Evolution status of Planck Cold Dust Clumps

Yuefang Wu
Astronomy Department Peking University

Team members and Collaborators:
Tie Liu, Fanyi Meng, Huawei Zhang, Jinghua Yuan, Tianwei Zhang, Di Li, Sheng Li Qin, Bingang Ju, Karl, Menten, Christian Henkel, Arnaud Belloche, Xin Guan, Chao Zhang, Xunchuan Liu, Hongli Liu
Outline

1. Planck early results and follow-up studies
2. Observations
3. Results
 1). Physical parameters
 2). Star formation activity
 3). CO depletion
 4). A comparison of emissions of N$_2$H$^+$ and C$_2$H
 5). Structure, morphology, distribution
4. Summary
1. Planck early results and follow-up studies

Planck cold dust clumps:
C3PO: 10783
updated as 13188
(Planck Collaboration 2015)
Mass: ≈1-10^5 M⊙
Td: Peaks at 13 K
Compare to PSS, IRAS, MSX,...
cold
More wavelength bands (30-857 GHz)
Herschel measurements
Images
Whole sky

To understand Planck dust cores
Molecular lines
--critical important
Early Cold Cores (ECC):
PMO 13.7 m
2. Observations

Sources:
674/915 most reliable clumps: (Planck Collaboration 2011)

CO Survey:
• J=1-0 of CO, 13CO, 18O: PMO, 13.7m, 56”, 674 Planck clumps (Dec.>-20°)
• Receiver: SIS array with Nine beam
• Velocity resolution: 12CO: 0.16 km/s 13CO, 18O: 0.17 km/s
 rms: 12CO, 0.2 K : 13CO, 18O : 0.1 K
• Single point: Position switch 2012-14

CO Mapping: OTF 630 CO cores were obtained

Further probing with dense molecular lines:
• J=1-0 of HCO$^+$, HCN PMO 2013 621 CO cores
 250 were detected: 230 with HCO+, 158 with HCN
• IRAM: J=1-0 of HCO$^+$, HCN, N$_2$H$^+$, 24 were mapped
 Several cores were observed with 2-1 of CO, 13CO, 18O at CSO

N$_2$H$^+$ (1-0), C$_2$H (1$_{3/2}$ -0$_{1/2}$) observation
 121 CO cores, 63 were detected: 48 for N$_2$H$, 57$ for C$_2$H
3. Results

1. Physical parameters

100% detected for 12CO and 13CO, 68% for 13C18O except 39 with reference position problem. Rare with > 3 components, No blending.

Line center velocity (Wu et al. 2012)

