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Introduction:  
Diffraction-limited point spread function (psf) 
Atmospheric wave front degradation and atmosperic point spread functions (speckle movie) 
Space-invariance of psfs 
2-telescope interferograms 
Spectrally dispersed IOTA and AMBER-VLTI interferograms (IOTA movie) 
LBTI interferograms 
 

Optical experiments: Simulation of interferograms using halogen lamps and 
diffraction masks to observe psfs, image degradation, and interferograms 
 
Simple principle of interferometry 
Fourier transform properties of lenses 
Calculation of the intensity distribution of interferograms and the resolution of interferometers 
Wave optics (Fourier optics), incoherent imaging equation  
 

Interferogram equation, Jennison‘s closure phase method, Van Cittert-Zernike 
theorem  



Optical experiments: Simulation of diffraction and atmospheric image degradation using 
halogen lamps, diffraction masks, and atmosphere simulator 

What can we learn from these  
experiments? Looking through the 
various mask apertures, you can 
see white-light diffraction and 
interference pattern (telescope, 
interferometer, atmospheric image 
degradation, coherence time etc.) 
 
Diffraction-limited point spread 
function of a single telescope 
 
 
 
 
Space-invariance of the 
atmospheric psf 
 
 
 

Diffraction apertures +  
atmosphere simulator to 
generate interferograms 



 

Optical experiment: 
2-telescope interferogram 
(without spectral dispersion) 
 
 
 
 
 
 
Spectrally dispersed IOTA 
interferograms:  
Fringe motion caused by the 
atmosphere; 
wavelength dependence of 
interferograms 
 

Optical experiments: Simulation of diffraction, telescopes and atmospheric image 
degradation using halogen lamps and diffraction masks 

 
 

See movie at http://www.mpifr-bonn.mpg.de/153017/beobachtungen 



IOTA JHK-band beam combiner instrument 

 
•  Simultaneous  recording of spectrally dispersed J-, H-, and K-band fringes  
•  Anamorphic cylindrical lens system and grism spectrograph 

        2-D           cylindrical              grism            spectrally dispersed fringes  

     fringes            lenses                                        J band        H band        K band  



Examples of interferograms 

VLTI/ATs: interferograms of a bright star (low spectral resolution mode) 

VLTI/UTs: NGC 3783; K magnitude = 10.1 (Weigelt et al. 2012) 



Examples of interferograms 

7 

 
 
 
 
Eta Carinae 
Br γ 2.166 µm emission line 
Spectral resolution λ/Δλ = 12 000 
 
 
 
 
 
 
 
Eta Carinae 
Br γ 2.166 µm emission line 
Spectral resolutions λ/Δλ = 1500 
 
Weigelt et al. 2007, A& A 464, 87 
 



Interferograms 

Example: telescope +  pupil mask with 2 small aperture holes (e.g. ~ 10 cm).
If the distance between the 2 holes is 4 m and the wavelength is 500 nm 
→  fringe period λ /D ~ 30 mas
→  fringe contrast ~ 0 if the binary separation is ~ 15 mas  (for equally bright components)

λ
D
≈ 0.03" when D = 4 m,λ = 550 nm

+

*   single star **    binary star (equally   

         bright components,      

         separation = 0.015” 
turbulence cells 
→fringe motion



2-telescope interferometer 

Interferograms are obtained 
if the pathlength difference 
is smaller than the 

coherence length =  λ λ
Δλ

. 

Example: 
λ =  1 µm, 
filter width Δλ =  0.001 µm
→

coherence length =  1 mm

      

baseline B
!"

θ

Bcosθ

2β

intensity distribution i(x) = ...?  Object information in i(x)?  

incident
field 
E0

Moving delay line

intensity distribution of the object



Fourier transform properties of lenses; complex amplitude 

The electrical field E  of a wave can be described by E = Real Ψ exp(iΦ) exp(−2πiνt)$% &'.

The low-frequncy part 
     Ψ = Ψ exp(iΦ)  
is called the complex amplitude (or complex wave amplitude).

                   mask a(u) complex amplitude U(x) 

plane wave



Fourier transformation properties of lenses 

If a u,v( ) is the complex amplitude function in front of a lens, 
then the complex amplitude in the focal plane of the lens is equal to the Fourier transform 

U x, y( ) = phase factor a∫∫ u,v( ) exp −
2πi
λ f

ux + vy( )
#

$
%

&

'
( dudv = FT a u,v( )#$ &' →

− A function U can be constructed as the sum of many cos & sine functions of  
different frequencies; cos & sine because of the Euler theorem  exp(iz) = cosz+ isin z. 

− Each individual exp function has a certain frequency  and its own weight factor. 
− The Fourier transform a of U  gives the weight factors.

