plot window
have been completed, we then generate the movie with the command

make movie(‘MOVIE1.mp4’)

where the only required argument is the filename of the movie. The python library will then step through each
snapshot in turn, generate the image as a temporary png file, and then attach all images together using ffmpeg.
If you do not have ffmpeg installed, the command will fail. All temporary png files should then be deleted
automatically from the disc.

8.3.16 Example 16 - Retrieving data from the simulation

In this example, we show how to save some data from the snapshots in a variable. You can even save the
rendered image.

#==

example16.py

Retrieve data and save it inside a variable

#==

from gandalf.analysis.facade import *

Load in simulation from disk (from example10.py)

sim = loadsim("KHI1")

Get the data in variable x

x=get_data('x')
print x

Do a rendered plot and save the image

image=get_render_data('x','y','rho')

Use the matplotlib to plot the image

import matplotlib.pyplot as plt

plt.imshow(image,interpolation='nearest')
plt.show()

You can also the do the following when doing a plot:

data=plot('x','y')

Let's do a matplotlib plot in a new figure to show how you can access the data
plt.figure()

plt.plot(data.x_data,data.y_data,'.')

It works with render too

plt.figure()

data=render('x','y','rho')

plt.figure()

plt.imshow(data.render_data ,interpolation='nearest')
plt.show()

The syntax of the functions get data and get render data should be self-explanatory. These routines just return
the requested quantity as a numpy array, that you can save in a variable for further processing. Alternatively,
every time you do a plot you can also save the return value in a variable as shown further on in the example.
Particle plots save the data used on the x-axis inside the x_data field and on the y-axis inside the y_data field.
Render instead saves the image in the render_data field. In this way, you can use the rendered image to grid
your SPH data. At the moment render only renders to a 2d grid; however, we plan in the future to extend its
capabilities to render to a 3d grid.

8.3.17 Example 17 - Creating and plotting user-defined quantities from a function given by the user

In this example, we show how to create and plot an user-defined quantity. However, rather than building it
from a mathematical formula as shown in the example 13, we compute it using a function provided by the user.
This allows you to have much more flexibility in performing the computations you want with the data of the
simulation.

#==

example17.py

Create a new user-defined quantity from a function and plot on window.

Extends on example13.py

#==

from gandalf.analysis.facade import *

Load in simulation frmo disk

sim = loadsim("ADSOD1")

Create new quantity, specific kinetic energy of particles , including the

scaling factor (specific energy) and latex label.

CreateUserQuantity("ke","0.5*vx*vx",scaling_factor="u",

label="$\\frac{1}{2}vˆ2$")

Plot defined quantity along with internal energy

plot("x","ke",snap=2)

limit("ke",0.0,2.7)

addplot("x","u",snap=2)

block()

Define a function for computing kinetic energy

def ComputeKineticEnergy(snap,type="default",unit="default"):

vx=get_data("vx",snap=snap,type=type,unit=unit)

return 0.5*vx*vx

Create another new quantity

CreateUserQuantity("ke2",ComputeKineticEnergy ,scaling_factor="u",

label="$\\frac{1}{2}vˆ2$")
Overplot the new quantity - see that it overlays perfectly on the previous one

addplot("x","ke2",snap=2)

block()

Refer to the example 13 for the first use of CreateUserQuantity. For what concerns the second, we first need
to define the function that we want to use for computing the data. In this case, the function just retrieves the array

with the velocities (see the previous example) and computes the kinetic energy from them. The function needs to
return the computed value. Note that we pass the parameters specifying the snapshot, the type of particle (e.g.,
gas or star) and the unit to get_data. This is very important to do; if you forget to do it, you might get data from
the wrong snapshot, the wrong particle type, or in the wrong units.

8.3.18 Example 18 - Creating and plotting time series from a function given by the user

In this example, we show how to plot time series from functions defined by the user.

#==

example18.py

Plot quantities as a function of time through all snapshots in the simulation.

Extends on example14.py

#==

from gandalf.analysis.facade import *

#In this case, we need also a function defined in compute

from gandalf.analysis.compute import lagrangian_radii

Load in simulation from disk (from example 12)

sim = loadsim("BB1")

Define the half-mass radius

CreateTimeData("half_r",lagrangian_radii ,mfrac=0.5)

Plot it

time_plot("t","half_r")

block()

Define a function for computing the total mass

def ComputeMass(snap,type="default",unit="default"):

m=get_data('m',snap=snap,type=type,unit=unit)
return m.sum()

Define the quantity

CreateTimeData("totm",ComputeMass)

Plot it

time_plot("t","totm")

block()

For accomplishing this task we need to use the function CreateTimeData. Note that the way this function works
is very similar to CreateUserQuantity shown in the previous example. In the first example we use the function
lagrangian_radii, which is defined in GANDALF in the module compute. Note that we can pass additional
parameters to the function using keywords; for example in this case we specify that we want the half-mass radius
using the keyword mfrac. In the second example, we show how to define your own function for computing a
quantity from a snapshot. Just remember that in this case (differently from the previous example) you need to
return a scalar, which will be plotted as a function of time. The example retrieves the array with the masses (see
example 16) and sums up all of them to get the total one.

8.4 Tips and tricks

To plot the results we use the well-known library matplotlib. This means that if you are running from a script
you have several ways to customize the plots if you are not satisfied by their graphical appearance:

• Calling functions in matplotlib. Example: to logscale the y axis, just call plt.yscale('log') (assuming
you have imported matplotlib).

• Passing keyword arguments to the plotting functions defined by GANDALF. Example: if you are doing a
particle plot and want to change the marker size, you can call plot('x','y',ms=2), and the ms keyword
will be passed to matplotlib.

