
GENESIS – Observational opportunities

APEX

Facility instruments										
Instrument	Туре М	Mode	Frequency [GHz]	HPBW [arcsec]	IF range [GHz]	# of beams	Location	Status	Comment	
APEX-1 (SHeFI)	Heterodyne SIS	SSB	213 - 275	30 - 25	4-8	1	Nasmyth-A	•	Decommissioned from Oct 2017	
APEX-2 (SHeFI)	Heterodyne SIS	SSB	267 - 378	23 - 17	4 - 8	1	Nasmyth-A	0	Decommissioned from Oct 2017	
APEX-3 (SHeFI)	Heterodyne SIS	DSB	385 - 506	17 - 13	4 - 8	1	Nasmyth-A	0	Decommissioned from Oct 2017	
APEX-T2 (SHeFI)	Heterodyne HEB	DSB	1250 - 1390	5	2 - 4	1	Nasmyth-A	0	Science Verification pending	
LABOCA	Bolometer array		345	19		295	Cassegrain	0		
	Delementes				1,00		7	100		

850

279 - 381

18

4 - 8

SABOCA

APEX-2A

array

Heterodyne SIS

DSB

Instrument	Туре	Usage	Frequency [GHz]	HPBW [arcsec]	# of beams	Location	Status	Comment
FLASH ⁺	Heterodyne SIS	PI (MPIfR)	268-374	17-22	1		0	
			374-516	12-14	1	Nasmyth-A	0	-/
CHAMP+	Heterodyne SIS	DI (MDIED)	620-720	9-7	7	Manus dh D	0	
		PI (MPIfR)	780-950	7-6	7	Nasmyth-B	0	
ASZCA	Bolometer array	PI (MPIfR)	150	42	330	Cassegrain	8	Decommissioned in December 2010
ARTEMIS+	Bolometer array	y PI (ESO)	1499 (200 µm)	4		Cassegrain	8	not available yet
			856 (350 µm)	7	288 * 8		0	Commissioning June 2013
			666 (450 µm)	9			8	not available yet
PolKa	Polarimeter	PI (MPIfR)	345	19	295	Cassegrain	8	Commissioning pending
SEPIA	Heterodyne SIS	rodyne SIS PI (ESO/Swedish)	159-211 (Band 5)	30-39	1	Nasmyth-A	0	Commissioning February/March 201
			272-376 (Band 7)	17-23	1	Nasmyth-A	8	Installation in 2018
			600-722 (Band 9)	10-9	1	Nasmvth-A	0	DSB version available