- One can also define exp +...[ ]  instead of exp −...[ ]  and all integrals are 
−∞

+∞

∫

Definition of the inverse Fourier transform FT−1 U x, y( )#$ &' :

a u,v( ) = phase factor U x, y( )∫∫ exp +
2πi
λ f

ux + vy( )
#

$
%

&

'
( dxdy = F̂−1 U x, y( )#$ &'

See, e.g., J. W. Goodman book (1968): Introduction to to Fourier optics

Next slide :  Real time Fourier transform movie (IOTA interferometer): 
(left) JHK interferogram, (right) power spectum (modulus square of Fourier transform)





 Interferograms:  2-hole mask, fringe separation, interferometer resolution (1) 

Pupil function a(u) =  δ u−u '( )+δ u+u '( )"# $%

Where is the first maximum (+1 maximum at xm=+1) of the complex amplitude of U(x)?  xm=+1 = ?

U(x)=? 

u 

• α+1 (angle to first amplitude 
maximum)   f 

x 

object = unresolvable star (point source; δ  fct.)

pupil mask a(u): 2 pinholes

plane waves from star

xm=+1 = ?



Interferograms:  2-hole mask, fringe separation, interferometer resolution (2) 

Example : Point source object and pupil mask with amplitude transmission 
a u( ) = δ u−u '( )+δ u+u '( ) in front of a telescope. 

Then we obtain the complex amplitude a u( ) = δ u−u '( )+δ u+u '( )  in front of the lens.

The complex ampitude U x( )  in the focal plane of the telescope is equal to the Fourier 

transform of a u( ). U x( )  is also called  Fraunhofer diffraction amplitude:

U x( ) = δ u−u '( )+δ u+u '( )"# $%∫ exp −
2πi
λ f

ux
'

(
)

*

+
, du →*

U(x) = exp −
2πi
λ f

xu '
'

(
)

*

+
,+ exp +

2πi
λ f

xu '
'

(
)

*

+
,= 2cos 2π

λ f
xu ' →

The focal plane intensity distribution I x( ) = U x( )
2
= 4cos2 2π

λ f
xu '  

   
          _________________________________________________________________________

          * used definition of the Delta function was used: f x( )δ x − a( ) dx =∫ f a( );  cosz = 1
2
ezi + e−zi( )



→Maxima of complex amplitude cosine for 1
λ f

xu ' = 0,  1,  2,... →  

→+1-maximum at x=xm=1obtained from 1
λ f

xm=1u '  =  1

→ The   +1-maximum of the complex amplitude lies at xm=1 =
λ f
u '

.

Let α+1  be the angle between the optical axis and the line to the +1-amplitude maximum.

Then, α+1 =
xm=1

f
=
λ
u '

   (for small angles and because xm=1 =
λ f
u '

).

Then, the  +1-intensity maximum lies at α+1 intensity =
1
2
λ
u '
=
λ
B

If B = 2u ' is the baseline length (= separation of the 2 holes)

Therefore, an interferometer with baseline length B is able to resolve objects as small as λ
B

.

Example: λ=2.2 µm, B=100 m → λ
B
=

2.2 ⋅10−6 m
100m

  corresponding to 2.2 ⋅10−6 m
100m ⋅ 4.8 ⋅10−6 = 4.6 mas

Interferograms:  2-hole mask, fringe separation, interferometer resolution (3) 



Fourier transform of a rectangular (rect) function a(u) with width Δu 

U x( )∝ a u( )exp −
2πi
λ f

ux
#

$
%

&

'
(du

−∞

+∞

∫

= 1exp
−Δu/2

+Δu/2

∫ −
2πi
λ f

ux
#

$
%

&

'
(du = *

exp −2πiux / λ f( )
−2πix / λ f

,

-
.

/

0
1
−Δu/2

+Δu/2

= −
λ f
π x

exp −π ixΔu / λ f( )− exp +π ixΔu / λ f( )
2i

= −
λ f
π x

sin −π xΔu
λ f

=
λ f
π x

sin π xΔu
λ f

______________________

Because sin z = e
zi − e−zi

2i
,  exp −

2πiux
λ f

#

$
%

&

'
(

#

$
%

&

'
(

2
= −2πix exp −

2πiux
λ f

#

$
%

&

'
(

1

a(u) 

Δu



Convolution and convolution theorem  

i(x) = g(ξ )h(x −ξ )dξ = g(x)⊗ h(x)∫  ( = g(x)⊗ h(x); ⊗  = convolution operator) 

=  convolution of g(x) with h(x)  

Convolution theorem: The Fourier transform of a convolution of 2 functions 
is equal to the product of the Fourier transforms of the 2 functions (derivation in the Appendix)

1D convolution example:



Interferograms:  2-hole mask, fringe separation, interferometer resolution (5)  
2-hole pupil mask with extended holes 

Where is the 
first maximum 
(+1 maximum at xm=+1) 
of the complex 
amplitude of U(x)?
xm=+1 = ?

U(x)=? 

u 

• α+1 (angle to first amplitude maximum)   

f 

x 

object = unresolvable star (point source; δ  fct.)

pupil mask a(u): 2 pinholes

plane waves from star

xm=+1

-u’ +u’ 

a(u) 
Δu 

= * u

hole diameter =Δu 



→U x( ) = δ u−u '( )+δ u+u '( )#$ %&∫ exp −2π iux[ ] du ⋅  ∫ rect u
Δu

exp −2πiux[ ]du→

U x( ) = 2cos 2π
λ f

xu ' ⋅ λ f
π x

sin π xΔu
λ f

     

(* because of convolution theorem and previous 2 examples).  Illustration of all 5 functions:

= •

= 

Fourier                                                                           Fourier  
transform                                                                        transform

+1 maximum of the complex amplitude

•

Interferograms:  2-hole mask, fringe separation, interferometer resolution (6)  
2-hole pupil mask with extended holes 



A few important facts from wave or Fourier optics 

(see, e.g., J. W. Goodman book (1968): Introduction to to Fourier optics):
(1) Convolution and convolution theorem :
Convolution of o(x) with p(x) ≡ o(x ')p(x − x ')dx ' = o(x)⊗ p(x)∫  (⊗  = convolution operator)    

Convolution theorem: The Fourier transform of a convolution of 2 functions 
is equal to the product of the Fourier transforms of these 2 functions (see derivation in the Appendix)

(2) Incoherent, space - invariant imaging equation :  
The image intensity distribution i(x) is equal to the convolution of the object intensity distribution o(x) 
with the intensity distribution of the point spread function p(x),  if p(x) is space-invariant: i(x) = o(x)⊗ p(x) 

(3) Fourier transform (FT) property of a lens and point spread function p(x) :

The intensity distribution p(x) of the image of a point source is equal p(x) = FT pupil function a(u)[ ]
2
.

(4) Autocorrelation & autocorrelation theorem :  

The autocorrelation AC u[ ]  of a(u) is equal to  AC u[ ] ≡ a u '+u( )a* u '( )du '∫   

Autocorrelation theorem: FT −1 FT a(u)( )
2%

&'
(
)*=  autocorrelation AC a(u)[ ]  (see derivation in the Appendix)



Interferogram i(x) of an arbitrary object o(x) (1) 

Calculation of the intensity distribution i(x) of the interferogram, 
if the object is an arbitrary object with intensity distribution o(x) 
(in contrast to the point source object in the previous calculations).

The pupil function a(u) is assumed to consist of 2 pinholes, 
i.e., 2 delta functions: a(u) = δ(u−u1)+δ(u−u2 )[ ]

Intensity distribution i x( )  of the interferograms is:

i x( ) = o x( )⊗ FT a u( )#$ %&
2
→ I u( ) =O u( )FT −1 FT a u( )#$ %&

2#
$(

%
&)
=O u( )AC a u( )#$ %&

(if I(u) & O(u) are the Fourier transforms of i(x) & o(x), respectively)

→ I u( ) =O u( ) 2δ u− 0( )+δ u− u2 −u1( )#$ %&+δ u− u1 −u2( )#$ %&{ }

______________________________________________________________________________

Because of convolution and AC theorem; AC a(u)[ ] = δ(w−u1 +u)+δ(w−u2 +u)[ ]∫ ⋅ δ(w−u1)+δ(w−u2 )[ ]dw

= δ(w−u1 +u)[ ]∫ ⋅ δ(w−u1)[ ]dw+ ... = 2δ u− 0( )+δ u− u2 −u1( )$% &'+δ u− u1 −u2( )$% &' 

(with, e.g., substitution w ' = w−u1 +u etc.) 

u 

x 

f 

arbitrary 
object o(x)

a(u)

i(x) = ?
Dependence 
on o(x)?



