Column density PDFs as diagnostic tool

Volker Ossenkopf-Okada, Nicola Schneider, Timea Csengeri, Ralf Klessen, Christoph Federrath

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

KOSMA group journal club

Backgound

Probability distribution functions (PDFs) of column densities:

• From turbulence simulations (Padoan & Nordlund 1999)

Log-normal PDFs of turbulent media:

• PDF width σ_{η} determined by Mach number (Passot & Vazquez-Semadeni 1998)

Column-density PDFs from isothermal simulations Parameter study for non-isothermal simulations with different sonic Mach numbers (Kowal et al. 2007) gives small correction (Federrath & Banerjee 2015)

- $-\sigma_{\eta}^{2} = A \times \ln\left(1 + b^{2}\mathcal{M}_{s}^{2}\right)$
- Small asymmetries depending on the magnetic field impact

KOSMA group journal club

Turbulent column density PDFs

Phase transitions:

• Different phases: - different equation of state

different Mach numbers

Brunt (2015)

– Important transition for molecular clouds: $HI - H_2$

 \rightarrow double-peak PDFs

Observation: Draco

- Intermediate-velocity cloud, possible template for colliding flow
- Transition of $HI \to H_2$ and $C^{\scriptscriptstyle +} \to C \to CO$
- Weak CO detection (Stark et al. 1997)

Phase transitions

Observation: Draco

• HI gas:

- Low density peak: HI gas
 - lower Mach number for same turbulent velocities \rightarrow narrow distribution
- H₂ gas: No good tracer available (CO only formed at $A_V \approx 1$)
 - Separation at $A_V \approx 0.3 \rightarrow H_2$ formation depth

Gravity

Power law tails in PDFs:

PDF of collapsing model (Kritsuk et al. 2011)

• Power-law tail:
$$p_{\eta}(\eta) = \left(\frac{N}{N_{\text{peak}}}\right)^{-s}$$

– Exponent depends on density profile: $n(r) \propto r^{-lpha}$

- s=2/(lpha-1) for spherical symmetry (cores)
- $s=1/(\alpha-1)$ for
- for cylindrical symmetry (cores)

Volker Ossenkopf-Okada, KOSMA

8/22/16

• Self-gravity unavoidably creates power-law tails:

Ballesteros-Paredes et al. 2011; Kritsuk et al. 2011; Girichidis et al. 2011, 2014; Federrath & Klessen (2013); Froebrich & Rowles 2010; Myers 2015; Toci & Galli 2015, Passot & Vazquez-Semadeni 1998; Kainulainen et al. 2009, 2011; Tremblin et al. 2013, 2014, ...

Observations

PDF in Orion B (Schneider et al. 2013)

 \rightarrow Compare log-normal part and power-law tail

 \rightarrow Key to quantify relative influence of turbulence and gravity

 But: very careful data analysis needed to distinguish different cases

Brunt (2015)

Volker Ossenkopf-Okada, KOSMA

The disputes

Volker Ossenkopf-Okada, KOSMA

KOSMA group journal club

8/22/16

9

Main problem

- Line-of-sight contamination
 - Can be easily simulated (Schneider et al. 2015a, Ossenkopf-Okada et al. 2016):
 - Constant foreground or second log-normal cloud

- Contamination does not create second peak
 - Lognormal part of PDF is "compressed"
- Power-law tail is steepened
- Original parameters can be recovered by fit if contamination is known
 - Reasonable correction already by constant screen subtraction

Application of LOS correction

- Lim et al (2016, submitted):
 - Correcting the G28.37 data for strong line of sight contamination
 - Assumes average Galactic column density profile

- Again interpretation as log-normal distribution with very wide width σ_{η}

Alternative interpretation

- "Over-correction":
 - Negative features in subtracted map prove over-correction:
 - Simulation of "over-correction" for the test cloud:

Contamination subtracted map

- Over-correction creates PDF that seems log-normal, but has power-law tail

The disputes

ALMA observations of the CMZ:

- G0.253+0.016 (Rathborne et al. 2014)
- High pressure region ALMA+Single dish 0.02 10^{-3} DEC offset (degrees) 0 5×10^{-4} -0.020.02 0.01 -0.020 -0.01RA offset (degrees)
- No significant power-law tail
- Low-density excess
- But: incomplete sampling of uv-plane!

PDFs from maps with and without single-dish correction (Rathborne et al. 2014)

13

Statistics from interferometric observations

- CASA simulations of ALMA observations:
 - Typical ALMA mapping (2h 12m array, 4h ACA, 8h TP)
 - 0.6" resolution
 - Favourable assumptions: TP currently not offered for continuum

Input and recovered maps from 2h ALMA observation (Ossenkopf-Okada et al. 2016)

KOSMA group journal club

14

Statistics from interferometric observations

- CASA simulations:
 - Typical ALMA mapping (2h 12m array, 4h ACA, 8h TP)
 - Standard ALMA observations are unusable for PDFs!
 - Even with TP correction
- Extra-long ALMA observation:
 - Extended ALMA mapping (8h 12m array, 16h ACA, 32h TP)
 - ALMA observations beyond todays offers can recover the high density tail of the PDF
 - Additional simulations show:
 - No interferometer can recover the log-normal core of the PDFs
 - TP and short spacing is crucial

Further surprises

- Two power law tails:
 - Common, but not omnipresent in massive GMCs
 - Excess with $\alpha>2~$ must be caused by a process that reduces the flow of mass towards higher densities at $A_V\geq50~$

100

10-

 10^{-2}

10-

10-

Rosette

 $(\mathbf{E})_{0} = 10^{-3}$

Av [mag]

100

 $A_{v,pk} = 2.3$ DP = 5.7

 $\sigma_{n} = 0.50$

 $s1 = -3.57 (\chi^2 = 1.8)$

 $s2 = -1.16 (\chi^2 = 0.4)$

x1 = 1.56

 $\alpha 2 = 2.73$

 10^{6}

 10^{5}

10⁴ .⊑

 10^{3}

 10^{2}

 10^{1}

#pixels/log

Column density PDFs are a sensitive tool to characterize the dynamical state of a given region.

- Measuring the PDF of a particular cloud is NOT trivial
- Careful LOS correction is key to quantify power-law tail and log-normal
 - Line observations help to distinguish multiple clouds along the LOS
- Interferometric observations are currently unusable to get a reliable PDF
 - Missing data in the uv-plane are worse than missing data in RA-Dec
 - Future extensions of ALMA capabilities may allow for a measurement of the high-density tail of the PDF, but not of the turbulent structure
- Many clouds show two power laws \rightarrow indicates some collapse threshold
 - Explanation ?????