

Laboratoire d'Études du Rayonnement et de la Matière en Astrophysique et Atmosphères

Towards irradiated shocks

Antoine Gusdorf,

LERMA, Paris, France

Claudio Codella, INAF, Firenze, Italy • Maryvonne Gerin, LERMA, Paris, France • **Benjamin Godard**, LERMA, Paris, France • Rolf Güsten, MPIfR, Bonn, Germany • Bertrand Lefloch, IPAG, Grenoble, France • **Pierre Lesaffre**, LERMA, Paris, France • Silvia Leurini, INAF, Cagliari, Italy • Frédérique Motte, IPAG, Grenoble, France • **Guillaume Pineau des Forêts**, LERMA, Paris, France

• The importance of shocks in the interstellar medium of galaxies

• Shock modelling: from 'simple' models...

• The need for irradiated shock models

• Irradiated shock models

• Perspectives

2

The importance of shocks in the interstellar medium of galaxies

GENESIS/MOBS kick-off meeting, Bordeaux

3

12

pre-shock medium:

mantle sputtering (Flower & Pineau des Forêts 1994, semi-classical prescriptions) : SiO^{*} + (H, He, H₂) \rightarrow SiO + (H, He, H₂)

core erosion (May et al. 2000, Monte-Carlo simulations) :

 $\mathrm{Si}^{**} + (\mathrm{He}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{H}_2\mathrm{O}, \mathrm{N}_2, \mathrm{CO}, \mathrm{O}_2) \rightarrow \mathrm{Si} + (\mathrm{He}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{H}_2\mathrm{O}, \mathrm{N}_2, \mathrm{CO}, \mathrm{O}_2)$

SiO formation in the gas phase, from grain-core silicium:

 $Si + O_2 \rightarrow SiO + O$

(Le Picard et al. 2001, CRESU experiment)

 $Si + OH \rightarrow SiO + H$

(Rivero-Santamaria, Dayou et al. 2014, quantum calculations)

• level populations and transition emissivities calculations:

- statistical equilibrium equations
- 'Large Velocity Gradient' (LVG) assumption
- collisional excitation rate coefficients of SiO by H₂, H, He

(calculated by Dayou & Balança 2006)

• CJ model, $n_H = 10^4$ cm⁻³, $v_s = 22$ km/s, $B = 150 \mu$ G ; 1% of Si \in SiO^{*}(pre-shock)

- physical conditions are constrained (shock age, magnetic field strength)
- silicon chemistry constrained (initial distribution, processes)
- ejection rate (precise) measure: $7 \cdot 10^{-6} M_{\odot}$ /an
- pure shock diagnosis

Gusdorf et al. 2015

29

- "The Harvey & Forveille 1988 outflow":
 - one massive O-type (imaged) star (Feld's star);
 - one UC HII region surrounded by a PDR-like cocoon, 5 continuum sources;
 - one Brγ outflow, 3 molecular outflows (seen in H₂, CO, SiO and HCO⁺);
 - a collection of OH, H₂O, CH₃OH, and NH₃ maser spots

APEX and *Herschel* (HIFI and PACS) observations of ¹²CO and ¹³CO

- Analysis of CO emission:
 - warm component (275 K, 10^7 cm⁻³) or (1200 K, 10^5 cm⁻³); N~3·10¹⁷ cm⁻²

colder component thanks to APEX observations of 13 CO (3-2), (6-5): $(75 \text{ K}, 6 \cdot 10^{18} \text{ cm}^{-2})$

Gusdorf et al., submitted to A&A

From low-mass...

...to high-mass driving proto-stars

Irradiated shock models (on behalf of Benjamin Godard, Guillaume Pineau des Forêts, & Pierre Lesaffre) References: Lesaffre et al. 2013, Godard et al., in prep.