Interferogram i(x) of an arbitrary object o(x) (2) 

________________________________________________________________________________
*     We used: o(x) =  real →O(u) =O∗(−u)

       we used: f x( )δ x − a( )∫ dx = f a( ) →  δ u− u2 −u1( )%& '(exp 2πibux[ ]∫ du = exp 2πib u2 −u1( ) x%& '(   

**   since: we want to get the form c+ c*  (c = complex number), 
       which allows us to use c+ c*= 2 Re c( ) :  

       a+ ib+ a− ib = 2a = 2 Re a+ ib( ); if  o =  real→O u1 −u2( ) =O* u2 −u1( ))         

→ I u( ) =O 0( )2δ u− 0( )+O u2 −u1( )δ u− u2 −u1( )#$ %&+O u1 −u2( )δ u− u1 −u2( )#$ %&

* → i x( )=2O 0( )+O u2 −u1( )exp 2πi 1
λ f

u2 −u1( ) x
#

$
'

%

&
( + O u1 −u2( )exp 2πi 1

λ f
u1 −u2( ) x

#

$
'

%

&
(

**→ i x( ) = 2O 0( ) +O u2 −u1( )exp 2πi 1
λ f

u2 −u1( ) x
#

$
'

%

&
( + O* u2 −u1( )exp −2πi 1

λ f
u2 −u1( ) x

#

$
'

%

&
( 

 
Now i x( )  has the form i = 2O 0( )+ c+ c*.

=  2O(0)   +                     c                                          +                         c*   



Interferogram i(x) of an arbitrary object o(x) (2) 

______________________________________________________
* The above equation has the form i = 2O 0( )+ 2 Real c1c2{ }. 

   We use: Real c1c2{ }=  Real c1 exp iarg c1( )!" #$ c2 exp iarg c2( )!" #${ }
   = c1 c2 cos arg(c1)+ arg(c2 )( )     (because of exp iz( ) = cosz+ isin z))

*→ i x( )=2O 0( )+ 2Re O u2 −u1( ) ⋅ exp 2πi 1
λ f

u2 −u1( ) x
$

%
&

'

(
)

*
+
,

-
.
/

     

→ i x( ) = 2O 0( )+ 2 O u2 −u1( ) cos 2π 1
λ f

u2 −u1( ) x + arg O u2 −u1( )$% '(
$

%
&

'

(
).

The interferogram i(x), therefore, contains information on both 

(1) the modulus O u2 −u1( ) and 

(2) the phase arg O u2 −u1( )$% '( of the object Fourier transform at the baseline u2 −u1.  

However, the atmospheric phase differences in front of both mask openings lead to additional  
statistical displacements of the interferogram (next slide: unwanted & unknown phase in the cos).

      c1    ✕     c2                          



Phase closure method (1) (Jennison, MNRAS 118, 276, 1958) 

 Additionally: ϕ1,  ϕ2,  & ϕ3 = unknown atmospheric phases in front of the mask holes! →  phase problem!

→ iA x( )∝1+ O u12( ) cos 2π 1
λ f

u12x +φ u12( )+ϕ1 −ϕ2

$

%
&

'

(
),                     (see shift theorem in the Appendix)

    iB x( )∝1+ O u23( ) cos 2π 1
λ f

u23x +φ u23( )+ϕ2 −ϕ3

$

%
&

'

(
), iC x( )∝1+ O u13( ) cos 2π 1

λ f
u13x +φ u13( )+ϕ1 −ϕ3

$

%
&

'

(
)

pupil mask 
(3 pinholes)  

 beam splitter 

iA(x) 

iB(x) 

iC(x) 
With abbreviations: 
u12 = u2 −u1, u23 = u3 −u2,  u13 = u3 −u1,  and, for example, 

arg O u12( )"# $%= φ u12( ) =  phase of the object Fourier transform at u12.

O u12( ) = modulus of the object Fourier transform at baseline u12.

 



Phase closure method (2)   
Example with baselines as in the previous slide: Evaluation of iA, iB,  and iC  (with b := u12 = u23, 2b = u13) :

phase of iA  is  called θA b( ) = φ b( )+ϕ1 −ϕ2;     θ  phases are called ''dirty'' phases"

phase of iB  is called θB b( ) = φ b( )+ϕ2 −ϕ3,     phase of iC  is called θC 2b( ) = φ 2b( )+ϕ1 −ϕ3

θC,  θA,  & θB  are called the measured "dirty phases",  φ  is the want object Fourier phase,  and ϕ1,ϕ2,  & ϕ3

are the unknown atmospheric phases. We calculate the following phase difference, called closure phase: 

closure phase ≡θC −θA −θB = φ 2b( )+ϕ1 −ϕ3 −φ b( )−ϕ1 +ϕ2 −φ b( )−ϕ2 +ϕ3 = φ 2b( )−φ b( )−φ b( )
→ φ 2b( ) = 2φ b( )+θ C

2b( )−θA b( )−θB b( );  analog φ 3b( ) = ...,φ 4b( ) = ...,  etc.; 

Atmospheric phases cancelled! 
However, in real observations, one cannot measure at such regular distance steps.

For interferograms θC,  θA,  and θB  with 3 arbitrary baseline vectors u
!

3,  u
!

1,  and u
!

2   that form a closed triangle 
(instead of the above 3 special baselines): 

closure phase ≡θ13 −θ12 −θ23 = φ u
!

13( )+ϕ1 −ϕ3 −φ u
!

12( )−ϕ1 +ϕ2 −φ u
!

23( )−ϕ2 +ϕ3 = φ u
!

3( )−φ u
!

1( )−φ u
!

2( ).

From many such closure phase measurements θ13 −θ12 −θ23  made with many different 
triangle configurations, an image of the object can be reconstructed (talk by Karl-Heinz Hofmann).

Object Fourier phases 



Comparison of interferometers with two different pupil arrangements  

      

baseline B
θ

τ ext,12 = Bcosθ

2β
Moving delay line

1. Exit pupil is scaled - down version of entrance pupil:
Advantage: space-invariant psf & large FOV (e.g., 30")
Disadvantage: low resolution
Example: telescope with a pupil mask, LBTI * (2x8 m)
Entrance  pupil:           exit pupil:

2. Exit pupil is not a scaled - down version of input pupil.
Advantage: smaller number of pixels per fringe 
Disadvantage: small FOV (e.g., 70 mas)
Examples: VLTI, CHARA, NPOI etc.
Entrance pupil                                                  exit pupil

f 

The following calculation of i(x) assumes the above pupil reconfiguration (right)
* Next slide: LBTI example



LBT 



First LBTI observations: Image of 16 volcanos on of Jupiter‘s moon of Io 

One of the recorded interferograms 
 
 
 
 
 
 
Reconstructed image 
 
 
 
 
 
 
 
 
 
Image of the brightest volcano Loki with its Lava sea 
 
Conrad et al. 2015, AJ 149, 175  



2-telescope interferometer*: interferogram of an arbitrary object  

detector plane: 
fields E1(x) & E2 (x)

* Now we discuss a 
more general beam 
configuration than in 
the previous i(x) 
calculation (i.e., a
changed exit pupil).

Useful references for the following 
calculations: 
Goodman books on Fourier and 
statistical optics; Thompson et al. 1986; 
Boden 1999; Haniff 1999; the 
following slides present the theory 
reported in the book "Practical Optical 
Interferometry" (Buscher 2015) plus 
some additional calculations.

The incident monochromatic field E0  
(red plane waves) can be described 
(except constants) by
 E0 = Re Ψ0 exp(iΦ0 ) exp(−2πiνt)$% &'

The low-frequency part 
Ψ0 = Ψ0 exp(iΦ0 ) 
is called the complex amplitude.
The mean intensity or flux is the 

time average F = E 2

E0

point source object

E0

. 

      

baseline B
θ

τ ext,12 = Bcosθ

intensity distribution i(x)

Moving delay line



The astrometric phase: optical path difference of a nearby source 

2 arrows: 
Θ0  &Θ0 +ΔΘ

The figure shows that external time delay difference between 
the 2 beams of telescope 1 and 2 is, for a point source (1 star), 

τ ext,12 = τ ext,1 −τ ext,2 = B
cosθ0

c
The delay line system can compensate this external delay 
for one point source to get τ ext,12 = 0.

However, the optical path difference τ12c between a point 
source in direction of  θ0  and a second nearby point source in 
direction of  θ0 +Δθ  observed simultaneously,  is (for small Δθ )
τ12c = Bcos(θ0 +Δθ )−Bcosθ0 ≈ −BΔθ sinθ0   

Therefore, the phase shift φ12  (= 2π  OPD/λ;  1 λ  OPD 
corresponds to a phase shift of 2π;ν = c / λ) of the fringes is

φ12 = −2πντ12 = −2π 1
λ
Bsinθ0Δθ = −2π B sinθ0

λ

$

%
&

'

(
)Δθ = −2πuΔθ,  

where u = B sinθ0

λ
and u is the length of the projected baseline 

(as seen from the star). The phase shift of an interferogram of 
an offaxis object element depends on u and Δθ.

      

baseline B
θ

Bcosθ0 Bsinθ0

2β

intensity distribution i(x)

Moving delay line
E1(x), E2 (x)

arbitrary compact object  

with intensity distribution I(σ
!"

)

ΔΘ 

ΔΘ τ12c



The beam combiner (BC) time delay differences 

x
x sinβ

β

2β

2	  #lted	  beams	  from	  the	  2	  
telescopes	  	  arriving	  at	  the	  detector	  

(x	  plane)	  

We assume that a socalled multi-axial beam combination is used 
as in AMBER and MATISSE (and the previous IOTA movie). 

In this case, the 2 telescope beams arriving at the detector are tilted 
against each other by an angle of 2β.

We have to analyze the beam combiner time delay difference 
τ BC,1(x)−τ BC,2 (x) caused because of the tilt 2β. 

Rays arriving at position x of the detector have to travel an 
additional distance of ± xsinβ  compared to the rays arriving at x = 0. 

Then the optical path difference OPDBC  (defined as delay τ  multiplied 
with the speed of light c; νλ=c) between the 2 beams varies with x  as
OPDBC = c(τ BC,1(x)−τ BC,2 (x)) = 2xsinβ             

→ν τ BC,1(x)−τ BC,2 (x)( ) = x 1
c
ν2sinβ;  with abbreviation 1

c
ν2sinβ ≡ s →

ν τ BC,1(x)−τ BC,2 (x)( ) = s x ;  s = fringe frequeny 



Intensity distribution i(x) of an interferogram (1) 

We still have to calculate these 
τ1,2  and τ BC,1(x)−τ BC,2 (x)

      

baseline B
!"

θ

Bcosθ Bsinθ

2β

intensity distribution

i(x) = (E1(x)+E2 (x))2

incident
field 
E0

Moving delay line

point source

E1(x), E2 (x)

Two waves E1 and E2  (frequency ν ) arrive at the detector and 
interfere, and we observe the 

interferogram intensity distribution i(x) = E1(x)+E2 (x)( )2
→

i(x) = Re Ψ1(x)exp(−2πitν )+Ψ2 (x)exp(−2πiνt)[ ]( )
2
→

i(x) = Ψ1(x) 2
+ Ψ2 (x) 2

+ 2Re Ψ1(x)Ψ2
∗ (x)%& '( (proof on next slide)

The waves arriving at the focal plane are time-delayed versions of E0. 
Therefore, at the detector, waves with the following two complex 
amplitudes will arrive
Ψ1 =Ψ0 exp 2πν (τ ext,1 +τ int,1 +τ BC,1(x)%& '(,

Ψ2 =Ψ0 exp 2πν (τ ext,2 +τ int,2 +τ BC,2 (x)%& '(→

Ψ1Ψ2
∗ = Ψ0

2 exp 2πν τ ext,1 −τ ext,2 +τ int,1 −τ int,2 +τ BC,1(x)−τ BC,2 (x)( )%& '(

The τ  terms are external, internal & BC time delays for tel. 1 & 2. 

If we insert this Ψ1Ψ2
∗  into the above i(x) equation and define

τ1,2 = τ ext,1 −τ ext,2 +τ int,1 −τ int,2  & Ψ0
2
=mean intensity F0, we obtain

i(x) = 2F0 1+Re exp 2πiν τ1,2 +τ BC,1(x)−τ BC,2 (x)( ){ }%
&

'
(( )

τ1,2  can be made to zero for a point source in a particular direction 
if the delay line sytem is adjusted to compensate the external delay.



Calculation of time average 

i(x) = E1(x)+E2 (x)( )2
= E1

2 (x)+E2
2 (x)+ 2E1(x)E2 (x) = E1

2 (x) + E2
2 (x) + 2E1(x)E2 (x)

Using: Re c[ ] = 0.5(c+ c∗);  Re ab[ ] = 0.5 ab+ a∗b∗( );  use abbreviation: bi ≡ b1 ≡ b2 ≡ exp(−2πiνt);  index i =1 or 2

Ei (x) = Re ψi exp(−2πiνt)[ ] = ?   (ψi ⋅exp(−2πiνt) is a product of 2 complex numbers);

Re ab[ ] = 0.5 ab+ a∗b∗( )→Re ψi exp(−2πiνt)[ ] = Re ψi bi[ ] = 0.5 ψi bi +ψi
∗bi

∗( )

The 2 quadratic terms : Ei
2 (x) = Re ψi bi[ ] Re ψi bi[ ] = 0.5 ψi bi +ψi

∗bi
∗( ) 0.5 ψi bi +ψi

∗bi
∗( )

= 0.25 ψi bi( )2
+ ψi

2 bi
2
+ ψi

2 bi
2
+ ψi

∗bi
∗( )

2

= 0.25 ψi bi( )2
+ ψi

2 bi
2
+ ψi

2 bi
2
+ ψi

∗bi
∗( )

2( ) = 0.25 0+ 2 ψi
2 bi

2
+ 0( )

(because ψi bi( )2
= ψi

∗bi
∗( )

2
= 0 ; bi

2
=1)→ E1

2 (x) = 0.50 ψ1
2  and E2

2 (x) = 0.50 ψ2
2

The cross term :  E1(x) E2 (x) = Re ψ1b1[ ] Re ψ2b2[ ] = 0.5 ψ1 b1 +ψ1
∗b1

∗( ) 0.5 ψ2 b2 +ψ2
∗b2

∗( )
= 0.25 ψ1 b1ψ2 b2( )+ ψ1 b1ψ2

∗b2
∗( )+ ψ1

∗b1
∗ψ2 b2( )+ ψ1

∗b1
∗ψ2

∗b2
∗( )

= 0.25 ψ1ψ2 b1 b2( )+ψ1ψ2
∗ b1b2

∗ +ψ1
∗ψ2 b1

∗b2 +ψ1
∗ψ2

∗ b1
∗b2

∗

= 0.25 0+ψ1ψ2
∗ +ψ1

∗ψ2 + 0( ) (because: b1 b2 = 0, b1b2
∗ =1, b1

∗b2 =1, b1
∗b2

∗ = 0



Interferogram from an arbitrary object (2) 

unit	  
vector	  Ŝ	  	  

      
baseline B12

! "!!
θ

Bcosθ Bsinθ

2β
Moving delay line

arbitrary compact object  

with intensity distribution I(σ
!"

)

	  direc#on	  to,	  
e.g.,	  the	  

brighter	  star	  
direc#on	  to	  
the	  fainter	  

star	  

ΔΘ	  

red result #2 will be 
needed on the next slide

B
!"

12  denotes the vector baseline between the 2 telescopes, 

S
"

the unit vector pointing to an element of the object, 

I(S
"

)  object intensity in direction S
"
, and 

I(S
"

)dΩ the flux from this element within a small solid angle dΩ,

σ
!"
= (l,m)and u

"
= (u,v) denote the 2−D coordinate vectors 

in the object and interferometer baseline coordinate system. 

We already derived above τ ext,12 =
1
c
Bcosθ, which can be written 

(vector notation): τ ext,12 =
1
c
B
!"

12 ⋅S,
!"

where B
!"

12  is the vector baseline.

We assume that the delay line is adjusted to give zero OPD 

for an object element in the direction of S
"

0  (called phase center).

This is obtained if the internal delay is τ int,12 = −
1
c
B
!"

12 ⋅S
"

0. In this case, 

the net delay for a beam from an object element in direction of S
"

 is

τ12 =
1
c
B
!"

12 ⋅S
"$

%
&

'

(
)−

1
c
B
!"

12 ⋅S
"

0
$

%
&

'

(
)=

1
c
B
!"

12 ⋅ S
"
− S
"

0( ) = 1
c
B
!"

12 ⋅σ
!"

, 

where σ
!"
= S
"
− S
"

0  is the coordinate vector in the object plane and the 

phase shift φ12 = 2πντ12 = τ12c2π 1
λ

 (previous slide; νλ = c or ν
c
=

1
λ

). 

Inserting τ12 → 2πντ12 = 2πν 1
c
σ
!"
⋅B
!"

12 = 2π 1
λ
σ
!"
⋅B
!"

12 = 2πu
!
⋅σ
!"

,  

where  u
"
= B
!"

12 / λ  is the vector baseline in units of the wavelength.



Interferogram from an arbitrary object (3) 

If we insert 2πντ12 =2πu
!
⋅σ
"!
= φ12  and ν (τ BC,1(x)−τ BC,2 (x) = sx  (s = fringe frequeny) into the derived 

i(x) equation, we obtain  

i(x) = 2F0 1+Re exp −2πiu
!
⋅σ
"!
+ 2πisx( )#

$
%
&{ }

The object intensity distribution I(σ
!"

) can be represented by a grid of point sources spaced by small distances dl  and dm. 

The flux from each of these point sources at position σ
!"

 is given by I(σ
!"

) dldm. 
Each of these point sources generates its own interferogram (with certain brightness and phase shift) 
and we observe the sum of the intensity distributions of these interferograms. 

Therefore, the sum intensity distribution i(x) of the total interferogram of the total object I(σ
!"

) (for which we use the 

same name as for the previous interferograms for simplicity) is the integral all integrals are 
−∞

+∞

∫
)

*
+

,

-
.

i(x) = I(∫∫ σ
!"

) 1+Re exp(2πisx) exp(−2πiσ
!"
⋅u
!
){ }#

$
%
&dl dm→

i(x) = I(∫∫ σ
!"

)dl dm+Re exp(2πisx) I(∫∫ σ
!"

)exp(−2πiσ
!"
⋅u
!
)dl dm{ }.

The last integral      

I(∫∫ σ
!"

)exp(−2πiσ
!"
⋅u
!
)dl dm = F(u

!
)  is called coherent or correlated flux F(u

!
),  and F(u

!
) is the  Fourier transform of I σ

!"
( ). 

I(∫∫ σ
!"

)dl dm = F(0) =  coherent flux at baseline length zero is equal to the total object flux (or zero-spacing flux).



