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Geostat

» Geostat: Geometry & Statistics in acquisition data. EPI
INRIA BSO, http://geostat.bordeaux.inria.fr/
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Geostat

v

Geostat: Geometry & Statistics in acquisition data. EPI
INRIA BSO, http://geostat.bordeaux.inria.fr/

v

INRIA research team specialized in the analysis of complex
natural signals and time series.

Strong collaboration with CNRS LEGOS (Toulouse) on
analysis of oceanic data from remote sensing.

v

v

3 full time researchers (Yahia, Daoudi, Brodu), 1 associate
researcher (Attuel) plus post-docs and PhD students.
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Analysis of turbulent signals
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Analysis of turbulent signals

» Usual linear approaches based on Fourier not effective.
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Analysis of turbulent signals

» Usual linear approaches based on Fourier not effective.

» Make use of advanced (time-frequency, wavelets, multifractal)
methods to extract the dynamics characteristics of turbulence:
multiplicative cascades.

» Coupling physics/signal processing to analyze Herschel
data.
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Analysis of turbulent data
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K41

» Phenomelogical description of HDT (i.e. still non-proved
today from Navier-Stokes equations), Kolmogorov
descrioption, fllowed by Parisi-Frish & She-Levéque.
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K41

» Phenomelogical description of HDT (i.e. still non-proved
today from Navier-Stokes equations), Kolmogorov
descrioption, fllowed by Parisi-Frish & She-Levéque.

» NS equation in incompressible HD case:

OV +v-Vv=—Vp+rvVv
V-v=0.

plus limit conditions, v: kinematic viscosity coefficient.
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K41

» At Reynolds R = ﬂ — 00, symmétries (coming from
discrete or continugus groups preserving solutions of NS
equations) are restored in a statistical sense only: fully
developed turbulence.
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K41

> Let £,(x) be the local energy dissipation at point x in a ball
B,(x) of radius r centered at x:

__ 1 v o (v))2
= 3Emm /. o 2O+ om0
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K41

> Let £,(x) be the local energy dissipation at point x in a ball
B,(x) of radius r centered at x:

__ 1 v ()2
0= 3Emw /. PCTCECTE G

» for each scale r, (¢,) is a stochastic process indexed by x.
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K41

> Let £,(x) be the local energy dissipation at point x in a ball
B,(x) of radius r centered at x:

er(x) = / Z oi(y) + dvi(y)dy  (5)

» for each scale r, (¢,) is a stochastic process indexed by x.

» Kolmogorov: for two scales r < /, in law:
dP., = dP,, dP, (6)

My injection process between scales available within an
inertial range [r1, o).

l lrzzia— October 2, 2017- 18




K41

r
» Original Kolmogorov hypothesis: 7, is a constant = (7)_0‘
leading to implications on the moments:

€ =(5) e e (7)
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K41

r
» Original Kolmogorov hypothesis: 7, is a constant = (7)_a
leading to implications on the moments:

r\—op _
8y = (%) (eh) e (8)
» Self-similarity: (ef) ~ r™, confirmed by experiments but
| 4
| 4
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K41

. . . ry_

» Original Kolmogorov hypothesis: 7, is a constant = (7) @

leading to implications on the moments:

r\—op .
8y = (%) (eh) e (9)

» Self-similarity: (ef) ~ r™, confirmed by experiments but
» actually 7, is not a linear function of p, instead a concave

function of p: anomalous scaling .
| 4
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K41

unia]

r
Original Kolmogorov hypothesis: 7, is a constant = (7)_0“
leading to implications on the moments:

€)= (%) Ty~ (10)

Self-similarity: (ef) ~ r™, confirmed by experiments but

actually 7, is not a linear function of p, instead a concave
function of p: anomalous scaling .

1y must be replaced by a stochastic process independent of g,
and indefinitely divisible: multiplicative cascade.



Parisi-Frisch
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Parisi-Frisch generalization: local scale laws:

er(x) ~ ") (11)
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Parisi-Frisch

v

Parisi-Frisch generalization: local scale laws:

er(x) ~ ") (13)

v

h(x): singularity exponent at x. Difficult to compute with
precision.
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Parisi-Frisch

v

Parisi-Frisch generalization: local scale laws:

er(x) ~ ") (15)

v

h(x): singularity exponent at x. Difficult to compute with
precision.

Lead to a multifractal hierarchy: F, = {x | h(x) = h} and

v

MSM = Foo = {x | h(x) €]hos — Ah, hoo + AR[}.  (16)
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Parisi-Frisch

v

Parisi-Frisch generalization: local scale laws:

er(x) ~ M) (17)

v

h(x): singularity exponent at x. Difficult to compute with
precision.

