Photonics-based interferometry

Nicolas Blind

Max-Planck Institut für Extraterrestrische Physik

VLTI school 2015

- An interferometer measures the spatial coherence of the source
- Turbulence destroys this coherence

Options to preserve coherence:

- 1. Limit telescope size to $\sim r_0$
- 2. Pupil sampling
- 3. Spatial filtering with field stop
 - e.g. MIDI [Leinert+ 2003]
- 4. Modal filtering with SM waveguide

$$\langle V \rangle = V e^{-2\sigma_r^2}$$

SNR $\propto V \sqrt{N}$

Options to preserve coherence:

- 1. Limit telescope size to $\sim r_0$
- 2. Pupil sampling
- 3. Spatial filtering with field stop
 - e.g. MIDI [Leinert+ 2003]
- 4. Modal filtering with SM waveguide
 - Keep coherence instead of flux [Tatulli+ 2004 & 2010, A&A]
 - <1% visibility precision [Kervella+ 2004, A&A]

$$\langle V \rangle = V e^{-2\sigma_r^2}$$

SNR $\propto V \sqrt{N}$

Benefit of single-mode interferometer

1. Single-mode instrument: M = 1, V < 2.405

- From a theoretical point of view, it is better to keep coherence rather than all the photons, especially at low Strehl and with big telescopes [Tatulli+ 2004, 2010 A&A]
- Modal filtering transforms wavefront fluctuations into power fluctuations leading to very high instrumental contrast

Benefit of single-mode interferometer

- 1. Single-mode instrument for modal filtering of the wavefront
- 2. Transporting light
- 3. Replacing bulk functions in fully integrated components
 - Ease the alignment by decreasing the number of mirrors

VLTI school 2015

Coupling efficiency in SM fiber:
$$ho = |E_{field} \star E_{01,fiber}|^2$$

- The fiber NA is scaled to the telescope diffraction for optimum coupling
- For a perfect Airy pattern:

$$\rho = 0.8$$

Coupling efficiency in SM fiber:
$$ho = |E_{field} \star E_{01,fiber}|^2$$

- The fiber NA is scaled to the telescope diffraction for optimum coupling
- For a perfect Airy pattern:

$$\rho = 0.8$$

• For a real telescope:

 $\rho \sim 0.8\,\mathcal{S}$

 ${\mathcal S}$ being the instantaneous Strehl ratio

Coupling efficiency in SM fiber:
$$ho = |E_{field} \star E_{01,fiber}|^2$$

Flux in VINCI-2TH with 0.35m siderostats

Coupling efficiency in SM fiber:
$$ho = |E_{field} \star E_{01,fiber}|^2$$

Flux in VINCI-2TH with 0.35m siderostats

- Fringes with VINCI-2TH and 0.35m siderostats
 - P_A and P_B are easy to monitor with dedicated channels

• Fringes with PIONIER (H) on ATs (2 m)

An example of increased precisions on visibilities

Closure phase precision

• In SM interferometry, phase is defined in a unique way

- Closure phases up to 0.25 degrees precision with PIONIER
 - Imaging dynamic range:

$$DR = \sqrt{\frac{N_{\text{data}}}{(\sigma_V/V)^2 + \sigma_\phi^2}}$$

[Baldwin & Haniff 2002]

 Companion detection up to contrast level of 200 (~6 mag) Up to 500 expected for deep integration

[Absil & Le Bouquin 2011 A&A]

• Increase and stabilise the coupling efficiency

 $\rho \sim 0.8 \, S$

And hence the sensitivity and sky coverage

• Increase and stabilise the coupling efficiency

 $\rho \sim 0.8 \, S$

And hence the sensitivity and sky coverage

 Increase and stabilise the transfer function And hence the sensitivity

• Increase and stabilise the coupling efficiency

 $\rho \sim 0.8 \, \mathcal{S}$

And hence the sensitivity and sky coverage

- Increase and stabilise the transfer function And hence the sensitivity
- Limit probability to lose fringes (flux drop to 0 on 1 fiber)
 - \rightarrow improve fringe tracking efficiency

• Increase and stabilise the coupling efficiency

 $\rho \sim 0.8 \, \mathcal{S}$

And hence the sensitivity and sky coverage

- Increase and stabilise the transfer function And hence the sensitivity
- Limit probability to lose fringes (flux drop to 0 on 1 fiber)
 → improve fringe tracking efficiency
- Several studies suggest gain of 2-3 mag on small telescope in H/K bands (CHARA-1m, VLTI/AT-2m)