• Modifying the defaults for matplotlib using the .matplotlibrc files (see matplotlib documentation at http:
//matplotlib.org/users/customizing.html).

You might notice that the matplotlib window freezes when you are running a simulation live. This is not GAN-
DALF’s fault unfortunately, but a flaw in the design of the Python interpreter (if you want to know more, read
here: https://wiki.python.org/moin/GlobalInterpreterLock). If you do require interaction with the
matplotlib window (for example to be able to pan/zoom while the simulation is running), you can run the plots
in another process. In order to do this, open the file defaults.py in the analysis folder and change the value of
parallel to True. There is a drawback in this case: given that the plots are on another process, you cannot call
matplotlib functions to customise your plots (but the other two ways we suggest for customising the plots still
work).

http://matplotlib.org/users/customizing.html
http://matplotlib.org/users/customizing.html
https://wiki.python.org/moin/GlobalInterpreterLock

9 Dust Dynamics

9.1 Theory

The equations of motion for the mutual dynamics of gas and dust coupled by drag forces are

ρg
Dgvg

Dt
= −∇P + ρgag,ext + K(vd − vg), (1)

ρd
Ddvd

Dt
= ρdad,ext − K(vd − vg), (2)

where Dg

Dt is the Lagrangian derivative with respect to the gas. The external accelerations are included to take into
account additional forces, which may either be the same for both the gas and dust particles (such as gravity) or
affect just one species (e.g. viscosity). These equations can be re-written in terms of an equation of motion for
the relative and barocentric velocities, v = (ρgvg + ρdvd)/(ρg + ρd) and ∆v = vd − vg, (Youdin & Goodmann,
2005; Laibe & Price, 2014; Lorén-Aguilar & Bate, 2015),

Dv
Dt

=
−∇P + ρgag,ext + ρdad,ext

ρg + ρd
− F, (3)

D∆v
Dt

= −
∆v
ts

+ ad,ext +
∇P
ρg
− ag,ext − (∆v · ∇)v −G, (4)

where ts = ρgρd/K(ρg + ρd). The functions F and G are

F =
1

ρd + ρg
∇ ·

(
ρdρd

ρd + ρd
∆v∆v

)
, (5)

G =
1

ρd + ρg

[
ρg∆v · ∇

(
ρg

ρg + ρd
∆v

)
− ρd∆v · ∇

(
ρd

ρg + ρd
∆v

)]
. (6)

These two formulations naturally lead to two different numerical approaches (in the same spirit as Eulerian
vs. Lagrangian hydro codes), with equations (1) and (2) naturally represented by two different particle types
representing fluid (gas) particles and dust particles. Equations (3) – (6) are more naturally represented as a
single fluid that moves with the barycentric velocity, on top of which the dust fraction is advected relative to the
barycentre at velocity ∆v (see Laibe & Price 2014 for more details).

In GANDALF we solve directly equations (1) and (2) using a multi-fluid approach, using the semi-implicit time-
stepping following Booth, Sijacki & Clarke (2015) and Lorén-Aguilar & Bate (2015). In these approaches we
use of 〈∆v〉, the average of the relative velocity in the time-step [t, t + ∆t]. This is found by solving equation (4)
under the approximation that the densities, accelerations and ts are constant in both time and space. We find

〈∆v〉
∆t
ts

= ∆v(t + ∆t)
(
1 − exp(−∆t/ts

)
−

(
ad,ext +

∇P
ρg
− ag,ext

) [
(∆t + ts)

(
1 − exp(−∆t/ts)

)
− ∆t

]
, (7)

where ∆v(t + ∆t) = ∆v(t) +
(
ad,ext + ∇P/ρg − ag,ext

)
∆t. From equation (7) the gas and dust accelerations can be

found to be

ag,drag = +
ρd

ρd + ρg

〈∆v〉
ts

, (8)

ad,drag = −
ρg

ρd + ρg

〈∆v〉
ts

. (9)

When the approximations made above hold exactly the resulting accelerations are exact since equations (1) and
(2) are linear as long as the drag coefficient does not depend on ∆v. The change in internal energy is computed
directly from the change in kinetic energy to ensure conservation.

9.2 Implementations

GANDALF now includes two implementations of combined dust-gas dynamics, based upon equations (1) & (2)
and (7) – (9). Currently these are only implemented for the grad-h SPH algorithm. In both implementations the
dust and gas are represented by separate particle types (which are identified in the code via the ptype particle
attribute). In the first implementation the back-reaction of the dust on the gas is neglected (equivalent to ρd → 0) –
the gas dynamics are not modified when dust is included (test-particle limit). While in the second implementation
the back-reaction on the gas is included (full two-fluid). The advantages and disadvantages of the methods are
discussed below. These implementations can be found in src/Common/Dust.cpp

9.2.1 Test-particle implementation

The test-particle implementation closely follows Booth et al (2015). Since in general the gas particles and
dust particles will not be at the same locations, the gas properties needed for evaluating equation (7) must be
interpolated to the location of the dust particle. This is done in the standard SPH way. For each dust particle we
compute a ‘gas smoothing length’ set by the local number density of gas particles, in a similar way to that of the
gas. The gas properties are then interpolated to the location of the dust particles using a the standard kernel sum
and the interpolated values are used in evaluating the drag acceleration.