Lead to a multifractal hierarchy: F, = {x | h(x) = h} and

v

MSM = Foo = {x | h(x) €]hos — Ah, hoo + AR[}.  (18)

v

The singularity spectrum is h — dim(Fj)

October 2, 2017- 26
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Parisi-Frisch

» The 7, and h — D(h) are related by a Legendre Transform:

7 = inf{hp+d — D(h)}. (19)
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Parisi-Frisch
» The 7, and h — D(h) are related by a Legendre Transform:
Tp = irplf{hp +d — D(h)}. (21)

» Thermodynamics analogy: 7, free energy, h — internal energy
per volume unit and D(h) — entropy.
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Parisi-Frisch

» The 7, and h — D(h) are related by a Legendre Transform:
Tp = irﬂf{hp +d — D(h)}. (23)

» Thermodynamics analogy: 7, free energy, h — internal energy
per volume unit and D(h) — entropy.

» 7, = infp{hp + d — D(h)} relates statistical properties to
geometry. Knowledge of the singularity spectrum provides
information on the underlying cascade processes.
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Parisi-Frisch
» The 7, and h — D(h) are related by a Legendre Transform:
Tp = ir;lf{hp +d— D(h)}. (25)

» Thermodynamics analogy: 7, free energy, h — internal energy
per volume unit and D(h) — entropy.

» 7, = infp{hp + d — D(h)} relates statistical properties to
geometry. Knowledge of the singularity spectrum provides
information on the underlying cascade processes.

» For a large class of complex systems, the following duality on
Legendre spectrum is observed:

D(h) = irplf{hp +d—1p}. (26)
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Examples
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"Easy case”: observer on top

Flgu I'€. Oceanic data: altimetry and meso-scale turbulence.
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"Easy case”: observer on top

Flgu €. Oceanic data: altimetry and meso-scale turbulence. Area 1.
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"Easy case”: observer on top

Rarmmsiis: — 1L 1206 shawmess: () (D

0.254

Flgu €. Oceanic data: altimetry and meso-scale turbulence. Area 2 (East of japan).
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Draco

The Draco cloud: a high-velocity, translucent and diffuse cloud
- infalling gas from the halo or

- swept-up gas fromshocks (SN explosions)

- local CO and CH detections (Stark et al. 1997, Meybold et al. 1985)

17"00™00°

16"40™00"

l brzia— rGenesis kick-off

Figure: Courtesy N. Schneider.

mostly galaxies

sharp cloud border
(external compression
by, e.g., shocks ?)

HI/H, cloud ?




Draco
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Draco singularity exponents
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Draco singularity exponents

FIng e sub-region
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Draco singularity spectrum

bad statistics: part of the spectrum not usable

maximum: most probable manifold

kurtosis: -1.2701 kkewness: -0.§327

D(h; ausdorff
dimens| f the set
Eh={ pixelSi such.
thath(x) =h

= 3 “¥Mllps
0o
A0 -OFTTTIRT 0.4 T—u,w oo 0199 0399 o600 o4t

Scaling exponent

FIgU re€:. Draco spectrum
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Draco psw sub-region 1

Flgu re. sub-region 1
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Draco psw sub-region 1

.
.
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Draco psw sub-region 2

Flgu re. sub-region 2
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Draco psw sub-region 2

Same most probable manifold as sub-region 1.

1.0 0.8 0.6 L -0.19 0| 0.199 0.399 0.600 0. BJ

— s




Draco psw sub-region 3

Flgu re: sub-region 3

October 2, 2017- 45




Draco psw sub-region 3

Same most probable manifold as sub-regions 1 and 2. Same spectrum.

kurtosis: -1.0536 skewness: -0.4382

0.199 0,399 0,600 08 o
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Draco psw sub-region 4

Flgu €. sub-region 4
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Draco psw sub-region 4

Same most probable manifold as sub-regions 1, 2 and 3. Same spectrum.

kurtosis: =1.0117

502

0.19 oo 0.199 0.399 0,600 0.5 H

October 2, 2017- 48



Draco psw sub-region 5

Flgu re: sub-region 5
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Draco psw sub-region 5

Same most probable manifold as sub-regions 1, 2, 3 and 4. Same spectrum.

kurtosis: -0,6125 + 5426

1.0 08 -0 ) -0.19 oo 0.199 0.3%9 0.600 ik o
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Draco psw sub-region 6

Flgu re: sub-region 6
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Draco psw sub-region 6

Same most probable manifold as sub-regions 1, 2, 3, 4 and 5. Same spectrum.

kurtosis: -1.0580 skewness: (4280

1.0 -08 0.6 o4 019 0| 0.199 0.399 0.600 0.8 Lo
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Draco sub-regions

» No differences in spectra.

