

Nonlinear signal analysis used in **GENESIS**

Application to Herschel data

Genesis kick-off, 28-29 september 2017

H. Yahia, N. Schneider, S. Bontemps, G. Attuel

Genesis kick-off

1 Geostat partner

Innia

Genesis kick-off

October 2, 2017- 2

Geostat: Geometry & Statistics in acquisition data. EPI INRIA BSO, http://geostat.bordeaux.inria.fr/

- Geostat: Geometry & Statistics in acquisition data. EPI INRIA BSO, http://geostat.bordeaux.inria.fr/
- INRIA research team specialized in the analysis of complex natural signals and time series.

Innia

- Geostat: Geometry & Statistics in acquisition data. EPI INRIA BSO, http://geostat.bordeaux.inria.fr/
- INRIA research team specialized in the analysis of complex natural signals and time series.
- Strong collaboration with CNRS LEGOS (Toulouse) on analysis of oceanic data from remote sensing.

nnia

- Geostat: Geometry & Statistics in acquisition data. EPI INRIA BSO, http://geostat.bordeaux.inria.fr/
- INRIA research team specialized in the analysis of complex natural signals and time series.
- Strong collaboration with CNRS LEGOS (Toulouse) on analysis of oceanic data from remote sensing.
- ➤ 3 full time researchers (Yahia, Daoudi, Brodu), 1 associate researcher (Attuel) plus post-docs and PhD students.

nnin

Genesis kick-off

October 2, 2017-7

► Usual linear approaches based on Fourier not effective.

Innia

- Usual linear approaches based on Fourier not effective.
- Make use of advanced (time-frequency, wavelets, multifractal) methods to extract the dynamics characteristics of turbulence:

nin

- Usual linear approaches based on Fourier not effective.
- Make use of advanced (time-frequency, wavelets, multifractal) methods to extract the dynamics characteristics of turbulence: multiplicative cascades.

Inría

Genesis kick-off

- Usual linear approaches based on Fourier not effective.
- Make use of advanced (time-frequency, wavelets, multifractal) methods to extract the dynamics characteristics of turbulence: multiplicative cascades.
- Coupling physics/signal processing to analyze Herschel data.

nnin

2 Analysis of turbulent data

Innia

Genesis kick-off

October 2, 2017- 12

Phenomelogical description of HDT (*i.e.* still non-proved today from Navier-Stokes equations), Kolmogorov description, fllowed by Parisi-Frish & She-Levêque.

main

- Phenomelogical description of HDT (*i.e.* still non-proved today from Navier-Stokes equations), Kolmogorov description, fllowed by Parisi-Frish & She-Levêque.
- NS equation in incompressible HD case:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0.$$

plus limit conditions, ν : kinematic viscosity coefficient.

At Reynolds R = ^{LV}/_ν → ∞, symmétries (coming from discrete or continuous groups preserving solutions of NS equations) are restored in a statistical sense only: fully developed turbulence.

 Let ε_r(x) be the local energy dissipation at point x in a ball B_r(x) of radius r centered at x:

$$arepsilon_r(\mathbf{x}) = rac{1}{\lambda(\mathcal{B}_r(\mathbf{x}))} \int_{\mathcal{B}_r(\mathbf{x})} \sum_{i,j} (\partial_i \mathbf{v}_j(\mathbf{y}) + \partial_j \mathbf{v}_i(\mathbf{y}))^2 d\mathbf{y}$$
 (1)

 Let ε_r(x) be the local energy dissipation at point x in a ball B_r(x) of radius r centered at x:

$$\varepsilon_r(\mathbf{x}) = \frac{1}{\lambda(\mathcal{B}_r(\mathbf{x}))} \int_{\mathcal{B}_r(\mathbf{x})} \sum_{i,j} (\partial_i \mathbf{v}_j(\mathbf{y}) + \partial_j \mathbf{v}_i(\mathbf{y}))^2 d\mathbf{y} \quad (3)$$

▶ for each scale r, (ε_r) is a stochastic process indexed by **x**.

main

Let ε_r(x) be the local energy dissipation at point x in a ball B_r(x) of radius r centered at x:

$$\varepsilon_r(\mathbf{x}) = \frac{1}{\lambda(\mathcal{B}_r(\mathbf{x}))} \int_{\mathcal{B}_r(\mathbf{x})} \sum_{i,j} (\partial_i \mathbf{v}_j(\mathbf{y}) + \partial_j \mathbf{v}_i(\mathbf{y}))^2 d\mathbf{y} \quad (5)$$

- ▶ for each scale r, (ε_r) is a stochastic process indexed by **x**.
- Kolmogorov: for two scales r < l, in law:

$$\mathrm{d}\mathbb{P}_{\varepsilon_r} = \mathrm{d}\mathbb{P}_{\eta_{rl}}\mathrm{d}\mathbb{P}_{\varepsilon_l} \tag{6}$$

 η_{rl} : injection process between scales available within an inertial range $[r_1, r_2]$.

$$\langle \varepsilon_r^p \rangle = \left(\frac{r}{l}\right)^{-\alpha p} \langle \varepsilon_l^p \rangle \sim r^{-\alpha p}$$
 (7)

►

$$\langle \varepsilon_r^p \rangle = \left(\frac{r}{l}\right)^{-\alpha p} \langle \varepsilon_l^p \rangle \sim r^{-\alpha p}$$
 (8)

▶ Self-similarity: $\langle \varepsilon_r^p \rangle \sim r^{\tau_p}$, confirmed by experiments but

nnin

►

$$\langle \varepsilon_r^{\boldsymbol{p}} \rangle = \left(\frac{r}{l}\right)^{-\alpha \boldsymbol{p}} \langle \varepsilon_l^{\boldsymbol{p}} \rangle \sim r^{-\alpha \boldsymbol{p}}$$
 (9)

- ▶ Self-similarity: $\langle \varepsilon_r^p \rangle \sim r^{\tau_p}$, confirmed by experiments but
- actually τ_p is not a linear function of p, instead a concave function of p: anomalous scaling .

$$\langle \varepsilon_r^{\boldsymbol{p}} \rangle = \left(\frac{r}{l}\right)^{-\alpha \boldsymbol{p}} \langle \varepsilon_l^{\boldsymbol{p}} \rangle \sim r^{-\alpha \boldsymbol{p}}$$
 (10)

- ▶ Self-similarity: $\langle \varepsilon_r^p \rangle \sim r^{\tau_p}$, confirmed by experiments but
- actually τ_p is not a linear function of p, instead a concave function of p: anomalous scaling.
- η_{rl} must be replaced by a stochastic process independent of ε_l and indefinitely divisible: multiplicative cascade.

►

►

Parisi-Frisch generalization: local scale laws:

$$\varepsilon_r(\mathbf{x}) \sim r^{\mathbf{h}(\mathbf{x})}$$
 (11)

►

Parisi-Frisch generalization: local scale laws:

$$\varepsilon_r(\mathbf{x}) \sim r^{\mathbf{h}(\mathbf{x})}$$
 (13)

h(x): singularity exponent at x. Difficult to compute with precision.

Innia

Parisi-Frisch generalization: local scale laws:

$$\varepsilon_r(\mathbf{x}) \sim r^{\mathbf{h}(\mathbf{x})}$$
 (15)

- h(x): singularity exponent at x. Difficult to compute with precision.
- ▶ Lead to a multifractal hierarchy: $\mathcal{F}_h = \{\mathbf{x} \mid \mathbf{h}(\mathbf{x}) = \mathbf{h}\}$ and

$$\mathsf{MSM} = \mathcal{F}_{\infty} = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]h_{\infty} - \Delta h, h_{\infty} + \Delta h[\}.$$
(16)

Parisi-Frisch generalization: local scale laws:

$$\varepsilon_r(\mathbf{x}) \sim r^{\mathbf{h}(\mathbf{x})}$$
 (17)

- h(x): singularity exponent at x. Difficult to compute with precision.
- ▶ Lead to a multifractal hierarchy: $\mathcal{F}_h = \{\mathbf{x} \mid \mathbf{h}(\mathbf{x}) = \mathbf{h}\}$ and

$$\mathsf{MSM} = \mathcal{F}_{\infty} = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]h_{\infty} - \Delta h, h_{\infty} + \Delta h[\}.$$
(18)

• The singularity spectrum is
$$\mathbf{h} \rightarrow \dim(\mathcal{F}_h)$$

• The τ_p and $\mathbf{h} \rightarrow D(\mathbf{h})$ are related by a Legendre Transform:

$$\tau_p = \inf_{\mathbf{h}} \{ \mathbf{h}p + d - D(\mathbf{h}) \}.$$
(19)

• The τ_p and $\mathbf{h} \rightarrow D(\mathbf{h})$ are related by a Legendre Transform:

$$\tau_{p} = \inf_{\mathbf{h}} \{ \mathbf{h}p + d - D(\mathbf{h}) \}.$$
(21)

▶ Thermodynamics analogy: τ_p free energy, $\mathbf{h} \rightarrow$ internal energy per volume unit and $D(\mathbf{h}) \rightarrow$ entropy.

• The τ_p and $\mathbf{h} \rightarrow D(\mathbf{h})$ are related by a Legendre Transform:

$$\tau_{p} = \inf_{\mathbf{h}} \{ \mathbf{h}p + d - D(\mathbf{h}) \}.$$
(23)

- Thermodynamics analogy: *τ_p* free energy, **h** → internal energy per volume unit and *D*(**h**) → entropy.
- ► τ_p = inf_h{hp + d D(h)} relates statistical properties to geometry. Knowledge of the singularity spectrum provides information on the underlying cascade processes.

• The τ_p and $\mathbf{h} \rightarrow D(\mathbf{h})$ are related by a Legendre Transform:

$$\tau_p = \inf_{\mathbf{h}} \{ \mathbf{h}p + d - D(\mathbf{h}) \}.$$
(25)

- ▶ Thermodynamics analogy: τ_p free energy, $\mathbf{h} \rightarrow$ internal energy per volume unit and $D(\mathbf{h}) \rightarrow$ entropy.
- ► τ_p = inf_h{hp + d D(h)} relates statistical properties to geometry. Knowledge of the singularity spectrum provides information on the underlying cascade processes.
- For a large class of complex systems, the following duality on Legendre spectrum is observed:

$$D(\mathbf{h}) = \inf_{\mathbf{h}} \{ \mathbf{h}p + d - \tau_p \}.$$
(26)

3 Examples

Inría

Genesis kick-off

October 2, 2017- 31

"Easy case": observer on top

 $Figure: \ \ Oceanic \ data: \ altimetry \ and \ meso-scale \ turbulence.$

Inría

"Easy case": observer on top

Figure: Oceanic data: altimetry and meso-scale turbulence. Area 1.

"Easy case": observer on top

Figure: Oceanic data: altimetry and meso-scale turbulence. Area 2 (East of japan).

Draco

The Draco cloud: a high-velocity, translucent and diffuse cloud

- infalling gas from the halo or
- swept-up gas from shocks (SN explosions)
- local CO and CH detections (Stark et al. 1997, Meybold et al. 1985)

Figure: Courtesy N. Schneider.

Draco

Conta Generale Hick off
Draco singularity exponents

Inría Gonesis kick off

Draco singularity exponents

Draco singularity exponents

Ínría

Draco singularity spectrum

Figure: Draco spectrum

Same most probable manifold as sub-region 1.

enesis kick-ofl

Same most probable manifold as sub-regions 1 and 2. Same spectrum.

Same most probable manifold as sub-regions 1, 2 and 3. Same spectrum.

enesis kick-off

Same most probable manifold as sub-regions 1, 2, 3 and 4. Same spectrum.

enesis kick-off

Same most probable manifold as sub-regions 1, 2, 3, 4 and 5. Same spectrum.

Draco sub-regions

- No differences in spectra.
- Different and much more difficult situation than in remote sensing data.
- Full 3D turbulence acquired along the line of sight: we observe a fully 3D turbulent cloud.
- We cannot "elementary partition" sub-regions to isolate specific behaviours: 3D mixing everywhere, same apparent spectra.

Innia

Consistency wrt wavelength acquisitions

Figure: psw

Ínría

enesis kick-ofl

Consistency wrt wavelength acquisitions

Figure: plw

Ínría

enesis kick-ofl

Consistency wrt wavelength acquisitions

Consistensy across wavelengths

Figure: pmw

enesis kick-off

Inría Genesis tick-off

•
$$\mathcal{F}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h} - \Delta, \mathbf{h} + \Delta[\}.$$

nesis kick-off

- $\blacktriangleright \mathcal{F}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h} \Delta, \mathbf{h} + \Delta[\}.$
- In the following experiments, we take $\Delta = 0.08$.

Innía

- $\blacktriangleright \mathcal{F}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h}, \mathbf{h} + \Delta[\}.$
- In the following experiments, we take $\Delta = 0.08$.
- Spectrum recomputed over \mathcal{F}_h from original data.

Innia

enesis kick-off

• For $\Delta \rightarrow 0$ the spectrum converges weakly to a Dirac at *h*.