Complex visibility, visibility modulus, and van Cittert-Zernike theorem   

→ i(x) = F(0)+Re F(u
!
) exp(2πisx){ }   

→ i(x) = F(0)+Re F(u
!
) exp i 2πsx +φF( )"# $%{ }  with F(u

!
) = F(u

!
) exp iφF( ) = I(σ

!"
)(∫∫ exp(−2πiσ

!"
⋅u
"
)dl dm 

→ i(x) = F(0)+ F(u
"
) cos 2πsx +φF( )     

Therefore, the correlated flux F(u
!
) = F(u

!
) exp iφF( ) = FT I(σ

!"
)"

#
$
% influences both 

(1) the contrast of the fringes of the interferogram i(x) because of the F(u
"
)  term in front of the cosine and 

(2) the phase of the fringes of i(x) because of the object Fourier phase φF  in the cosine.

The normalised correlated flux of F(u
!
),  i.e., F(u

!
)

F(0)
,  is called the complex visibility V (u

!
) = F(u

!
)

F(0)
. 

F(u
!
) is an important quantity because the normalisation factor F(0) is often difficult to determine.

V =
imax − imin

imax + imin

 (= fringe contrast) is called fringe visibility, visibility amplitude, or visibility modulus.

imaxand imin  are the maximum and minimum intensities in the fringe pattern. 

→V (u
!
) = F(u

!
)

F(0)
= I '(∫∫ σ

!"
) exp(−2πiσ

!"
⋅u
"
)dl dm,    where I ' σ

!"
( ) =  I(σ

!"
)

I(∫∫ σ
!"

)dl dm

This Fourier transform relation between the complex visibility V (u
"
) and the intensity distribution 

 I(σ
!"

) of the object is called the van Cittert-Zernike theorem.



Derivation of the Convolution Theorem  

F̂ g
ξ( )
∫ ξ( )h x −ξ( )dξ
#

$
%
%

&

'
(
(

= g ξ( )h x −ξ( )dξ
ξ( )
∫
#

$
%
%

&

'
(
(x( )

∫ exp −2πifxx( )dx

= g
ξ( )
∫ ξ( ) h

x( )
∫ x −ξ( )exp −2πifxx( )dx
#

$
%
%

&

'
(
(
dξ  

(with )x = x −ξ  or x = )x +ξ  follows)

= g ξ( ) h )x( )exp −2πifx )x +ξ( )#$ &'d )x dξ
)x( )
∫

ξ( )
∫

= g ξ( ) exp −2πifxξ[ ]dξ h )x( )exp −2πifx )x[ ]
)x( )
∫

ξ( )
∫ d )x

= F̂ g x( )#$ &' F̂ h x( )#$ &'=G fx( ) H fx( )           So, F̂ g⊗ h( ) = F̂ g( ) ⋅ F̂ h( ). 



Derivation of the autocorrelation theorem (1-D) 

F̂ g ξ( )g* ξ − x( )dξ
ξ( )
∫
"

#
$
$

%

&
'
'

= F̂ g !ξ + x( )g* !ξ( )d !ξ
!ξ( )
∫

"

#
$
$

%

&
'
'
 =              with (ξ = ξ − x( )

= g
x( )
∫

"ξ( )
∫ "ξ + x( )g* !ξ( )exp −2πifxx( )dxd !ξ

= g* !ξ( )
!ξ( )
∫ g !ξ + x( )exp −2πifxx( )dx

x( )
∫
"

#
$
$

%

&
'
'
d !ξ

= g* !ξ( ) G
!ξ( )
∫ fx( ) exp +2πifx !ξ( )d !ξ (shift theorem)

= g* !ξ( )exp +2πifx !ξ( )d !ξ G fx( )
!ξ( )
∫

=G * fx( )G fx( ) = G fx( )
2
. So:   F̂ Â g( )!

"
#
$= G fx( )

2
Â = autocorrelation operator( )



Derivation of the Shift Theorem (1-D) 

( )[ ]
( ) [ ]

( )

( )
( )

( )[ ] ( )
( )

[ ] [ ]

[ ] ( ) [ ]
( )

[ ] ( )xx

x
xx

xx
x

x
x

x
x

fGaif

xdxifxgaif

dxaifxifxgxdaxifxg

axxaxx

dxxifaxg

axgF

π

ππ

πππ

π

2exp

'2exp2exp

'2exp'2exp'2exp'

),(with

2exp

ˆ

−=

ʹ′−ʹ′−=

−−ʹ′=ʹ′+−=

+ʹ′=−=ʹ′

−−=

−

∫

∫∫

∫

ʹ′

ʹ′ʹ′

 