» Different and much more difficult situation than in remote
sensing data.

> Full 3D turbulence acquired along the line of sight: we

observe a fully 3D turbulent cloud.

» We cannot "elementary partition” sub-regions to isolate
specific behaviours: 3D mixing everywhere, same apparent
spectra.
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Consistency wrt wavelength acquisitions

kurtosis: -1.2701 skewness: -0.2327

¥ + + y + + g [
-1.0 -0.8 roel 0.4 -0419 o0 0199 0.3%3 0.600 0.6 u| {0

FIgU re:  psw
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Consistency wrt wavelength acquisitions

kurtosis: -1.0010 skawress: -0.4366

-1.0 -0.8 -0.6 '; -0.4 -0.19 ajo 0199 0399 0.600 0.6 a

Figure: pw
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Consistency wrt wavelength acquisitions

Consistensy across wavelengths

kurtosis: -1.1084 skewess: -0.3919

|| [
-1.0 -0.8 fH-8[l -0.4 -0.19 ojo 0199 0399 0.600 0.817|{[110

Figure: pmw
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Manifolds 7,
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Manifolds 7,

> Fp={x|h(x) lh— A h+A[}.

>

>
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Manifolds 7,

> Fp={x|h(x) lh— A h+A[}.

> In the following experiments, we take A = 0.08.

>
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Manifolds 7,

» Fn={x| h(x) €lh— h+ A[}.
> In the following experiments, we take A = 0.08.

» Spectrum recomputed over F;, from original data.
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Manifolds 7,
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Manifolds 7,

» For A — 0 the spectrum converges weakly to a Dirac at h.

>

October 2, 2017- 62




Manifolds 7},

» For A — 0 the spectrum converges weakly to a Dirac at h.

> However we observe phenomena at amplitude cuts.
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-/T"—O.3

—|&’zﬂ.rjg__.| Figure: 7 o3
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Spectrum F_;3

kurtosis: -0.85 5 ness: -0.4402

.0 08| -06 -04 -019 oo 04199 0399 G;Hﬂ
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Spectrum F_;3, cut at 0.5 in the data

skewness: -0.1865




Spectrum F_;j3, cut at 1.5 in the data

osis: -0.4739 skewness: -0.4719

.399 | 0.600 0.8 1.0




Spectrum F_g 15

skewness: -0.2462

kurtosis: -0.8946

0.8

e
oo 0199 0399 0.600

-0.19

0B -0.4
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Spectrum F_g ¢

kurtosis: -1.0227 skewness: -0.261:

4.0 -08 -06|T -0.4 -049 oOfo 0199 0399 0600 08 1.0
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Spectrum F

20 kurtosis:-0.8390  skewness: -0.2

40 -0.8 -d.s]‘-nﬁ 019 0fo 0199 0399 0.600 08 1.0
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Manifolds 7,

» Interpret the amplitude cut vs monofractal noise ?

>
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Manifolds 7,

» Interpret the amplitude cut vs monofractal noise ?

» The cut corresponds more or less to background. Role of
background ?
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Manifolds G,
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Manifolds G,

» Gp = {x | h(x) €]h,,h[}.

>

>

-
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Manifolds G,

> Gn = {x | h(x) €]hee, h[}.

» Spectrum is recomputed over Gy, from the original data.
>

>
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Manifolds G,

v

Gh = {x | h(x) €]hoo, h[}.
Spectrum is recomputed over G, from the original data.

v

v

Over Gj, the spectrum needs not to be close to a Dirac.
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Manifolds G,

v

Gh = {x | h(x) €]hoo, h[}.
Spectrum is recomputed over G, from the original data.

v

v

Over Gj, the spectrum needs not to be close to a Dirac.

v

These manifolds are probably more interesting candidates to
study turbulence.
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Manifold g_().lz
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Spectrum G_g4

2 kurtosis: 1.74003 skewness: -1.45!

-L0 -0.8 -G8 C,T -H0.19 . 0.199 0.399 0600 0.8 10
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Spectrum G_g 36

kurtosis: 0.53300 skewness: -0.94

‘ L199| 0.399 0.600 0.8 10

-10 -08 -06 -04
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Spectrum G _ g3

is: =0.5741 skewness: -0.62
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Spectrum G_g 7

skewness: -0.51




Spectrum G_ 3

kurtosis:

1 -0.39

-0.6

-0.4

-0.13

—



Spectrum G_g,

kurtosis: -1,0860 -0.31

r
L .