- Histogram: $V_{12} - V_{13}, V_{13} - V_{18}$
- Correlation: $100%$

<table>
<thead>
<tr>
<th>Peak</th>
<th>Molecule</th>
<th>V_{lsr} (km/s)</th>
<th>T_{MB} (K)</th>
<th>$ΔV$ (km/s)</th>
<th>$ΔT_{MB}$ (K)</th>
<th>e (R_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1..</td>
<td>13CO (1-0)</td>
<td>2.22</td>
<td>15.76</td>
<td>5.28</td>
<td>50.25</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>0.26</td>
<td>5.90</td>
<td>5.19</td>
<td>54.46</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>0.32</td>
<td>5.84</td>
<td>5.22</td>
<td>56.05</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.44</td>
<td>1.90</td>
<td>4.76</td>
<td>55.09</td>
<td>0.21</td>
</tr>
<tr>
<td>2..</td>
<td>12CO (1-0)</td>
<td>2.07</td>
<td>11.52</td>
<td>5.47</td>
<td>65.05</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>13CO (1-0)</td>
<td>1.10</td>
<td>7.45</td>
<td>2.85</td>
<td>32.50</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>1.04</td>
<td>7.85</td>
<td>7.05</td>
<td>59.01</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.41</td>
<td>1.91</td>
<td>2.16</td>
<td>59.03</td>
<td>0.20</td>
</tr>
<tr>
<td>3..</td>
<td>13CO (1-0)</td>
<td>2.90</td>
<td>5.94</td>
<td>3.56</td>
<td>85.94</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>0.78</td>
<td>5.17</td>
<td>4.65</td>
<td>28.02</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.09</td>
<td>2.11</td>
<td>1.72</td>
<td>4.00</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-4)</td>
<td>-0.92</td>
<td>1.80</td>
<td>1.11</td>
<td>2.60</td>
<td>0.04</td>
</tr>
<tr>
<td>4..</td>
<td>13CO (1-0)</td>
<td>2.04</td>
<td>3.70</td>
<td>1.69</td>
<td>15.03</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>1.11</td>
<td>6.71</td>
<td>3.30</td>
<td>35.95</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.36</td>
<td>2.92</td>
<td>2.62</td>
<td>43.00</td>
<td>0.10</td>
</tr>
<tr>
<td>5..</td>
<td>13CO (1-0)</td>
<td>3.60</td>
<td>0.76</td>
<td>1.04</td>
<td>72.00</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>1.20</td>
<td>3.97</td>
<td>3.04</td>
<td>22.00</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.20</td>
<td>3.97</td>
<td>3.04</td>
<td>22.00</td>
<td>0.11</td>
</tr>
<tr>
<td>6..</td>
<td>13CO (1-0)</td>
<td>2.41</td>
<td>18.99</td>
<td>3.65</td>
<td>72.45</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>C13CO (1-0)</td>
<td>1.07</td>
<td>5.94</td>
<td>1.70</td>
<td>20.45</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-0)</td>
<td>1.37</td>
<td>2.62</td>
<td>2.06</td>
<td>5.00</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>HCO$^+$ (1-4)</td>
<td>2.86</td>
<td>1.30</td>
<td>2.53</td>
<td>4.04</td>
<td>0.16</td>
</tr>
</tbody>
</table>

6 NH3 cores in G084.81–01.09: V_{lsr}(CO)–V_{lsr}(13CO) > 1 km/s for all (Zhang et al. 2011)

Wu et al. 2012

V_{13} systematic V

A basic application \rightarrow D

Previously: extinction (978 objects)

Using associated IRDCs (Simon et al. 2006)
Excitation temperature: Derived from T_{12}
- If 12CO optical thick, the system is LTE
- The kinematic temperature T_k
 Range: (3.9 –27 K) $>$ Td: 7- 17 K
Higher part:
12 with $T_k > 17$ K
Peak value –cold dark cloud
- Distribution: peak at 9-10 K

Line widths:
Most of the cores with narrow lines
Mean values and the standard deviations:
12CO: 2.0 \pm 1.3 km s$^{-1}$
13CO: 1.3 \pm 0.8,
C^{18}O: 0.8 \pm 0.7
Non thermal motion:
σ_{NT}: With R:
 large at 5 kpc
With height Z:
 decrease
High again at \sim680 pc
related with Orion, Taurus

Wu et al 2012
Column density N_{H_2}: Wu et al. 2012

- N_{H_2} and the optical depth derived from T_{13} with radiation transfer equation assuming ^{13}CO line optical thin and LTE
- N_{H_2} spans from 10^{20} to 4.5×10^{22} cm$^{-2}$
- Distribution:

![Graphs showing distribution of column density and optical depth](image-url)
A comparison for cumulative of FWHM of 13CO lines and N_{H_2}:

Five different samples:

- IRDCs, FCRAO (Simon+06)
- Weak and Red IRAS: KOSMA (Wang+09)
- UCHII candidate PMO (Wu+02)
- CH+OH maser, PMO (Ren+13)
- EGOs, PMO (Chen+11)