9.2.2 Full two-fluid algorithm

The full two-fluid algorithm follows the improved semi-implicit algorithm of Lorén-Aguilar & Bate (2015). In
order to ensure conservation of both energy and angular momentum the forces must: (1) change sign under the
exchange of particles, (2) be directed along the lines between interacting particles (Laibe & Price 2012). (1)
can be achieved simply by interpolation, but (2) requires forces to be directed between particles rather than in
the direction of the velocity difference. Following Laibe & Price (2012) and Lorén-Aguilar & Bate (2015) we
project the drag force between pairs of particles and evaluate the total acceleration using a kernel sum:

ad,drag = −

gas∑
i

mi

ρg,i
(Sid · r̂id)r̂idD(rid, hi)

ag,drag = −

dust∑
i

mi

ρd,i
(Sig · r̂ig)r̂igD(rig, hg),

where r̂i j = (ri − r j)/|ri − r j| and

Si j =
ρi

ρi + ρ j

〈∆vi j〉

ts
. (10)

For the kernel D we use the double hump version of the kernel used for the SPH forces D(r, h) ∝ (r/h)2W(r, h),
which reduces the bias in the direction of the force estimate from nearby neighbours when compared with bell-
shaped kernels (Laibe & Price, 2012).

9.2.3 Advantages, limitations and reasons for caution

• Conservation – The full fluid has the advantage that the total energy, momentum and angular momentum
are conserved explicitly, while in the test-particle limit these are conserved for the gas particles, but not
for the dust. In some problems, such as when radial drift is important the explicit conservation can help
maintain the correct solution.

• Dissipation – The full two-fluid system is a dissipative system, with the drag forces converting kinetic
energy into thermal energy. If the smoothing length, h < csts, this can lead to massive numerical dissipation
especially when ρd ≈ ρg. The semi-implicit algorithms help to reduce the dissipation (see Lorén-Aguilar
& Bate, 2014), but this can still be an issue. For ρd � ρg the dissipation is weak, with no dissipation
occurring in the test particle limit.

• Force Errors – The standard SPH interpolation used in the test-particle implementation is generally accu-
rate to ∼ 0.1 per cent for the cubic spline, and even more accurate for smoother kernels (e.g. the Quintic
spline). However, the projected interpolation is considerably more sensitive to the particle distribution.
The double hump kernels help reduce the errors due to the particle distribution, but even for regular parti-
cle distributions the error can be ∼ 1 per cent. When strong density gradients are present (e.g. the vertical
structure of discs), the errors can be much larger (c.f the settling test, Lorén-Aguilar & Bate, 2014). For
this reason smoother kernels are highly recommended when using the full-two fluid implementation.

• Individual particle time-steps – Individual particle time-steps are implemented for both dust algorithms,
but typically the full-two fluid algorithm should not be used with individual particle time-steps, since the
time averaged drag force is only correct once the time-step has been completed. Order unity errors can
arise even the simplest dustybox tests when the time-step for the gas and dust differ for this reason, making
it clear the exact conservation is necessary for accurate simulations with this algorithm. Development of a
robust multi-step scheme for the full two-fluid scheme is being considered. Conversely, individual particle
time-steps have been used in Booth, Sijacki & Clarke (2015) and Booth & Clarke (2016) with the test-
particle limit algorithm and prove to be robust because the predicted velocities are not needed for force
calculations. Individual particle time-steps have not been tested extensively in the GANDALF test-particle
implementation, but preliminary tests have been successful.

• Sinks – The sink routines have not been modified to support dust, but in principal should work. However,
I would recommend checking this when both dust and sink particles are needed in the same simulation.
Accretion using the ‘vacuum cleaner’ type sinks should work properly, but has not been rigourously tested.
The smoothed accretion mode is more likely to give issues since it removes mass from the particle closest
to the sink only so it is possible that mass would end up being removed from the gas or dust particles only.

9.3 Drag Laws

Several drag laws have been implemented in via functions form of ts ≡ ts(ρg, ρd, cs). The different functional
forms currently available can be chosen via the parameter options and are described below and are defined in src/-
Headers/DragLaws.h. Most of these drag laws are phenomelogical in form, and only work with dimensionionless
form. The one exception is the Epstein drag law, in which the stopping time is given by:

ts =
3
4

√
π

8
m

A(ρg + ρd)cs
, (11)

where m is the grain mass and A is its grain area (πa2 for spherical grains). In the code, absorb the area-to-mass
ratio into a single coefficient.

9.4 IO and initial conditions

Dust particles are currently supported only in the SEREN formats (both formatted and unformatted), with the
dust particles following the gas particles on the disc. The number of dust particles is stored in the header, as
described in section 6.2. The column format is not formally supported, but if used it will currently still contain
the dust particles after the gas particles as long as MPI is not used. However, the number of dust particles is not
currently saved in the column format.

Currently the only systematic way to generate initial conditions that include dust is to provide an IC file in the
SEREN format that includes dust. For the test problems currently included, when dust is turned on (via setting
the drag forces parameter) the initial conditions generated are identical to those for the gas, although dust-to-gas
ratio can be varied. Currently, generating multi-species initial conditions in python is also not supported (with
the exception of star particles), although we hope to support this soon.

9.5 Test Problems

Some simple two-fluid test problems have been included in the directory tests/dust tests. Most of these are
straight-forward modifications of classic hydrodynamics test problems to include dust particles. A description of
a number of these can be found in Laibe & Price (2012 a,b), including the dustybox, dustywave, dustyshock and
dustysedov problems. The dust to gas ratio can be verified, but otherwise the dust initial conditions are identical
to the those in the gas in all the problems provided.

9.6 Dust parameter options

• drag forces : Select the drag force algorithm

none = No drag forces
test particle = Test particle limit drag regime
full twofluid = Full two fluid drag regime

• drag law : Select the drag law

fixed ts = 1/KD

density ts = 1/(KD(ρd + ρg))
epstein ts =

(3/4)
√
π/8

KD(ρd+ρg)cs
, where KD is the area-to-mass ratio

LB2012 ts = ρdρg/(KD(ρd + ρg))

• drag coeff : Sets KD

• dust mass factor : Sets the dust-to-gas mass ratio for the test problems

Including additional drag forces is straight forward. First add a new class to src/Headers/DragLaws.h. The new
drag law can then be added to DustFactory::ProcessParameters (at the bottom of src/Common/Dust.cpp), which
is responsible for selecting the desired drag law.