Innía

- For $\Delta \rightarrow 0$ the spectrum converges weakly to a Dirac at *h*.
- ► However we observe phenomena at amplitude cuts.

Innia

Figure: $\mathcal{F}_{-0.3}$

Ínría

Inría

 \mathcal{F}_0

Figure: *F*₀

Inría Genesis kick off

Spectrum $\mathcal{F}_{-0.3}$

enesis kick-ofl

Spectrum $\mathcal{F}_{-0.3}$, cut at 0.5 in the data

Spectrum $\mathcal{F}_{-0.3}$, cut at 1.5 in the data

Spectrum $\mathcal{F}_{-0.15}$

Spectrum $\mathcal{F}_{-0.16}$

enesis kick-off

Spectrum \mathcal{F}_0

Interpret the amplitude cut vs monofractal noise ?

Inría

- Interpret the amplitude cut vs monofractal noise ?
- The cut corresponds more or less to background. Role of background ?

Innía

Inría Genesis tick-off

•
$$\mathcal{G}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h}_{\infty}, \mathbf{h}[\}.$$

enesis kick-off

- $\triangleright \ \mathcal{G}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h}_{\infty}, \mathbf{h}[\}.$
- Spectrum is recomputed over \mathcal{G}_h from the original data.
- ►

Innia

- $\blacktriangleright \mathcal{G}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h}_{\infty}, \mathbf{h}[\}.$
- ▶ Spectrum is recomputed over *G*_h from the original data.
- Over \mathcal{G}_h the spectrum needs not to be close to a Dirac.

►

nnia

- $\blacktriangleright \mathcal{G}_h = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]\mathbf{h}_{\infty}, \mathbf{h}[\}.$
- Spectrum is recomputed over \mathcal{G}_h from the original data.
- Over \mathcal{G}_h the spectrum needs not to be close to a Dirac.
- These manifolds are probably more interesting candidates to study turbulence.

nain

Manifold $\mathcal{G}_{-0.12}$

Inría

enesis kick-off

Spectrum $\mathcal{G}_{-0.4}$

enesis kick-ofl

Spectrum $\mathcal{G}_{-0.36}$

nesis kick-off

Spectrum $\mathcal{G}_{-0.31}$

enesis kick-of

Spectrum $\mathcal{G}_{-0.27}$

Spectrum $\mathcal{G}_{-0.23}$

enesis kick-off

Spectrum $\mathcal{G}_{-0.2}$

enesis kick-ofl

Spectrum $\mathcal{G}_{-0.16}$

enesis kick-of

Spectrum $\mathcal{G}_{-0.1}$

Inría

enesis kick-ofl

Spectrum $\mathcal{G}_{-0.1}$, cut at 0.5 in the data

enesis kick-ofl

Spectrum \mathcal{G}_0

enesis kick-ofl

Lena

Figure: Lena.

Inría

esis kick-ott

Figure: Musca SEs, zoom.

- As for Draco, no simple partitioning into regions of different spectra.
- But we notice differences in the left part of some sub-regions spectra.
- The left part is the most informative part of the spectrum.

nnia

Figure: Musca spectrum.

enesis kick-ofl

(nría_

Inría

nesis kick-off

Inría

Similar

Figure: Musca subregion 3 spectrum.

Ínría

enesis kick-ofl

Figure: Musca subregion 5 spectrum.

Ínría

enesis kick-ofl

Figure: Musca subregion 6 spectrum.

Ínría

enesis kick-off

Musca $\mathcal{F}_{-0.4}$

(nría_

Musca $\mathcal{F}_{-0.2}$

(nría_

Musca $\mathcal{F}_{-0.2}$ cut at 0

(nría_

Musca $\mathcal{F}_{-0.1}$

(nría_

(nría_

Musca \mathcal{F}_0 cut at 0

(nría_

Musca $\mathcal{F}_{-0.4}$ spectrum

enesis kick-ofl
Musca $\mathcal{F}_{-0.3}$ spectrum

Ínría

Musca $\mathcal{F}_{-0.2}$ spectrum

Musca $\mathcal{F}_{-0.2}$ spectrum, cut at 0

Musca $\mathcal{F}_{-0.1}$ spectum

enesis kick-ofl

First conclusion

- These direct tools cannot distinguish between acquisisitions of a full 3D turbulent phenomenon.
- Still, they are consistent with the data and show properties.
- We must turn to more elaborate tools for analyzing cascading properties in 3D turbulence.
- Tests under way on the simulations provided by Nicola and Alexei.

main

4 Other approaches in computing spectra

Innia

Genesis kick-off

 Idea: use local maxima lines of wavelets coefficients to define a space-scale skeleton and follow crest lines.