[Ridgway+ 2008 SPIE, Tatulli+ 2010 A&A]

• Increase and stabilise the coupling efficiency

 $\rho \sim 0.8 \, \mathcal{S}$

And hence the sensitivity and sky coverage

- Increase and stabilise the transfer function And hence the sensitivity
- Limit probability to lose fringes (flux drop to 0 on 1 fiber)
 → improve fringe tracking efficiency
- Several studies suggest gain of 2-3 mag on small telescope in H/K bands (CHARA-1m, VLTI/AT-2m)

[Ridgway+ 2008 SPIE, Tatulli+ 2010 A&A]

- Will soon allow SM interferometry in the visible @CHARA
 - Strehl going from <0.5% to "few" %

Some limitations of SM interferometry

- Field of view limited to the telescope diffraction pattern, i.e. in K-band:
 - 60 mas with UTs
 - 250 mas with ATs

Some limitations of SM interferometry

- Field of view limited to the telescope diffraction pattern, i.e. in K-band
 - 60 mas with UTs
 - 250 mas with ATs
- Lobe effect: "modal visibility" is a convolution between the source intensity distribution and the fiber mode

Bias of 10% for a disk diameter of ½ the Airy disk Bias < 1% for a disk diameter < 20% Airy disk

Some limitations of SM interferometry

- Field of view limited to the telescope diffraction pattern, i.e. in K-band
 - 60 mas with UTs
 - 250 mas with ATs
- Lobe effect: modal visibility bias
- Bandwidth limitations
 - Limited to few 100nm bandwidth (~1 astronomical band)
 - SM waveguide stops guiding at longer wavelength
 - SM waveguide becomes bi-mode at shorter wavelength
 - U, V, B, I needs AO, but feasible
 - H, K bands with fibers and (short) integrated optics
 - L, M bands with some fibers only
 - Development of IOBC in LiNbO3 & Chalcogenide materials

Single-mode beam combiners

- Sole use of SM fibers for spatial filtering:
 - MIRC @ CHARA [Monnier+, 2004]
 - CLASSIC, CLIMB @ CHARA [Sturmann+ 2010 SPIE, ten Brummelaar+ 2010 SPIE]
 - AMBER @ VLTI [Petrov+ 2007 A&A]

Single-mode beam combiners

- Sole use of SM fibers for spatial filtering:
 - MIRC @ CHARA [Monnier+, 2004]
 - CLASSIC, CLIMB @ CHARA [Sturmann+ 2010 SPIE, ten Brummelaar+ 2010 SPIE]
 - AMBER @ VLTI [Petrov+ 2007 A&A]
- Use of fibered functions
 - FLUOR @ CHARA : splitters/couplers

• GRAVITY @ VLTI : polarisation and delay control

Single-mode beam combiners

- Sole use of SM fibers for spatial filtering:
 - MIRC @ CHARA [Monnier+, 2004]
 - CLASSIC, CLIMB @ CHARA [Sturmann+ 2010 SPIE, ten Brummelaar+ 2010 SPIE]
 - AMBER @ VLTI [Petrov+ 2007 A&A]
- Use of fibered functions
 - FLUOR @ CHARA : splitters/couplers
 - GRAVITY @ VLTI : polarisation and delay control
- Integrated optics: complex beam combination in stable & compact SM device
 - PIONIER @ VLTI
 - GRAVITY @ VLTI

The integrated beam combiners of GRAVITY and PIONIER

- Planar integrated optics beam combiners (IOBC)
- Combine 4 VLTI beams (6 baselines) by pair with an ABCD coding
- Average throughput ~60-70%

The integrated beam combiners of GRAVITY and PIONIER

- Planar integrated optics beam combiners (IOBC)
- Combine 4 VLTI beams (6 baselines) by pair with an ABCD coding
- Average throughput ~60-70%

SiO2:Ge core (dn = 0.16)

Si substrate

IOBCs of GRAVITY and PIONIER

- Planar integrated optics beam combiners (IOBC)
- Combine 4 VLTI beams (6 baselines) by pair with an ABCD coding
- Average throughput ~60-70%