10 Developer notes

GANDALF makes heavy use of the object-oriented features in C++ in order to write a flexible code that can
used in many different ways while maintaining good performance. For developers that wish to modify sections
of GANDALF, or add new classes or functions, it is recommended to read this section in order to understand
some of the ...

10.1 Class hieararchy

GANDALF uses a hierarchy of classes using inheritance to structure the code in a logical and maintainable
manner. Although classes permeate the code at almost all levels, we briefly discuss the main classes here.

10.1.1 Simulation class

The Simulation class is the class that contains every other class, including SPH and N-body classes, in order
to fully run the simulation. The Simulation class is split into three levels :

• SimulationBase - Non-templated base class for generating the simulation class. Provides binding layer
between C++ code and Python (since Python cannot link to templated classes). Contains all subroutines
that can be called by Python.

• Simulation - Main parent simulation class that contains all common functions for all possible simula-
tions. Inherits from SimulationBase.

• AlgorithmSimulation - Child class containing specific algorithmic implementation. For example,
‘grad-h’ SPH simulations are run by the GradhSphSimulation class; pure N-body simulations are run by
the NbodySimulation class, etc..

10.1.2 Hydrodynamics class

10.1.3 SmoothingKernel class

10.1.4 NeighbourSearch class

10.1.5 EOS class

10.1.6 EnergyEquation class

10.1.7 Nbody class

10.1.8 Sinks class

10.2 Templates

Templates are used in C++ to write generic code that can be used by different data types throughout the code
without needing to write multiple versions of essentially the same code. It can also be used as an optimisation
technique for performance, which we explain later.

The simplest case of using templates in GANDALF is for dimensionality. For almost all of the code, we use the
template parameter ‘ndim’ to generate a version of the code for each dimensionality used, i.e. 1, 2 and 3. In
principle, ndim could simply be a variable which is defined by the user depending on which dimensionality is
used for that simulation. However, the value of ndim would then need to be accessed in memory very frequently.
By defining ndim as a template parameter, ndim will be defined statically and therefore does not require the
overhead of accessing the memory address each time.

Throughout the code, the variables that are used as template parameters are :

• ndim : Number of dimensions

• Kernel : Smoothing kernel function used

• ParticleType : Particle data structure for employed hydrodynamics method

• CellType : Radiation transport tree cell-type, depending on employed RT method

10.3 Particle data structures

To optimise the speed of the code, GANDALF uses data structures that contain only the quantities for that
particular hydrodynamics algorithm. For example, ‘grad-h’ SPH in 1D requires a very different number of
variables to Godunov SPH in 3D. Therefore, a different version of each sub-routine that uses the SPH particle
data directly is required using templates.

The various particle data structures are defined in the header file ‘SphParticle.h’. All particles are derived
from a base data-type called ‘Particle

10.4 Particle array pointers

If a class which does not know the exact particle data structure wishes to access an array, or a single array
element.

11 Units and scaling

In GANDALF, all physical calculations are done in dimensionless units for precision and accuracy reasons.
However, the scaling factors for converting the initial conditions and parameters (in physical units) are calculated
automatically, once the user has specified the units of the quantities in the parameters file.

11.1 Calculating scaling factors

Most physical quantities in GANDALF are some combination of the three basic physical unit types, length, mass
and time. In principle, we are free to choose any scaling factor in order to convert to dimensionless units

r′ =
r

R0
m′ =

m
M0

t′ =
t

T0
(12)

where r,m, t are the physical quantities, r′,m′, t′ are the dimensionless analogues and R0,M0,T0 are the scaling
factors. The internal scaling factors for most quantities is some combination of the scaling factors of these three
basic quantities. For example, the scaling factor for the dimensionless velocity, v′ = v/V0 is equal to V0 = R0/T0.

11.2 Scaling factors for G=1

If we take some equation using G (e.g. Newton’s law of gravity) and then substitute in the scaling factors and
rearrange, we obtain :

a =
G m
r2 ⇒

R0

T 2
0

a′ =
G M0 m′

r′2 R2
0

⇒ a′ =

G M0 T 2
0

R3
0

︸ ︷︷ ︸
G′

m′

r′2
. (13)

The final dimensionless equation has the same form as the original equation, with all constants and scaling factors
grouped together in the ‘dimensionless gravitational constant’, G’. In N-body codes, it is common to adjust one
of the scaling factors in order to set this new constant equal to unity. By convention, it is the time scaling factor
that is adjusted :

G M0 T 2
0

R3
0

= 1 ⇒ T0 =

 R3
0

G M0

1/2

(14)

For example, typical N-body units (at least in star cluser/formation simulations) of R0 = 1 pc and M0 = 1 M�
give a time scaling factor of T0 = 14.91 Myr. It is important to realise that this then has a knock-on effect on
any other physical quantity that contains the dimensions of time. For example, the unit of velocity becomes
V0 = R0/T0 = 0.065 km s−1.

11.3 Temperature scaling factor

In thermodynamics, one additional unit that is often used (more often in the output rather than in internal quan-
tities) is the thermodynamic temperature. This quantity represents an additional unit that cannot be represented
in any combination of length, mass and time. The conversion between the three principle quantities is achieved
via the Boltzmann constant. Just as with setting G = 1, we can also combine and convert quantities involving
temperature to an appropriate dimensionless unit, T ′ = T/θ0, by effectively setting the quantity kb/mh equal to
unity, i.e.

c2 = γ
kb T
m̄

⇒ V2
0 c′2 = γ

kb θ0 T ′

mh µ̄
⇒ c′2 = γ

 kb θ0

mh V2
0

︸ ︷︷ ︸
1

T ′

µ̄
(15)

kb θ0

mh V2
0

= 1 ⇒ θ0 = V2
0

mh

kb
(16)

11.4 Computing scaling variables in GANDALF

For consistency, GANDALF computes all scaling variables internally in SI units. However, this is not useful for
astrophysical applications where the natural units to choose may be parsecs or megayears. Therefore, the internal
scaling variables are split into two parts for convenience in chosing an appropriate. For a given unit X, the scaling
factor is split into X0 = Xoutscale XoutSI, where

• Xoutscale : scale factor to convert X′ to X in the user-requested units;

• XoutSI : the requested unit in SI units.

To convert from the code units to the user-requested units, Xuser = Xoutscale X′. Alternatively, if you wish to
convert directly to SI units, then you must also multiply by XoutSI, i.e. Xuser = Xoutscale XoutSI X′. One alternative
possibility is if the user wishes to convert from code units to c.g.s. units; in which case, they must use Xoutcgs in
place of XoutSI, i.e. Xuser = Xoutscale Xoutcgs X′

11.5 Converting initial conditions to code units

Converting from physical units to code units (e.g. when setting up initial conditions) is trivial once the scaling
factors have been computed. Assuming the initial conditions for all variables are in the same units as specified
in the parameters file, then we must simply divide by the Xoutscale, i.e.

X′ =
Xuser

Xoutscale
. (17)

If the variable (or parameter) is in either SI or cgs units, then they can be converted directly also using the SI or
cgs scaling factors. For example, to convert a cgs quantity to code units,

X′ =
Xuser

Xoutscale Xoutcgs
. (18)

Inside the code, each unit is its own separate class defined in the src/Headers/SimUnits.h and src/Common/SimU-
nits.cpp files. All units are then stored in a single container class, called ‘SimUnits’. This is then passed around
the simulation as an object with the name simunits. The object name for each individual unit itself is usually a
single character (e.g. r for length, m for mass, t for time, etc.. See the src/Headers/SimUnits.h files for a full list).
For example, the following line could be used to convert the particle mass from physical (user) units to code units,

part.m /= simunits.m.outscale;

For converting from say cgs units to code units, we could write

part.m /= (simunits.m.outscale*simunits.m.outcgs);

11.6 Input and output units

GANDALF does support the ability to read in initial conditions in a different set of units to use speci-
fied in the parameters file. At the moment, this is only implemented in the sf/seren formatted and
su/seren unformatted. In practice, this is implemented by noting that the input and output scaling factors
should be exacty the same, i.e.

X0 = Xoutscale XoutSI = Xinscale XinSI (19)

12 To-do list

12.1 Known bugs

List of known bugs as of version 0.4.0 .

• Saitoh & Makino (2012) SPH has not been fully updated since recent code refactoring.

• For very short simulations, plots may not be updated correctly since the simulation process finishes before
the plotting process has recieved its commands.

• If running a simulation in interactive mode and a different simulation is loaded into memory, then it is no
longer possible to continue running that simulation.

• Rendered images are technically not done correct if smoothing lengths are smaller than the grid size (which
can often be the case, although the images are fine for viewing/movie purposes).

• Rendered images do not correctly calculate automatic limits; must be inserted manually using the limit
command.

12.2 Proposed features

List of possible new features for future versions.

• Finish implementation of MPI

• Allow ability to add titles to graphs in matplotlib

• Include analytical solutions for Sedov blast-wave test and freefall collapse test

• Plot star/sink-based statistics, e.g. sink mass-functions, binary statistics

• Include analysis routines for python for N-body specific statistics, e.g. Q-parameter, λ-parameter, etc..

• Strict energy-error checking for N-body simulations

• More sanity-checking, error-trapping and assert statements (to prevent crashing on erroneous input and to
help debugging purposes).

A Command reference for the python functions

facade.ListFunctions()
List the available functions defined in facade

facade.newsim(paramfile=None, ndim=None, sim=None)
Create a new simulation object. Need to specify either the parameter file, or the number of dimensions
and the simulation type. Note that it is not possible to change the number of dimensions afterwards or
simulation type afterwards.

facade.loadsim(run id, fileformat=None, buffer flag=’cache’)
Given the run id of a simulation, reads it from the disk. Returns the newly created simulation object.

Parameters run id (str) – Simulation run identification string.

Keyword Arguments

• fileformat – Format of all snapshot files of simulation.

• buffer flag – Record snapshot data in simulation buffer.

facade.run(no=None)
Run a simulation. If no argument is given, run the current one; otherwise queries the buffer for the given
simulation number. If the simulation has not been setup, does it before running.

Keyword Arguments no (int) – Simulation number

facade.plot(x, y, type=’default’, snap=’current’, sim=’current’, overplot=False, autoscale=False, xu-
nit=’default’, yunit=’default’, xaxis=’linear’, yaxis=’linear’, **kwargs)

Plot particle data as a scatter plot. Creates a new plotting window if one does not already exist.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

Keyword Arguments

• type – The type of the particles to plot (e.g. ‘star’ or ‘sph’).

• snap – Number of the snapshot to plot. Defaults to ‘current’.

• sim – Number of the simulation to plot. Defaults to ‘current’.

• overplot (bool) – If True, overplots on the previous existing plot rather than deleting
it. Defaults to False.

• autoscale – If True, the limits of the plot are set automatically. Can also be set to ‘x’
or ‘y’ to specify that only one of the axis has to use autoscaling. If False (default),
autoscaling is not used. On an axis that does not have autoscaling turned on, global
limits are used if defined for the plotted quantity.