Innía

►

 Idea: use local maxima lines of wavelets coefficients to define a space-scale skeleton and follow crest lines.

► Let **s** be a signal, $\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}), r) = \frac{1}{r^d} \int_{\mathbb{R}^d} \mathbf{s}(\mathbf{y}) \psi(\frac{\mathbf{x} - \mathbf{y}}{r}) d\mathbf{y}$, one has $:\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}), r) \sim r^{\mathbf{h}(\mathbf{x})} \quad (r \to 0)$ si $\mathbf{s}(\mathbf{x})$ has $\mathbf{h}(\mathbf{x})$ as singularity exponent at **x**.

 Idea: use local maxima lines of wavelets coefficients to define a space-scale skeleton and follow crest lines.

► Let **s** be a signal, $\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}), r) = \frac{1}{r^d} \int_{\mathbb{R}^d} \mathbf{s}(\mathbf{y}) \psi(\frac{\mathbf{x} - \mathbf{y}}{r}) d\mathbf{y}$, one has $:\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}), r) \sim r^{\mathbf{h}(\mathbf{x})} \quad (r \to 0)$ si $\mathbf{s}(\mathbf{x})$ has $\mathbf{h}(\mathbf{x})$ as singularity exponent at **x**.

Partition function at order p and scale r:

$$Z(r,p) = \sum_{\alpha \in \mathcal{A}} |\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}_{\alpha}(r)), r)|^{p}, \qquad (28)$$

with \mathcal{A} being the local maxima of $|\mathcal{T}_{\psi}(\mathbf{s}(\mathbf{x}), r)|$.

If the signal is multifractal and wavelet ψ correctly chosen, one has Z(r, p) ~ r^{τ_p}.

(nría_

- If the signal is multifractal and wavelet ψ correctly chosen, one has Z(r, p) ~ r^{τ_p}.
- Compute τ_p through regression then Legendre transform to get D(h).

Innía_

4 Singularity exponents computation in microcanonical analogy

nnin

Genesis kick-off

Relations with unpredictability

 If the physical signal s is multifractal, its singularity exponents are bounded. Define, as before the MSM (Most Singular Manifold):

$$\mathsf{MSM} = \mathcal{F}_{\infty} = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]h_{\infty} - \Delta h, h_{\infty} + \Delta h[\}.$$
(29)

Relations with unpredictability

If the physical signal s is multifractal, its singularity exponents are bounded. Define, as before the MSM (Most Singular Manifold):

$$\mathsf{MSM} = \mathcal{F}_{\infty} = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]h_{\infty} - \Delta h, h_{\infty} + \Delta h[\}.$$
(30)

► Let $\nabla_{\infty}(\mathbf{s}) = \nabla_{\mathcal{F}_{\infty}}(\mathbf{s}) = \nabla_{|_{\mathcal{F}_{\infty}}}\mathbf{s} = \nabla \mathbf{s}\delta_{\mathcal{F}_{\infty}}$ be the current form associated to singular gradient.

Relations with unpredictability

 If the physical signal s is multifractal, its singularity exponents are bounded. Define, as before the MSM (Most Singular Manifold):

$$\mathsf{MSM} = \mathcal{F}_{\infty} = \{ \mathbf{x} \mid \mathbf{h}(\mathbf{x}) \in]h_{\infty} - \Delta h, h_{\infty} + \Delta h[\}.$$
(31)

- ► Let $\nabla_{\infty}(\mathbf{s}) = \nabla_{\mathcal{F}_{\infty}}(\mathbf{s}) = \nabla_{|_{\mathcal{F}_{\infty}}} \mathbf{s} = \nabla \mathbf{s} \delta_{\mathcal{F}_{\infty}}$ be the current form associated to singular gradient.
- $\mathcal{F}_{\infty} = \text{most unpredictable manifold} \Rightarrow \text{one can reconstruct}$ the whole signal from \mathcal{F}_{∞} .

Genesis kick-off

So if *F*_∞ = most unpredictable manifold this implies we can reconstruct ∇s(x) = *G*(∇_∞(s))(x).

- So if *F*_∞ = most unpredictable manifold this implies we can reconstruct ∇s(x) = G(∇_∞(s))(x).
- Physical hypothesis: G is linear and continuous: consequently it is an integral operator

$$\nabla \mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$
 (35)

- So if *F*_∞ = most unpredictable manifold this implies we can reconstruct ∇s(x) = G(∇_∞(s))(x).
- Physical hypothesis: G is linear and continuous: consequently it is an integral operator

$$\nabla \mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \mathrm{d}\mathbf{y}.$$
 (38)

▶ Physical hypothesis: trnaslational invariance \Rightarrow convolution \Rightarrow diffusion from \mathcal{F}_{∞} :

$$\nabla \mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) G(\mathbf{x} - \mathbf{y}) d\mathbf{y}.$$
 (39)

- So if *F*_∞ = most unpredictable manifold this implies we can reconstruct ∇s(x) = G(∇_∞(s))(x).
- Physical hypothesis: G is linear and continuous: consequently it is an integral operator

$$\nabla \mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \mathrm{d}\mathbf{y}.$$
 (41)

▶ Physical hypothesis: trnaslational invariance \Rightarrow convolution \Rightarrow diffusion from \mathcal{F}_{∞} :

$$\nabla \mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) G(\mathbf{x} - \mathbf{y}) d\mathbf{y}.$$
 (42)

One deduce:

$$\mathbf{s}(\mathbf{x}) = \int_{\mathcal{F}_{\infty}} \nabla \mathbf{s}(\mathbf{y}) \mathbf{g}(\mathbf{x} - \mathbf{y}) d\mathbf{y} \text{ for a propagation kernel } \mathbf{g}.$$

main

• Fourier:
$$\hat{\mathbf{s}}(\mathbf{k}) = \hat{\mathbf{g}}(\mathbf{k})\widehat{\nabla_{\infty}}(\mathbf{s})(\mathbf{k}).$$

►

Fourier:
$$\hat{\mathbf{s}}(\mathbf{k}) = \hat{\mathbf{g}}(\mathbf{k})\widehat{\nabla_{\infty}}(\mathbf{s})(\mathbf{k}).$$

To comply with power spectra properties, we consider the following propagator:

$$\hat{\mathbf{g}}(\mathbf{k}) = i \frac{\mathbf{k}}{\|\mathbf{k}\|^2}.$$
(46)

Innía

Fourier:
$$\hat{\mathbf{s}}(\mathbf{k}) = \hat{\mathbf{g}}(\mathbf{k})\widehat{\nabla_{\infty}}(\mathbf{s})(\mathbf{k}).$$

To comply with power spectra properties, we consider the following propagator:

$$\hat{\mathbf{g}}(\mathbf{k}) = i \frac{\mathbf{k}}{\|\mathbf{k}\|^2}.$$
(48)

Fundamental point:

$$\operatorname{div}\left(\nabla_{\mathcal{F}_{\infty}}(\mathbf{s})\right) = 0. \tag{49}$$

Fourier:
$$\hat{\mathbf{s}}(\mathbf{k}) = \hat{\mathbf{g}}(\mathbf{k})\widehat{\nabla_{\infty}}(\mathbf{s})(\mathbf{k}).$$

To comply with power spectra properties, we consider the following propagator:

$$\hat{\mathbf{g}}(\mathbf{k}) = i \frac{\mathbf{k}}{\|\mathbf{k}\|^2}.$$
(50)

Fundamental point:

$$\operatorname{div}\left(\nabla_{\mathcal{F}_{\infty}}(\mathbf{s})\right) = 0. \tag{51}$$

So the computation of exponents is local. But probably not the cascade properties !

h(x) computation

Conséquence: h(x) is evaluated by a local impredictability measure:

(nría_

h(x) computation

Conséquence: h(x) is evaluated by a local impredictability measure:

$$\mathbf{h}(\mathbf{x}) = \frac{\log(\mathcal{T}_{\psi})(\mu)(\mathbf{x}, r_0))/\langle \mathcal{T}_{\psi})(\mu)(\cdot, r_0)\rangle}{\log r_0} + o\left(\frac{1}{\log r_0}\right).$$
(53)

(nría_

Developments

- Entropy.
- MHD.

(nría_

Genesis kick-off

Entropy

Genesis kick-off

Entropy

Genesis kick-off

6 Conclusions

Inría

Genesis kick-off

First conclusions

- Our techniques developed so far for remote sensing are not sufficient to analyze these fully 3D turbulent datasets.
- Multiplicative cascade analysis under WTMM formalism under way.
- It becomes apparent that the use of different kinds of data available will ease the analysis process.