-10 ‘ _06 -04 -019 o0 0199 0399 0‘60!1 ] ‘

o=
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Spectrum G_g 16

kurtosis: -1.0689 -0.29

-10 -‘JﬂHo.s 0.4 -015 o0 0199 0399 0.600 0.3 ‘o
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Spectrum G_g;

T 2 kurtosis: =0.9077 skewness: -0.32

f P 4 4 n I 4 ; 4

=10 -(] js -0.4 -0119 0 0199 043:99 0600 08 L0
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Spectrum G_g 1, cut at 0.5 in the data

kurtosis: -1,1206 ‘skewness; -0.20

T
I i

-1.0 |0, ‘—0.6 -0.4 -0.18 0 0199 0399 0.60 ‘ .0

-

léf/zdz—-
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Spectrum G,

i kurtosis: -0.7934 skewness: -0.29

l —6.4 -0?19 oo 01‘99 0,3;99 0.6‘00 0.‘8 10
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Lena

Flgu re: Lena.
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Musca
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Musca

FIgU F€. Musca SEs, zoom.
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Musca

» As for Draco, no simple partitioning into regions of different
spectra.

» But we notice differences in the left part of some
sub-regions spectra.

» The left part is the most informative part of the
spectrum.

-

.éméz.—-
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Musca

kurtosis: -0.9130 skzwness: -0.54;

o [l o4 019 oo oass 0399 oeoo  of[[[[fo0

Flgl.l €. Musca spectrum.
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Musca subregion

H &L”/‘la_——[ FIgU €. Musca subregion 3. 1



Musca subregion

n &L”/fa__—[ FIgU €. Musca subregion 5.



Musca subregion

n &L”/fa__—[ FIgU €. Musca subregion 6.



Musca subregion

Similar

kurtosis: -1.1990 skewness: -0.38

oo 0499 0399 0.600

FIgU €. Musca subregion 3 spectrum.
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Musca subregion

skewress: -0.68:

T \ 2 kurtosis: -0.7597

.
m ,H iy + + + u i
;_.‘ 4 0.19 ojo 0.199 0.393 0.600 0.8 110

-0 -08

FIgU €. Musca subregion 5 spectrum.
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Musca subregion

skewness: -0.62

\ ) kurtosis: -0.6112

Tt
-1.0 -0.8 -0.8 -0.4

019 ofp 0199

0.393 0600 0.8 ||| [

Flgu €. Musca subregion 6 spectrum.
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Musca F_ o4




Musca F_g>




Musca F_, cut at 0




Musca F_g1




Musca F

&Z— zéa— .csis kick-off



Musca Fy cut at 0




Musca F_y4 spectrum

tos 's: -0/8040 skewness: -0.48




Musca F_j3 spectrum

205 51 -0.7860 skewness: -0.44(

04 -0.19 o ‘

o

o

w
—r]
o=




Musca F_j, spectrum

2.0 kurtosis: -1.0386 Hess: -0.29

s
3
£

40 0.8 |G6  -0.4  -049  0j0 0499 0399 0.600 Lo o
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Musca F_j, spectrum, cut at 0

wness: -0.41




Musca F_j; spectum

2.0 kurtosis: -1.1737 skewness: -0.20/

| i ‘ | i | i | e
0 08 |6 04 -018 00 0199 0399 0600 08  Lalo
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First conclusion

v

These direct tools cannot distinguish between acquisisitions of
a full 3D turbulent phenomenon.

v

Still, they are consistent with the data and show properties.

v

We must turn to more elaborate tools for analyzing cascading
properties in 3D turbulence.

v

Tests under way on the simulations provided by Nicola and
Alexei.
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Other approaches in computing
spectra
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Wavelet Transform Modulus Maxima

» ldea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.
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Wavelet Transform Modulus Maxima

» |dea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.

> Let s be a signal, Ty(s(x),r) = I’id/Rd s(y)w(x;ry)dy, one

has : Ty (s(x), r) ~ "®) (r — 0) si s(x) has h(x) as
singularity exponent at x.
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Wavelet Transform Modulus Maxima

» |dea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.

> Let s be a signal, Ty(s(x),r) = I’id/Rd s(y)w(x;ry)dy, one

has : Ty (s(x), r) ~ "®) (r — 0) si s(x) has h(x) as
singularity exponent at x
» Partition function at order p and scale r:

Z(r,p) = Y |Tu(s(xa(r)). )PP, (28)

acA

with A being the local maxima of |7y(s(x), r)|.
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Wavelet Transform Modulus Maxima

» If the signal is multifractal and wavelet v correctly chosen,
one has Z(r,p) ~ r'».
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Wavelet Transform Modulus Maxima

» If the signal is multifractal and wavelet v correctly chosen,
one has Z(r,p) ~ r.