• xunit (str) – Specify the unit to use for the plotting for the quantity on the x-axis.

• yunit (str) – Specify the unit to use for the plotting for the quantity on the y-axis.

• **kwargs – Extra keyword arguments will be passed to matplotlib.

Returns Data plotted. The member x data contains data on the x-axis and the member y data
contains data on the y-axis

facade.addplot(x, y, **kwargs)
Thin wrapper around plot that sets overplot to True. All the other arguments are the same. If autoscale is
not explicitly set, it will be set to False to preserve the existing settings.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

Keyword Arguments See documentation of the plot function.

facade.render(x, y, render, snap=’current’, sim=’current’, overplot=False, autoscale=False, au-
toscalerender=False, coordlimits=None, zslice=None, xunit=’default’, yunit=’default’,
renderunit=’default’, res=64, interpolation=’nearest’, lognorm=False, type=’sph’,
**kwargs)

Create a rendered plot from selected particle data.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• render (str) – Quantity to be rendered.

Keyword Arguments

• snap – Number of the snapshot to plot. Defaults to ‘current’.

• sim – Number of the simulation to plot. Defaults to ‘current’.

• overplot (bool) – If True, overplots on the previous existing plot rather than deleting
it. Defaults to False.

• autoscale – If True, the coordinate limits of the plot are set automatically. Can also
be set to ‘x’ or ‘y’ to specify that only one of the axis has to use autoscaling. If False
(default), autoscaling is not used. On an axis that does not have autoscaling turned on,
global limits are used if defined for the plotted quantity.

• autoscalerender – Same as the autoscale, but for the rendered quantity.

• coordlimits – Specify the coordinate limits for the plot. In order of precedence, the
limits are set in this way:

– What this argument specifies. The value must be an iterable of 4 elements: (xmin,
xmax, ymin, ymax).

– If this argument is None (default), global settings for the quantity are used.

– If global settings for the quantity are not defined, the min and max of the data are
used.

• zslice (float) – z coordinate of the slice when doing a slice rendering. Default is None,
which produces a column-integrated plot. If you set this variable, instead a slice ren-
dering will be done.

• xunit (str) – Specify the unit to use for the plotting for the quantity on the x-axis.

• yunit (str) – Specify the unit to use for the plotting for the quantity on the y-axis.

• renderunit (str) – Specify the unit to use for the plotting for the rendered quantity.

• res – Specify the resolution. Can be an integer number, in which case the same resolu-
tion will be used on the two axes, or a tuple (e.g., (xres, yres)) of two integer numbers,
if you want to specify different resolutions on the two axes.

• interpolation – Specify the interpolation to use. Default is nearest, which will show
the pixels of the rendering grid. If one wants to smooth the image, bilinear or bicubic
could be used. See pyplot documentation for the full list of possible values.

• lognorm (bool) – Specify wheter the colour scale should be logarithmic (default: lin-
ear). If you want to customise the limits, use the vmin and vmax flags which are passed
to matplotlib

• type (str) – Specify the type of particles to be used for rendering (defaults to sph)

• **kwarg – Extra keyword arguments will be passed to matplotlib.

Returns Data plotted. The member render data contains the actual image (2d array).

facade.addrender(x, y, renderq, **kwargs)
Thin wrapper around render that sets overplot to True. If autoscale is not explicitly set, it will be set to
False to preserve the existing settings.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• renderq (str) – Quantity to be rendered.

Keyword Arguments See documentation of the render function.

facade.renderslice(x, y, renderq, zslice, **kwargs)
Thin wrapper around render that does slice rendering.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• renderq (str) – Quantity to be rendered.

• zslice (float) – z-coordinate of the slice.

Keyword Arguments See documentation of the render function.

facade.addrenderslice(x, y, renderq, zslice, **kwargs)
Thin wrapper around renderslice that sets overplot to True. If autoscale is not explicitly set, it will be set
to False to preserve the existing settings.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• renderq (str) – Quantity to be rendered.

• zslice (float) – z-coordinate of the slice.

Keyword Arguments See documentation of the render function.

facade.plotanalytical(x=None, y=None, ic=’default’, snap=’current’, sim=’current’,
overplot=True, autoscale=False, xunit=’default’, yunit=’default’,
time=’snaptime’)

Plots the analytical solution. Reads the problem type from the ‘ic’ parameter and plots the appropriate
solution if implemented. If no solution exists, then nothing is plotted.

Keyword Arguments

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• snap – Number of the snapshot to plot. Defaults to ‘current’.

• sim – Number of the simulation to plot. Defaults to ‘current’.

• overplot (bool) – If True, overplots on the previous existing plot rather than deleting
it. Defaults to False.

• autoscale – If True, the limits of the plot are set automatically. Can also be set to ‘x’
or ‘y’ to specify that only one of the axis has to use autoscaling. If False (default),
autoscaling is not used. On an axis that does not have autoscaling turned on, global
limits are used if defined for the plotted quantity.

• xunit (str) – Specify the unit to use for the plotting for the quantity on the x-axis.

• yunit (str) – Specify the unit to use for the plotting for the quantity on the y-axis.

• time – Plots the analytical solution for the given time. If not set, then reads the time
from the sim or snapshot

Returns Data plotted. The member x data contains data on the x-axis and the member y data
contains data on the y-axis

facade.time plot(x, y, sim=’current’, overplot=False, autoscale=False, xunit=’default’, yu-
nit=’default’, xaxis=’linear’, yaxis=’linear’, idx=None, idy=None, id=None,
typex=’default’, typey=’default’, type=’default’, **kwargs)

Plot two quantities as evolved in time one versus the another. Creates a new plotting window if one does
not already exist.

Parameters

• x (str) – Quantity on x-axis. The quantity is looked up in the quantities defined as a
function of time. If it is not found there, then we try to interpret it as a quantity defined
for a particle. In this case, the user needs to pass either idx either id to specify which
particle he wishes to look-up.

• y (str) – Quantity on y-axis. The interpretation is like for the previous argument.

Keyword Arguments

• sim – Number of the simulation to plot. Defaults to ‘current’.

• overplot (bool) – If True, overplots on the previous existing plot rather than deleting
it. Defaults to False.

• autoscale – If True, the limits of the plot are set automatically. Can also be set to ‘x’
or ‘y’ to specify that only one of the axis has to use autoscaling. If False (default),
autoscaling is not used. On an axis that does not have autoscaling turned on, global
limits are used if defined for the plotted quantity.

• xunit (str) – Specify the unit to use for the plotting for the quantity on the x-axis.

• yunit (str) – Specify the unit to use for the plotting for the quantity on the y-axis.

• idx (int) – id of the particle to plot on the x-axis. Ignored if the quantity given (e.g.,
com x) does not depend on the id.

• idy (int) – same as previous, on the y-axis.

• id (int) – same as the two previous ones. To be used when the id is the same on both
axes. If set, overwrites the passed idx and idy.

• typex (str) – type of particles on the x-axis. Ignored if the quantity given does not
depend on it

• typey (str) – as the previous one, on the y-axis.

• type (str) – as the previous ones, for both axis at the same time. If set, overwrites typex
and typey.

Returns Data plotted. The member x data contains data on the x-axis and the member y data
contains data on the y-axis

facade.savefig(name)
Save the current figure with the given name. Note that matplotlib figures out automatically the type of the
file from the extension.

Parameters name (str) – filename (including extension)

facade.next()
Advances the current snapshot of the current simulation. Return the new snapshot, or None if the call
failed.

facade.previous()
Decrements the current snapshot of the current simulation. Return the new snapshot, or None if the call
failed.

facade.snap(no)
Jump to the given snapshot number of the current simulation. Note that you can use standard Numpy index
notation (e.g., -1 is the last snapshot). Return the new snapshot, or None if the call failed.

Parameters snapno (int) – Snapshot number

Returns The snapshot object

facade.block(message=’Press enter to quit...’)
Stops the execution flow until the user presses ‘enter’. Useful in scripts, allowing to see a plot (which
otherwise gets closed as soon as the execution flow reaches the end of the script)

Keyword Arguments message (str) – text to print before pausing

facade.sims()
Print a list of the simulations to screen

facade.snaps(simno)
For the given simulation number, print a list of all the snapshots

Parameters simno (int) – Simulation number from which to print the snapshot list.

facade.set current sim(simno)
Set the current simulation to the given number.

Keyword Arguments simno (int) – Simulation number

Returns The newly set current simulation

facade.limit(quantity, min=None, max=None, auto=False, window=’current’, subfigure=’current’)
Set plot limits. Quantity is the quantity to limit.

Parameters quantity (str) – Set limits of this variable.

Keyword Arguments

• min (float) – Minimum value of variable range.

• max (float) – Maximum value of variable range.

• auto (bool) – If auto is set to True, then the limits for that quantity are set automatically.
Otherwise, use the one given by max and min.

• window (str) – By default only the current subplot of the current window is affected.
If this parameter is set to ‘all’, all the current windows are affected. If this parameter
is set to ‘global’, then also future plots are affected.

• subfigure (str) – Similarly to window, by default only the current subplot is affected
by this command. If this parameter is set to ‘all’ then all the subfigures in the current
window are affected.

facade.make movie(filename, snapshots=’all’, window no=0, fps=24)
Generates movie for plots generated in given window

Parameters

• filename (str) – filename (with extension, e.g. mp4) of the movie that will be created.

• snapshots (str) – currently not used

• window no (int) – currently not used

• fps (int) – frames per second

facade.KnownQuantities()
Return the list of the quantities that are defined

facade.get data(quantity, snap=’current’, type=’default’, sim=’current’, unit=’default’)
Returns the array with the data for the given quantity. The data is returned scaled to the specified unit

Parameters quantity (str) – The quantity required.

Keyword Arguments

• type (str) – The type of the particles (e.g. ‘star’)

• snap – Number of the snapshot. Defaults to ‘current’

• sim – Number of the simulation. Defaults to ‘current’

• unit (str) – Specifies the unit to use to return the data

Returns A numpy array containing the requested data.

facade.get render data(x, y, quantity, sim=’current’, snap=’current’, renderunit=’default’, res=64,
zslice=None, coordlimits=None)

Return the rendered data for the given quantity. Useful when one needs to grid SPH data. The result is
scaled to the specified unit. The options are a subset of the options available to the ‘render’ function.

Parameters

• x (str) – Quantity on the x-axis.

• y (str) – Quantity on the y-axis.

• quantity (str) – Quantity to render.

Keyword Arguments

• snap – Number of the snapshot to plot. Defaults to ‘current’.

• sim – Number of the simulation to plot. Defaults to ‘current’

• renderunit (quantity) – Unit to use for the rendered quantity

• res – Resolution

• zslice (float) – z-coordinate of the slice when doing a slice rendering. Default is None,
which produces a column-integrated plot. If you set this variable, a slice rendering will
be done instead.

• coordlimits – Limits of the coordinates on x and y. See documentation of render.

Returns A numpy 2d array containig the rendered data, scaled to the requested unit.

facade.CreateTimeData(name, function, *args, **kwargs)
Given a function that takes a snapshot as input, construct a new quantity which can be used to do time
plots. Technically this implemented by constructing a new object of type FunctionTimeDataFetcher. See
userguide for how to use this function.

