HIFI lessons for CCAT

Volker Ossenkopf, Pat Morris, Ronan Higgins
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Tl ICC Overview

* Observing modes
* Instrument stability as main driver
* Sequencing for best performance
* Calibration
* Internal calibrators
* Celestial calibrators
* Beam calibration
* Standing waves
* Typical science use

* Data processing
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Observing modes
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HIFI Observing modes

HIiFic¢

Instrumental drifts require loop of source measurement

reference and calibration observations

reference measurement

Determined by Allan stability time t,:

» Depends on the goal resolution of the
observation!
— Not universal number!

hot-cold load calibration
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O Av=1 MH . . .
o standing wave calibration

Av=10 MHz

i (on OFF position)
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4 * The stability of spectroscopic instruments: a
I P Bl unified Allan variance computation scheme,
Y * o, E A&A 479 (2008), 915
* Optimization of mapping modes for
instrumental it heterodyne instruments, A&A 495 (2009), 677
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HIFI Observation “Sequencing” Concept

HIiFic¢

To guarantee best integration and calibration sequence, HIF| uses a
sequencer, which minimizes an observing cost function

XZ: (tOta/ I’IOiSG)2 X tobs

+ penalties

with (total noise)? = (radiometric noise)? + (drift noise)?

Observing setup
* target, sky setup
* LO frequencies

* spectrometers,
etc.

Observer

. SEEGEEEEEE

GUI

Observing goals:
* Total observing time
* SSB Noise goal
* Min/max goal resolution

. GEEEEEEEEEE

Calibration Files
* Stability parameters
* Tsys, beam parameters

* Slew model

]

HSpot

Sequencer

AOT Logic
* Configure instrument
and telescope pointing

mod ‘
x%
Sequence Parameters
* backend readout period

* chop or switch cycle
* load periods, etc.

;

Command Sequence
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HIFI's observing modes
very successful overall:

Reference scheme

1 - Position Switch

2 — Dual Beam Switch
3 — Frequency Switch

4 — Load Chop

Observing Modes

AOTI AOTII AOT Il
Single Point Observations Mapping Observations Spectral Scans
Mode Il — 1
Mode | -1 OTF
Point PositionSwitch Nyquist or lower sampling option
Mode | -2 Mode Il — 2 Mode IIl — 2
DBS or FastDBS DBS or FastDBS Raster DBS or FastDBS

Continuum stabilization option

Continuum stabilization option
Nyquist or lower sampling option

Continuum stabilization option

Mode | -3
FSwitch
Sky reference option

Mode Il — 3
OTF FSwitch
Sky reference option
Nyquist or lower sampling option

Mode lll - 3
FSwitch
Sky reference option

Mode | — 4
Load Chop
Sky reference option

Mode Il — 4
OTF Load Chop
Sky reference option

Mode lll — 4
Load Chop
Sky reference option

nguist or lower samEIing oEtion
* Concepts of all but load-chop modes applicable to CCAT.
« DBS has been HIFI's workhorse.

* Good optical design and stability at most frequencies in the SIS bands would
even allow for an efficient single beam switch mode — option for CCAT?
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HiFi IcC Calibration issues

Internal calibrators:
* 100 K and 12 K blackbodies provide reliable absolute scale
* Depend critically on exact temperature measurement

* No easy adjustment for linearity tests
* Standing waves towards non-perfect blackbodies
* Temperature scale should cover celestial intensities

* Exception for HIFI: Jupiter
* Non-linearities need to be covered

Non-linear response:
* Noticeable non-linearity in FTS
* IF design
* Mixer-bias change from direct detection in HEBs — prefer SIS for CCAT ?
* Additional continuum response from LO phase noise
& \\ esa\ :f:i:%f:: SSU il
SRON 5, 25
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HiFi IcC Calibration issues

Celestial calibration sources:

* Very few bright, compact targets with
accurately known SED available

* The bright AGB stars are time-variable,
structured or radially extended at many
frequencies.

— CCAT must rely on Herschel calibration for
its point source calibrators at high frequencies!

* HIFI relies primarily on Mars for beam
calibrations.

* Uranus and Neptune used for
verifications.

* Planet models from R. Moreno.
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HIFI beam Parameters

* Beam shape profile from DBS raster maps of Mars and optics

simulations

— Mapping at all frequencies is time-expensive
— Parameters determined so far assume a Gaussian profile

* The measured beam patterns have several unexplained deviations from

full optical model of HIFI + telescope.