Planck cores are the smallest
2). Star formation activity

Line profiles:
- Blue profile, 15 (Nb) --2%
- Red profile, 5 (Nr) -- 0.8%
- Blue excess: \(E = \frac{(Nb-Nr)}{Nt} = 0.01 \) (Nt=782)
 Much less than E of the SFRs:
 HMCs : 0.17
 UCHII: 0.53 (Wu et al. 2007)
 UCHII: 0.58 (Wyrowski et al. 2006)
- But blue profiles > red profiles, tending to show collapse more than driving mass outward
G192.32-11.88:
(Liu et al 2015)

Two cores:
• G192N
 $L_b \sim 0.8 \, L_{\odot}$
 Class 0
 CO outflow
• G192.S:
 $(0.08 \pm 0.01) \, L_{\odot}$
 $(2.8 \pm 0.8) \times 10^{-8} \, M_{\odot} / yr$
 Proto-Brown dwarf candidate

Red: Planck
Green: IRAS
Blue: Hα

Contours: N_{H_2} B type star (blue), Variable: yellow

SMA: Continuum, 1.3 mm
Right: CO $J=2-1$
3). CO Depletion

Depletion:
Correlates with β
anti-correlates with T_d, L/M

Depletion factor:
mean value: 1.7
5.6% > 5
13%, > 3
53% < 1
(Liu, Wu, Zhang 2013)

less than that of
Nearby dark cores:
(L1544: ~10 Caselli et al. 1999)
4) A comparison of NH2+ and C2H missions

NH2+, C2H: Primary results
Detected: 40% (NH2+) and 54% (C2H)
The maps of two sources:
One: NH2+ stronger, the other C2H stronger
Colum density:
C2H: larger as a whole
NH2+: increasing
C2H: tend to decreasing
--Early stage

Model analyse
is in progress

Liu, X., Wu, Zhang
In prep.

Color:
CO Tex
Size:
NH2
5). Morphology, structure, distribution

Taurus: Meng, Wu, Liu, 2013

- 71 Clumps
- 38 cores from 27 clumps

Taurus cores:
- $n: (10^3/cm^3)$
- $(1.4-7.6) \times 10^3$
- Most cores: $M_{LTE} < M_{vir}, M_J$

Filaments
Isolated cores
Starless

Diffuse both with and without stellar objects
Filaments are more than those seen in CO maps:

Examples of 39 have Herschel + Qinghai CO indicated with circles (from Juvela)
Core multiple split:
G222.2+01.2 From PMO to CSO

G108.8-00.8a2 From CSO to IRAM
High latitude: 41 higher than 25°
- The highest 71°, previous 44°
- 5: belong to group Himas
- \(N_{\text{H}_2} \): 3\(\times \)10^{21} \text{ cm}^{-2}, \text{average,}\
 \(\sigma_{NT} \) smaller among the 12 regions but larger than that in Oph, Oph-Sgr
- Tex: intermediate
- Surveys: \(16^\circ \leq b \leq 44^\circ, 117^\circ \leq l \leq 160^\circ \)
 13%: CO detected (Heithausen+93)
- \(-30^\circ - (-43^\circ)\): 110 clouds, no C^{18}O)
 not dense enough (Yamamoto+03)
- Planck cores: good guide to search gas

Grey: Hø
Red: CO (Dame)
Blue: 100 \(\mu \)m
Green: Planck clumps (Liu et al. 2012)
Possible part of dark gas

CO observations a
Extended gas space:
7 Planck cores:
Out of the New Arm extend region
by Sun et al. 2015
l=100° to 150°
Dame & Thaddeus 2011:
l=13° to 55°
(Zhang et al. 2016)
4. Summary

Studies of the 674 ECC:

- Real Cold; with extremely low luminosity stellar molecular complex
- Less dynamical layers; but turbulence is major of non-thermal motions
- Early phase with emission of C$_2$H rather common than that of N$_2$H$^+$
- Filaments is significant, and core multiple-splits were detected
- Diffuse clump may be transition between ISM and molecular cloud
- Extended CO gas regions surveyed previously
Thank You!