Parameters

• name (str) – the name of the new quantity

• function – a python function that computes the desidered quantity. See the userguide
for examples.

• **kwargs – extra keyword arguments will be passed to your function (see example of
lagrangian radii)

Returns The FunctionTimeDataFetcher object newly constructed.

facade.CreateUserQuantity(name, formula, unitlabel=’‘, unitname=’‘, scaling factor=1, label=’‘)
Create a new quantity that can be used for example for plots. This can be done both by giving a mathe-
matical formula, or providing a user-defined function. The quantity is given a name, which can now be
used in plots and in other formulae. When you construct a quantity, you can rely on one of the units we
provide, in which case you can just pass as the scaling factor parameter the name of the unit you want
inside the SimUnits class. For example, if your unit has dimensions of acceleration, you can pass ‘a’ as
the scaling factor parameter. Doing this allows the unit system to work seamlessly when plotting (i.e., you
can specify the units you want the plot in). Alternatively, you can build your own unit passing a numerical
value for the scaling factor, a unitname and a latex label. In this case, however, no rescaling is possible, as
the unit system does not know how to rescale your unit. Technically, this function works by constructing
either a FormulaDataFetcher object or a FunctionFetcher object.

Parameters

• name (str) – the name of the new quantity created

• formula – either a string with the mathematical formula, or a user defined function
that computes the desired quantity. See the userguide for further reference.

• unitlabel (str) – label of the unit (to use in plots in the axis names)

• unitname (str) – name of the unit (to be passed to functions that take a unit keyword)

• scaling factor – either a string with a quantity with the same dimension, or a float
that will be used to multiply the result of the formula/function

• label (str) – latex label of the quantity to be used on the axis when plotting

Returns the newly constructed object which represents the desired quantity

facade.window(no=None)
Changes the current window to the number specified. If the window doesn’t exist, recreate it.

Parameters winno (int) – Window number

facade.subfigure(nx, ny, current)
Creates a subplot in the current window.

Parameters

• nx (int) – x-grid size

• ny (int) – y-grid size

• current (int) – id of active sub-figure. If sub-figure already exists, then this sets the
new active sub-figure.

facade.switch nongui()
Switches matplotlib backend, disabling interactive plotting. Useful in scripts where no interaction is re-
quired

facade.rescale(quantity, unitname, window=’current’)
Rescales the specified quantity in the specified window to the specified unit

Parameters

• quantity (str) – Quantity to be rescaled.

• unitname (str) – Required unit for quantity.

Keyword Arguments window – Window containing plot. Can be either the string “current”
or an integer specifying the window.

Python Module Index

f
facade, 55

65

	Overview of code
	Download & Installation
	Requirements
	Linux
	Mac OS X
	Command-line code compilation
	Python code compilation

	Makefile options
	Basic usage
	Command-line mode
	Running python scripts
	Interactive mode

	Parameter options
	Main simulation parameters
	Unit parameters
	Integration and timestep parameters
	Hydrodynamical parameters
	SPH parameters
	Artificial viscosity parameters
	Meshless finite-volume parameters
	Gravitational parameters
	Neighbour searching and tree parameters
	N-body parameters
	Sink particle parameters
	Radiation parameters
	Radiative feedback parameters
	Boundary parameters
	Initial conditions parameters
	Regularised initial conditions parameters
	Random number generator parameters
	MPI parameters
	Python viewer parameters

	Input and output file formats
	Column format
	SEREN format
	SEREN `lite' format

	Generating initial conditions
	`On-the-fly' initial conditions
	Creating your own initial conditions generators

	Description of initial conditions
	Accretion disc

	Load from external file
	Generate inside python script

	GANDALF Python library
	Interpreter
	Python script - overview of the libraries to import
	GANDALF Python library tutorial
	Example 1 - Creating and running a new simulation from a parameter file
	Example 2 - Creating a simulation and modifying a parameter before running
	Example 3 - Generating initial conditions using internal routines without a parameters file
	Example 4 - Running a simulation and plotting results to screen and file
	Example 5 - Reading a simulation from disc and plotting several snapshots
	Example 6 - Reading and plotting multiple simulations
	Example 7 - Overplotting the analytical solution with the simulation results
	Example 8 - Creating initial conditions directly in the python script
	Example 9 - Creating initial conditions for N-body simulation in python script
	Example 10 - Generating rendered images from SPH simulations
	Example 11 - Plotting in alternative coordinate systems
	Example 12 - Changing the plotting units
	Example 13 - Creating and plotting user-defined quantities
	Example 14 - Plotting time series of particle properties
	Example 15 - Creating an animation from simulation snapshot files
	Example 16 - Retrieving data from the simulation
	Example 17 - Creating and plotting user-defined quantities from a function given by the user
	Example 18 - Creating and plotting time series from a function given by the user

	Tips and tricks

	Dust Dynamics
	Theory
	Implementations
	Test-particle implementation
	Full two-fluid algorithm
	Advantages, limitations and reasons for caution

	Drag Laws
	IO and initial conditions
	Test Problems
	Dust parameter options

	Developer notes
	Class hieararchy
	Simulation class
	Hydrodynamics class
	SmoothingKernel class
	NeighbourSearch class
	EOS class
	EnergyEquation class
	Nbody class
	Sinks class

	Templates
	Particle data structures
	Particle array pointers

	Units and scaling
	Calculating scaling factors
	Scaling factors for G=1
	Temperature scaling factor
	Computing scaling variables in GANDALF
	Converting initial conditions to code units
	Input and output units

	To-do list
	Known bugs
	Proposed features

	Command reference for the python functions