- Interferometric contrast >90% in broadband
 - Low differential effects (chromatism & birefringence)

IOBCs of GRAVITY and PIONIER

- Planar integrated optics beam combiners (IOBC)
- 6 baselines combined by pair with an ABCD sampling: 24 outputs

Jocou+ 2014 [SPIE]

IOBCs of GRAVITY and PIONIER: Y-junctions

• Y-junctions well balanced and achromatic

IOBCs of GRAVITY and PIONIER: couplers

- <u>Couple evanescent field to a neighbor waveguide</u>
- Phase shift of π = AC cell
- 50/50 couplers splitting ratio varies typically from 40/60 to 60/40 across a band

[Benisty+ 2009 A&A]

IOBCs of GRAVITY and PIONIER: couplers

- <u>Couple evanescent field to a neighbor waveguide</u>
- Phase shift of π = AC cell
- 50/50 couplers splitting ratio varies typically from 40/60 to 60/40 across a band

IOBCs of GRAVITY and PIONIER: ABCD cells

IOBCs of GRAVITY and PIONIER: ABCD cells

IOBCs of GRAVITY and PIONIER: cross-talks

- Light from telescope A leaking/recoupling into waveguide of telescope B
- Various origins:
 - X-crossing
 - Leaks in curves
 - Leaks from waveguide imperfections

IOBCs of GRAVITY and PIONIER: cross-talks

- Light from telescope A leaking/recoupling into waveguide of telescope B
- Various origins:
 - X-crossing
 - Leaks in curves
 - Leaks from waveguide imperfections

IOBCs of GRAVITY and PIONIER: cross-talks

- Light from telescope A leaking/recoupling into waveguide of telescope B
- Various origins:
 - X-crossing
 - Leaks in curves
 - Leaks from waveguide imperfections

- Up to 10% of total losses in in the curves
- Recoupled cross-talks is <0.1% in flux for GRAVITY

IOBCs of GRAVITY and PIONIER: estimating the 4 photometries

• Daily photometric and interferometric calibrations:

 \rightarrow Pixel to Visibility Matrix (P2VM)

- No need for specific channels with 3T and more, and AC or ABCD fringe sampling
 - ightarrow Can be extracted from the interferometric channels thanks to the P2VM

PIONIER polarisation management

• Light transported to IOBC with PM fibers Very birefringent stress-induced fibers

Beating length = 3-5 mm \rightarrow fiber of the same batch & equalized to 20 microns

• Need daily alignment of polarisations with birefringent LiNbO₃ plates

PIONIER polarisation management

• Light transported to IOBC with PM fibers Very birefringent stress-induced fibers

Beating length = 3-5 mm \rightarrow fiber of the same batch & equalized to 20 microns

Need daily alignment of polarisations with birefringent LiNbO₃ plates

The fiber control unit of GRAVITY

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Perrin et al.

The fiber control unit of GRAVITY

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysiqu

Perrin et al.

• Polarisation rotator: align VLTI polarisation axis to the IOBC ones

- FDDL: Compensate for the differential OPD between FT and SC, up to 4mm stretch
- ~20m of fluoride fiber per beam: T ~ 98%

δΟDP = B . (α - β)

- Compensate for differential delay between beams
- Maximum delay: 2mm for UTs; 6mm for ATs
- Precision = 60 nm

The fiber control unit of GRAVITY The FDDLs

- FDDL: Compensate for the differential OPD between FT and SC, up to 4mm stretch
- Fluoride fiber wrapped ~20x around a cylinder mounted on a piezo
- Dispersion varies with stretch
- Important hysteresis, few 10 microns → need for the metrology for closed loop control of the piezo

What's next?

- Developments towards longer wavelengths (L, M bands)
 - Chalcogenide fibers and IO
 - LiNbO₃ IOBC
- Laser written 3D waveguides

What's next?

- Developments towards longer wavelengths (L,M,N bands)
 - Chalcogenide fibers and IO
 - LiNbO₃ IOBC
- Laser written 3D waveguides
- Active functions in LiNbO₃

What's next?

- Developments towards longer wavelengths (L,M,N bands)
 - Chalcogenide fibers and IO
 - LiNbO₃ IOBC
 - Laser written 3D waveguides
- Active functions in LiNbO₃
- AO on small telescopes are coming
 - Implementation on-going at CHARA
 - Study of AO for ATs at VLTI...