39

Irradiated shocks

name	value	unit	definition
$n_{ m H}$	$10^2 - 10^5$	cm^{-3}	preshock proton density
G_0	$0 - 10^4$	Mathis	impinging UV radiation field
A_V^0	$10^{-6} - 10^2$		preshock visual extinction
$u_{\rm turb}$	3.5	$km s^{-1}$	preshock turbulent velocity
ζ	3×10^{-17}	s^{-1}	H ₂ cosmic ray ionization rate
<i>u</i> _s	2 - 25	$km s^{-1}$	shock velocity
В	$10 - 10^3$	μG	transverse magnetic field

- Absorption only; no emission/diffusion by dust/gas
- Dust absorption by spherical graphite grains (Draine & Li 1984, Laor & Draine 1993)

• Gas absorption: only continuum processes (photodissociation and photoionization of atoms and molecules - also see chemistry below). For radiative transfer solving:

- photodissociation of C₂, C₃, CH, OH, H₂O
- photoionization of C, S, C₂, CH, OH, H₂O
- potentially include cross sections available from the Leiden database and recently updated by Heays et al. (2017).
- Radiative transfer equation solved along 20 directions homogeneously spread between 0 and $\pi/2$.

- Time-dependent calculation of the level populations of H_2
- Inelastic collisions with H, He, H_2 , H^+
- Excitation of H_2 subsequent to formation on the grain surface
- Radiative pumping of H₂ electronic lines:chemistry below):
 - absorption of UV photons by the discrete lines of Werner and Lyman bands
 - subsequent cascades in rovibrational levels of the fondamental electronic state
 - line opacities that reduce the radiation field capcable of pumping the electronic states are integrated over H_2 column density using the FGK approximation

- Photo-destruction processes: absorption of photons:
 - over continuous range of energy;
 - through atomic or molecular lines at given wavelength.
- Continuum absorption processes:
 - photo-destruction cross sections when possible;
 - analytical fits provided by Heays et al. 2017 otherwise.

• Photo-dissociation of H_2 and CO: in lines, including self- and cross-shielding processes (Abgrall et al. 1992, Lee et al. 1996, Le Petit et al. 2002) Absorption of UV photons by electronic lines of H_2 and CO, and subsequent dissociation probabilities (FGK approximation): all UV lines of Werner/Lyman bands of H_2 , and pre-dissociation lines of CO.

- Include secondary photon processes
- Other updates of the gas-phase chemical network: S, N mostly (Neufeld et al. 2015, Le Gall et al. 2014)

Irradiated shocks: grains physics & chemistry

- Role in radiative transfer (see above); adsorption and erosion widths modified
- Update of desorption reactions (already existing: sputtering, CRs and 2ary):
 - thermal desorption added
- (Hollenbach et al. 2009, Hasegawa & Herbst 1993, Arikawa et al. 1996);
 - photo-desorption added;
 - desorption by secondary photons modified (Flower et al. 2007).
- Update of adsorption reactions
- Photoelectric effect on grains (already in heating, now in chemistry also, together with electron attachment and charge exchanges with ions) Dust and charge calculation

Irradiated shocks: existence of C-type shocks

Conclusions & Perspectives

46

Perspectives

- Observable = map(s) of spectra, result of a combination of:
 - physics (temperature, density)
 - dynamics (velocity)
 - chemistry (abundances)
 - excitation (densities, illumination)
 - geometry (velocity structure, magnetic field structure)
- Our modelling efforts must aim at progressing in all these aspects !
 - grain-grain interactions for fast & dense shocks
 - better geometrical treatment (better than 1D)
 - fast shocks (shocks with radiative precursors)
 - crucial need for astrophysical laboratory experiments or calculations (collision and chemical reaction rates)

Develop databases

Perspectives (1): pseudo-3D modelling

Perspectives (2): databases, search methods

https://ism.obspm.fr

Perspectives (2): databases, search methods

	а	app.ism.obspm.fr	Č		0 1 7 +
ISMServices	CODES	ISMDB	PARTNERS	REGISTRATION	
ISM DataBase - In	verse Search se	rvice Beta		Help Contact	
Grid of isobaric PDR 1.5.2 code: PDR 1.5.2 rev 1714 Parameters gas_pressure_input.from 1E5 to avmax: from 1.0 to radm_ini: from 1.0 to					
Description This grid of isobaric PDR 1.5.2 pressure, UV field intensity and submitted to the ISRF. The chemistry takes into accou considered excepted for H2. H2 in Le Bourlot et al. (2012). These models give access to all grains,).					
Grid of isochoric PDR 1.5. code: PDR 1.5.2 rev 1787 Parameters avmax: from 1.0 t proton_density_input:from 1E2	2 models (2017-02-17) o 30.0 (mag) to 1E8 (cm-3)	isotropic ISRP	H H ₂ C ⁺ C CO Molecular State equation: n _H = constant	H ₂ H	

http://ismdb.obspm.fr

Thanks for your attention !

51