» Compute 7, through regression then Legendre transform to
get D(h).
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Singularity exponents
computation in

microcanonical analogy
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Relations with unpredictability

» If the physical signal s is multifractal, its singularity exponents
are bounded. Define, as before the MSM (Most Singular
Manifold):

MSM = Foo = {x | h(x) €]hoe — Ah, hoo + Ah[}.  (29)

2
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Relations with unpredictability

» If the physical signal s is multifractal, its singularity exponents
are bounded. Define, as before the MSM (Most Singular
Manifold):

MSM = oo = {x | h(x) €]hos — Ah, heo + AR[}.  (30)

> Let Vo(s) = Vi, (s) = V|,._s = Vsir, be the current
form associated to singular gradient.
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Relations with unpredictability

» If the physical signal s is multifractal, its singularity exponents
are bounded. Define, as before the MSM (Most Singular
Manifold):

MSM = Foo = {x | h(x) €]hse — Ah, hoo + Ah[}.  (31)

> Let Vo(s) = Vi, (s) = V|,._s = Vsir, be the current
form associated to singular gradient.

» F- = most unpredictable manifold = one can reconstruct
the whole signal from F.
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MSM

-
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Unpredictability and reconstruction

» So if 7 = most unpredictable manifold this implies we
can reconstruct Vs(x) = G(Vo(s))(x).

>
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Unpredictability and reconstruction

» So if 7 = most unpredictable manifold this implies we
can reconstruct Vs(x) = G(Voo(s))(x).

» Physical hypothesis: G is linear and continuous: consequently
it is an integral operator

Vs(x) = /f Vs(y)G(x, y)dy. (35)

.&né.z—- October 2, 2017- 126




Unpredictability and reconstruction

» So if 7 = most unpredictable manifold this implies we
can reconstruct Vs(x) = G(Voo(s))(x).

» Physical hypothesis: G is linear and continuous: consequently
it is an integral operator

Vs(x) = /f Vs(y)G(x, y)dy. (38)

> Physical hypothesis: trnaslational invariance = convolution
= diffusion from F.:

Vs(x) = /F Vs(y)G(x — y)dy. (39)
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Unpredictability and reconstruction

» So if 7 = most unpredictable manifold this implies we
can reconstruct Vs(x) = G(Voo(s))(x).

» Physical hypothesis: G is linear and continuous: consequently
it is an integral operator

Vs(x) = /f Vs(y)G(x, y)dy. (41)

> Physical hypothesis: trnaslational invariance = convolution
= diffusion from F.:

Vs(x) = /F Vs(y)G(x — y)dy. (42)

» One deduce:

s(x) = / Vs(y)g(x — y)dy for a propagation kernel g.
Fo

) 43
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Unpredictability and reconstruction

> Fourier: §(k) = g(k)Voo(s)(k).

>

.&"‘”&—" October 2, 2017- 129




Unpredictability and reconstruction

> Fourier: §(k) = g(k)Voo(s)(k).
» To comply with power spectra properties, we consider the

following propagator:

g(k) = iﬁ. (46)
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Unpredictability and reconstruction

> Fourier: §(k) = g(k)Voo(s)(k).
» To comply with power spectra properties, we consider the
following propagator:

k
gk)=i—5. 48
(k) TIE (48)
» Fundamental point:
div(V£_(s)) =0. (49)
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Unpredictability and reconstruction

> Fourier: §(k) = g(k)Voo(s)(k).
» To comply with power spectra properties, we consider the
following propagator:

k
gk)=i—5. 50
(k) TIE (50)
» Fundamental point:
div(V£_(s)) =0. (51)

So the computation of exponents is local. But probably
not the cascade properties !
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h(x) computation

» Conséquence: h(x) is evaluated by a local impredictability
measure:
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h(x) computation

» Conséquence: h(x) is evaluated by a local impredictability
measure:

h(x) =

log(7) (1) (%, 10))/(Tw) (1) (> r0)) | (

log ro

1
log ro) - (53)
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Developments

> Entropy.
» MHD.
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Conclusions
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First conclusions

» Our techniques developed so far for remote sensing are not
sufficient to analyze these fully 3D turbulent datasets.

» Multiplicative cascade analysis under WTMM formalism under
way.

» It becomes apparent that the use of different kinds of data
available will ease the analysis process.
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