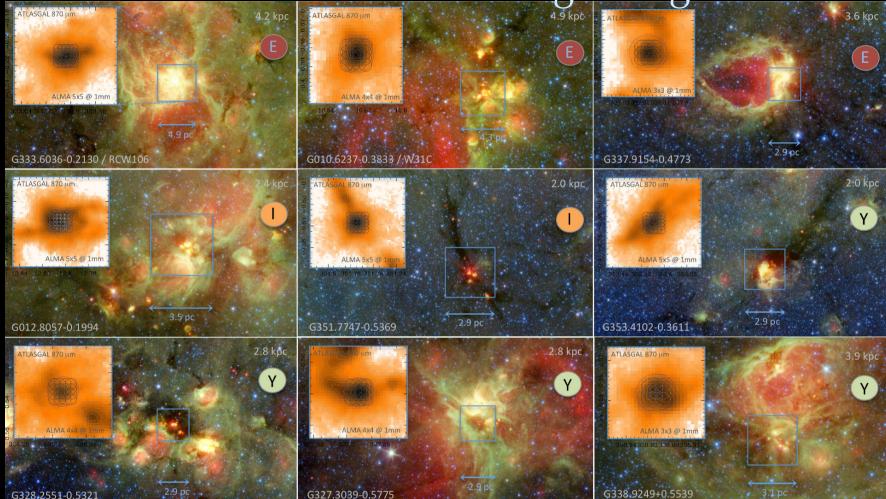
Cassegrain

Nasmyth-A

8

39

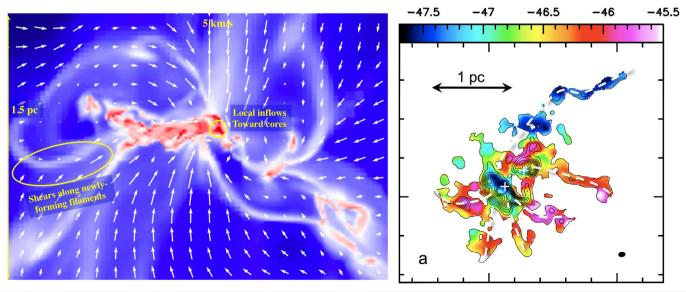
warmed up

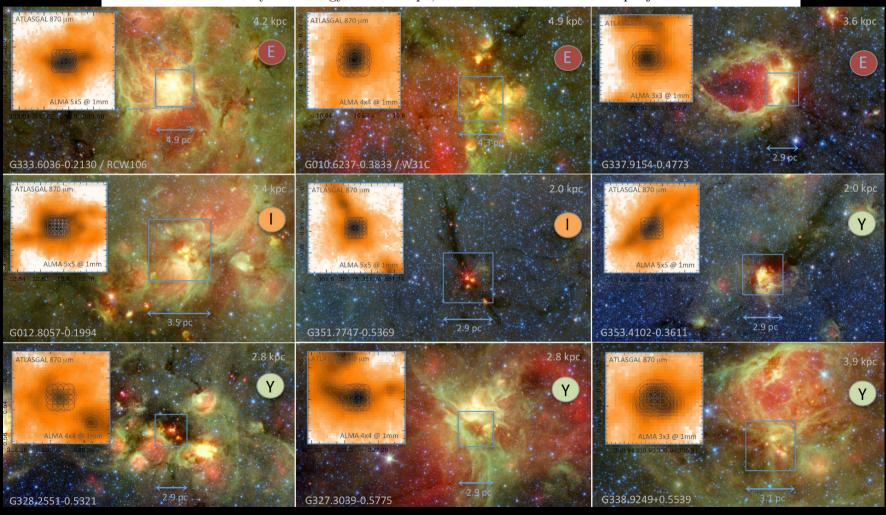

Decommissioned in Feb

2008 and replaced by APEX-2

Possible ideas:

- A deep investigation of a piece of Musca-like case.
- Deep unbiased spectral survey with IRAM 30m to get hints on the possible chemical tracers of shocks.
- APEX large program in CO(4-3).
- ALMA-ACA in CO(6-5).
- JCMT H2 line imaging.


ALMA-IMF – ALMA large Program


In a nutshell:

- 15 proto-clusters
- 65 hrs of 12m
- 1 and 3 mm mosaics; 2000 AU spatial resolution.

Name	d	$M($	$L_{\rm bol}/M$	Mosaic, Resol	$1\sigma 1/3\mathrm{mm}$	Req. time	Resp.
	$[\mathrm{kpc}]$	$[M_{\odot}]$	$[L_{\odot}/M_{\odot}]$	["×", "]	$[\mu Jy/beam]$	1mm $+3$ mm	region
Young protoclusters							
G030.82 = W43 - MM1	5.5	16×10^3	3.9	$120 \times 80, \ 0.37$	-/30	0 + 5.3 hr	EU
G338.93	3.9	8.0×10^{3}	9.3	$55 \times 55, 0.51$	200/60	1+1.2 hr	EA
G327.29	2.8	6.5×10^{3}	10	$70 \times 70, 0.67$	300/90	0.6 + 0.7 hr	EA
G030.70 = W43 - MM2	5.5	13×10^3	11	$60 \times 60, 0.37$	100/30	3.1 + 5.3 hr	CL
G328.25	2.8	4.2×10^{3}	13	$70 \times 70, 0.67$	300/90	0.6 + 0.7 hr	EU
G353.41	2.0	3.3×10^3	13	$100 \times 100, 0.95$	600/180	0.6 + 0.7 hr	NA
G008.67	3.4	2.7×10^{3}	16	$70 \times 70, 0.67$	300/90	0.6 + 0.7 hr	EA
Intermed protoclusters							
G049.49M = W51 - E	5.4	22×10^3	25	$60 \times 60, 0.37$	100/30	3.6 + 4.1 hr	NA
G351.77	2.0	2.2×10^{3}	29	$100 \times 100, 0.95$	600/180	0.6 + 0.7 hr	EU
G030.72 = W43 - MM3	5.5	6.6×10^{3}	30	$60 \times 60, 0.37$	100/30	3.2 + 5.3 hr	EU
G012.80 = W33	2.4	5.2×10^3	46	$100 \times 100, 0.95$	600/180	0.6 + 0.7 hr	CL
Evolved protoclusters							
G337.92	3.6	3.0×10^{3}	50	$55 \times 55, 0.51$	200/60	1.0 + 1.2 hr	EA
G010.62 = W31C	4.9	7.4×10^{3}	54	$60 \times 60, 0.37$	100/30	4.7 + 3.4 hr	NA
G049.49 = W51 - IRS2	5.4	14×10^3	69	$60 \times 60, 0.37$	100/30	3.7 + 4.1 hr	NA
G333.60	4.2	13×10^{3}	130	$110 \times 110, 0.51$	200/60	3.2 + 1.9 hr	CL

from detected cores. To resolve the ~2000 AU typical diameter of cores (Bontemps et al. 2010; Palau et al. 2013) and image the ~1–2 pc² protocluster extent, we will make 1 mm and 3 mm mosaics (extents in **Table 1**) with 0.4'' - 1'' synthesized beams depending on the distance. We chose **1 mm** and **3 mm spectral bands** primarily for their mostly optically thin emission in massive cores and their well-defined dust emissivity ($\kappa_{1\text{mm}} = 0.01 \text{ cm}^2 \text{ g}^{-1}$ and $\kappa_{3\text{mm}} = 0.003 \text{ cm}^2 \text{ g}^{-1}$). The chosen setups cover, among the main lines, $^{12}\text{CO}(2\text{-1})$ and $N_2\text{H}^+(1\text{-0})$ to measure gas mass outflows and inflows, ^{13}CS and $N_2\text{D}^+$ to estimate core turbulence levels, the $\text{H41}\alpha$ recombination line to identify HII regions, and CH_3OH , CH_3CN , and CH_3CCH to probe gas temperature. Combining ALMA with ACA (+TP) is necessary for a proper analysis of outflows and inflows. For each protocluster, we will follow an analysis strategy in five steps, defined for the W43-MM1 project:

