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1
Geostat partner



Geostat

I Geostat: Geometry & Statistics in acquisition data. EPI
INRIA BSO, http://geostat.bordeaux.inria.fr/

I INRIA research team specialized in the analysis of complex
natural signals and time series.

I Strong collaboration with CNRS LEGOS (Toulouse) on
analysis of oceanic data from remote sensing.

I 3 full time researchers (Yahia, Daoudi, Brodu), plus post-docs
and PhD students.
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Geostat

I Geostat: Geometry & Statistics in acquisition data. EPI
INRIA BSO, http://geostat.bordeaux.inria.fr/

I INRIA research team specialized in the analysis of complex
natural signals and time series.

I Strong collaboration with CNRS LEGOS (Toulouse) on
analysis of oceanic data from remote sensing.

I 3 full time researchers (Yahia, Daoudi, Brodu), 1 associate
researcher (Attuel) plus post-docs and PhD students.
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Analysis of turbulent signals

I Usual linear approaches based on Fourier not effective.
I Make use of advanced (time-frequency, wavelets, multifractal)

methods to extract the dynamics characteristics of turbulence:
multiplicative cascades.

I Coupling physics/signal processing to analyze Herschel
data.
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2
Analysis of turbulent data



K41

I Phenomelogical description of HDT (i.e. still non-proved
today from Navier-Stokes equations), Kolmogorov
descrioption, fllowed by Parisi-Frish & She-Levêque.

I NS equation in incompressible HD case:

∂tv + v · ∇v = −∇p + ν∇2v
∇ · v = 0.

plus limit conditions, ν: kinematic viscosity coefficient.
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K41

I At Reynolds R =
LV
ν
→∞, symmétries (coming from

discrete or continuous groups preserving solutions of NS
equations) are restored in a statistical sense only: fully
developed turbulence.
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K41

I Let εr (x) be the local energy dissipation at point x in a ball
Br (x) of radius r centered at x:

εr (x) =
1

λ(Br (x))

∫
Br (x)

∑
i ,j

(∂ivj(y) + ∂jvi (y))2dy (1)

I for each scale r , (εr ) is a stochastic process indexed by x.
I Kolmogorov: for two scales r < l , in law:

dPεr = dPηrl dPεl (2)

ηrl : injection process between scales available within an
inertial range [r1, r2].
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K41

I Original Kolmogorov hypothesis: ηrl is a constant = (
r
l )−α

leading to implications on the moments:

〈εp
r 〉 =

( r
l

)−αp
〈εp

l 〉 ∼ r−αp (7)

I Self-similarity: 〈εp
r 〉 ∼ r τp , confirmed by experiments but

I actually τp is not a linear function of p, instead a concave
function of p: anomalous scaling .

I ηrl must be replaced by a stochastic process independent of εl
and indefinitely divisible: multiplicative cascade.
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Parisi-Frisch

I Parisi-Frisch generalization: local scale laws:

εr (x) ∼ rh(x) (11)

I h(x): singularity exponent at x. Difficult to compute with
precision.

I Lead to a multifractal hierarchy: Fh = {x | h(x) = h} and

MSM = F∞ = {x | h(x) ∈]h∞ −∆h, h∞ + ∆h[}. (12)

I The singularity spectrum is h→ dim(Fh)
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Parisi-Frisch
I The τp and h→ D(h) are related by a Legendre Transform:

τp = inf
h
{hp + d − D(h)}. (19)

I Thermodynamics analogy: τp free energy, h→ internal energy
per volume unit and D(h)→ entropy.

I τp = infh{hp + d − D(h)} relates statistical properties to
geometry. Knowledge of the singularity spectrum provides
information on the underlying cascade processes.

I For a large class of complex systems, the following duality on
Legendre spectrum is observed:

D(h) = inf
h
{hp + d − τp}. (20)
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3
Examples



”Easy case”: observer on top

Figure: Oceanic data: altimetry and meso-scale turbulence.
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”Easy case”: observer on top

Figure: Oceanic data: altimetry and meso-scale turbulence. Area 1.
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”Easy case”: observer on top

Figure: Oceanic data: altimetry and meso-scale turbulence. Area 2 (East of japan).
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Draco

Figure: Courtesy N. Schneider.
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Draco
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Draco singularity exponents
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Draco singularity exponents

Figure: sub-region
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Draco singularity exponents
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Draco singularity spectrum

Figure: Draco spectrum
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Draco psw sub-region 1

Figure: sub-region 1
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Draco psw sub-region 1
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Draco psw sub-region 2

Figure: sub-region 2
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Draco psw sub-region 2
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Draco psw sub-region 3

Figure: sub-region 3
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Draco psw sub-region 3
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Draco psw sub-region 4

Figure: sub-region 4
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Draco psw sub-region 4
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Draco psw sub-region 5

Figure: sub-region 5
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Draco psw sub-region 5
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Draco psw sub-region 6

Figure: sub-region 6
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Draco psw sub-region 6
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Draco sub-regions

I No differences in spectra.
I Different and much more difficult situation than in remote

sensing data.
I Full 3D turbulence acquired along the line of sight: we

observe a fully 3D turbulent cloud.
I We cannot ”elementary partition” sub-regions to isolate

specific behaviours: 3D mixing everywhere, same apparent
spectra.
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Consistency wrt wavelength acquisitions

Figure: psw
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Consistency wrt wavelength acquisitions

Figure: plw
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Consistency wrt wavelength acquisitions

Figure: pmw
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Manifolds Fh

I Fh = {x | h(x) ∈]h−∆,h + ∆[}.
I In the following experiments, we take ∆ = 0.08.
I Spectrum recomputed over Fh from original data.
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Manifolds Fh

I For ∆→ 0 the spectrum converges weakly to a Dirac at h.
I However we observe phenomena at amplitude cuts.

Genesis kick-off October 2, 2017- 61



Manifolds Fh

I For ∆→ 0 the spectrum converges weakly to a Dirac at h.
I However we observe phenomena at amplitude cuts.

Genesis kick-off October 2, 2017- 62



Manifolds Fh

I For ∆→ 0 the spectrum converges weakly to a Dirac at h.
I However we observe phenomena at amplitude cuts.

Genesis kick-off October 2, 2017- 63



F−0.3

Figure: F−0.3
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F−0.1

Figure: F−0.1
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F0

Figure: F0
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Spectrum F−0.3
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Spectrum F−0.3, cut at 0.5 in the data
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Spectrum F−0.3, cut at 1.5 in the data
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Spectrum F−0.15
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Spectrum F−0.16
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Spectrum F0
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Manifolds Fh

I Interpret the amplitude cut vs monofractal noise ?
I The cut corresponds more or less to background. Role of

background ?
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Manifolds Gh

I Gh = {x | h(x) ∈]h∞,h[}.
I Spectrum is recomputed over Gh from the original data.
I Over Gh the spectrum needs not to be close to a Dirac.
I These manifolds are probably more interesting candidates to

study turbulence.
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Manifold G−0.12
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Spectrum G−0.4
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Spectrum G−0.36
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Spectrum G−0.31
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Spectrum G−0.27
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Spectrum G−0.23
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Spectrum G−0.2
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Spectrum G−0.16
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Spectrum G−0.1
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Spectrum G−0.1, cut at 0.5 in the data

Genesis kick-off October 2, 2017- 89



Spectrum G0
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Lena

Figure: Lena.
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Musca
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Musca

Figure: Musca SEs, zoom.
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Musca

I As for Draco, no simple partitioning into regions of different
spectra.

I But we notice differences in the left part of some
sub-regions spectra.

I The left part is the most informative part of the
spectrum.
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Musca

Figure: Musca spectrum.
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Musca subregion

Figure: Musca subregion 3.Genesis kick-off October 2, 2017- 96



Musca subregion

Figure: Musca subregion 5.Genesis kick-off October 2, 2017- 97



Musca subregion

Figure: Musca subregion 6.Genesis kick-off October 2, 2017- 98



Musca subregion

Figure: Musca subregion 3 spectrum.
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Musca subregion

Figure: Musca subregion 5 spectrum.
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Musca subregion

Figure: Musca subregion 6 spectrum.
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Musca F−0.4
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Musca F−0.2
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Musca F−0.2 cut at 0
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Musca F−0.1

Genesis kick-off October 2, 2017- 105



Musca F0
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Musca F0 cut at 0
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Musca F−0.4 spectrum
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Musca F−0.3 spectrum
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Musca F−0.2 spectrum
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Musca F−0.2 spectrum, cut at 0

Genesis kick-off October 2, 2017- 111



Musca F−0.1 spectum
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First conclusion

I These direct tools cannot distinguish between acquisisitions of
a full 3D turbulent phenomenon.

I Still, they are consistent with the data and show properties.
I We must turn to more elaborate tools for analyzing cascading

properties in 3D turbulence.
I Tests under way on the simulations provided by Nicola and

Alexei.
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4
Other approaches in computing
spectra



Wavelet Transform Modulus Maxima

I Idea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.

I Let s be a signal, Tψ(s()x, r) =
1
rd s(y)ψ(

x− y
r )dy, on a

:Tψ(s()x, r) ∼ rh(x) (r → 0)
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Wavelet Transform Modulus Maxima

I Idea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.

I Let s be a signal, Tψ(s(x), r) =
1
rd

∫
Rd

s(y)ψ(
x− y

r )dy, one

has :Tψ(s(x), r) ∼ rh(x) (r → 0) si s(x) has h(x) as
singularity exponent at x.

I Fonction de partition d’ordre p à l’échelle r :

Z (r , p) =
∑
α∈A
|Tψ(s(xα(r)), r)|p, (27)

où A est l’ensemble des maxima locaux de |Tψ(s(x), r)|.
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Wavelet Transform Modulus Maxima

I Idea: use local maxima lines of wavelets coefficients to define
a space-scale skeleton and follow crest lines.

I Let s be a signal, Tψ(s(x), r) =
1
rd

∫
Rd

s(y)ψ(
x− y

r )dy, one

has :Tψ(s(x), r) ∼ rh(x) (r → 0) si s(x) has h(x) as
singularity exponent at x.

I Partition function at order p and scale r :

Z (r , p) =
∑
α∈A
|Tψ(s(xα(r)), r)|p, (28)

with A being the local maxima of |Tψ(s(x), r)|.
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Wavelet Transform Modulus Maxima

I If the signal is multifractal and wavelet ψ correctly chosen,
one has Z (r , p) ∼ r τp .

I Calcul de τp par regression puis transformée de Legendre pour
avoir D(h).
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Wavelet Transform Modulus Maxima

I If the signal is multifractal and wavelet ψ correctly chosen,
one has Z (r , p) ∼ r τp .

I Compute τp through regression then Legendre transform to
get D(h).
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4
Singularity exponents
computation in
microcanonical analogy



Relations with unpredictability

I If the physical signal s is multifractal, its singularity exponents
are bounded. Define, as before the MSM (Most Singular
Manifold):

MSM = F∞ = {x | h(x) ∈]h∞ −∆h, h∞ + ∆h[}. (29)

I Let ∇∞(s) = ∇F∞(s) = ∇|F∞
s = ∇sδF∞ be the current

form associated to singular gradient.
I F∞ = most unpredictable manifold ⇒ one can reconstruct

the whole signal from F∞.
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form associated to singular gradient.
I F∞ = most unpredictable manifold ⇒ one can reconstruct

the whole signal from F∞.

Genesis kick-off October 2, 2017- 123



MSM

Figure: Draco: MSM + entropie.Genesis kick-off October 2, 2017- 124



Unpredictability and reconstruction
I So if F∞ = most unpredictable manifold this implies we

can reconstruct ∇s(x) = G(∇∞(s))(x).
I Physical hypothesis: G is linear and continuous: consequently

it is an integral operator

∇s(x) =

∫
F∞

∇s(y)G(x, y)dy. (32)

I Physical hypothesis: trnaslational invariance ⇒ convolution
⇒ diffusion from F∞:

∇s(x) =

∫
F∞

∇s(y)G(x− y)dy. (33)

I One deduce:

s(x) =

∫
F∞

∇s(y)g(x− y)dy for a propagation kernel g.

(34)
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Unpredictability and reconstruction
I So if F∞ = most unpredictable manifold this implies we

can reconstruct ∇s(x) = G(∇∞(s))(x).
I Physical hypothesis: G is linear and continuous: consequently

it is an integral operator

∇s(x) =

∫
F∞

∇s(y)G(x, y)dy. (35)

I Physical hypothesis: trnaslational invariance ⇒ convolution
⇒ diffusion from F∞:

∇s(x) =

∫
F∞

∇s(y)G(x− y)dy. (36)

I One deduce:

s(x) =

∫
F∞

∇s(y)g(x− y)dy for a propagation kernel g.

(37)
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Unpredictability and reconstruction
I So if F∞ = most unpredictable manifold this implies we

can reconstruct ∇s(x) = G(∇∞(s))(x).
I Physical hypothesis: G is linear and continuous: consequently

it is an integral operator

∇s(x) =

∫
F∞

∇s(y)G(x, y)dy. (38)

I Physical hypothesis: trnaslational invariance ⇒ convolution
⇒ diffusion from F∞:

∇s(x) =

∫
F∞

∇s(y)G(x− y)dy. (39)

I One deduce:

s(x) =

∫
F∞

∇s(y)g(x− y)dy for a propagation kernel g.

(40)
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Unpredictability and reconstruction
I So if F∞ = most unpredictable manifold this implies we

can reconstruct ∇s(x) = G(∇∞(s))(x).
I Physical hypothesis: G is linear and continuous: consequently

it is an integral operator

∇s(x) =

∫
F∞

∇s(y)G(x, y)dy. (41)

I Physical hypothesis: trnaslational invariance ⇒ convolution
⇒ diffusion from F∞:

∇s(x) =

∫
F∞

∇s(y)G(x− y)dy. (42)

I One deduce:

s(x) =

∫
F∞

∇s(y)g(x− y)dy for a propagation kernel g.

(43)
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Unpredictability and reconstruction

I Fourier: ŝ(k) = ĝ(k)∇̂∞(s)(k).
I To comply with power spectra properties, we consider the

following propagator:

ĝ(k) = i k
‖k‖2 . (44)

I Fundamental point:

div (∇F∞(s)) = 0. (45)

So the computation of exponents is local. But probably
not the cascade properties !
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following propagator:

ĝ(k) = i k
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I Fundamental point:
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Unpredictability and reconstruction

I Fourier: ŝ(k) = ĝ(k)∇̂∞(s)(k).
I To comply with power spectra properties, we consider the

following propagator:

ĝ(k) = i k
‖k‖2 . (48)

I Fundamental point:

div (∇F∞(s)) = 0. (49)

So the computation of exponents is local. But probably
not the cascade properties !
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Unpredictability and reconstruction

I Fourier: ŝ(k) = ĝ(k)∇̂∞(s)(k).
I To comply with power spectra properties, we consider the

following propagator:

ĝ(k) = i k
‖k‖2 . (50)

I Fundamental point:

div (∇F∞(s)) = 0. (51)

So the computation of exponents is local. But probably
not the cascade properties !
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h(x) computation

I Conséquence: h(x) is evaluated by a local impredictability
measure:

I

h(x) =
log(Tψ)(µ)(x, r0))/〈Tψ)(µ)(·, r0)〉

log r0
+o

(
1

log r0

)
. (52)
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h(x) computation

I Conséquence: h(x) is evaluated by a local impredictability
measure:

I

h(x) =
log(Tψ)(µ)(x, r0))/〈Tψ)(µ)(·, r0)〉

log r0
+o

(
1

log r0

)
. (53)
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Developments

I Entropy.
I MHD.
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Entropy

Figure: Modulus entropy derivative/unitary field.Genesis kick-off October 2, 2017- 136



Entropy

Figure: Phase entropy derivative/unitary field.Genesis kick-off October 2, 2017- 137
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6
Conclusions



First conclusions

I Our techniques developed so far for remote sensing are not
sufficient to analyze these fully 3D turbulent datasets.

I Multiplicative cascade analysis under WTMM formalism under
way.

I It becomes apparent that the use of different kinds of data
available will ease the analysis process.
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