Typical example (2H) of actual beam
Peak side-lobe level: -17.51 dB
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As-designed nominal beam
Peak side-lobe level: -18.85 dB
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HiFi ICC PACS beam parameters

Fraction of PSF seen by a pixel depends on
— Wavelength
— Pointing jitter
— Details of beam pattern
— Flux calibration error: 30% !

Jiggle mode / jittering mode essential for
sub-sampled arrays

— Stability constrained

— Differential measurement
increases noise

Theoretical illumination of the PACS array
from a point source based on beam pattern

SRON
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HIiFic¢

Common problem in sub-mm instruments
since the wavelength of radiation is
comparable with the optics dimensions

Standing waves present:

Optical path to calibration source (hot/cold)
Standing waves to LO

Standing waves to diplexer roof-top
Standing wave in the HEB electrical chain

Koln, October 5, 2011 Slide 11

Optical path to primary and secondary mirror
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HIiFic¢ Standing waves in optics

* Avoid having surfaces perpendicular to each other in the optics:
* Mixer and LO horns/lenses
* Calibration loads
* Diplexer mirrors

e Beam truncations

» Standing waves in the optics are particularly seen towards the lower
frequencies bands with bigger beams

Diplexer rooftop mirror angle Hot calibration load
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HIiFic¢ Standing waves in LO path

PO T v iver current for H and V
= 1 mixers when changing LO

E 0.052 |- -+ frequency with fixed LO power.
0.050 |- =

:;E; vos 1 *92MHz modulation corres-

‘g ki 1 ponding to distance between

U “”‘“’;‘ 1 the LO and mixer focus

E’ 0.044 |- - *680MHz standing wave

= 0.042 4 corresponding to a reflection
0040 w14 between diplexer rooftop mirror

. =12 and the mixer focus

0.038 AN T T T S I T T T T TV 0 A B O

1479.0 1479.1 1479.2 14793 14794 1479.5 14796 1479.7 14798
LO Frequency, GHz

« Standing waves lead to baselines ripples
* Problematic for frequency switch observations, leading to a gain

difference between the 2 phases.
@™ ¢ E3SK
SRON #5585, 7y
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HIiFic¢ Effect on line intensity

Standing wave introduce a 5-10% uncertainty in line intensity for the diplexer bands
1342192256, 3b, usb, center line frequency 921.980 GHz

HifiEng55canDBS, NGC 7538 IRS1
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fiFLjcc Typical science use

* 90% of engineering and calibration effort goes into 5% of frequencies
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HIFI TSys plotin . o
ground-based S & el
tests: Most effort B =
went into all the
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* 80% of all science is done at 10% of frequencies
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fiFLjcc Typical science use

* Most observations go for 1.0

* Broad IF always always 5o SRR SRR AR AR AR AR AR RARE
encourages multi-line usage jO: E

* Double-sideband taken as L5 E
advantage, not as burden LOE E

— requires good transmission  *°F E

to be applicable to CCAT goi“ﬁﬂL‘“J‘l""""* E

>0.5km/s resolution ZO
* Very little HRS usage 2.5
o b v b b b b B B id

534.5 535.0 535.5 536.0 536.5 537.0 537.5 538.0 538.5 539.0

* Resolution-dependent stability
counts. In most cases Simultaneous observation of 10 lines in 4GHz.

o In frequency-switch, lines from the two
— even the slow Herschel pointing  sigebands can be easily identified.
is fast enough for narrow lines,

— even 4Hz chopping is not fast

enough for very broad lines and ¢ M ,,,,, ) Gesal=
continuum. I:{()N Mwateﬂoof @ %y
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HiFi ICC Data Processing

* Astronomers stick to what they know, particularly at the point that basic

data processing/calibration can be separated from data refinements
and science tools.

* Herschel offers many analysis tools following 100’s of man years of
effort. These may or may not be exploited.

* GILDAS or CASA provide a sound base that CCAT should be able
to build on.

* The key is flexible I/O data formats which are robust in commonly used
environments.

* Do not force astronomers to think about data management.
* searchable database of science and calibration data essential
* common infrastructure from instrument-level-tests to science
* Housekeeping at high rate (1s) important
. temperatures mixer currents, LO settings, mirror settlngs telescope
o SRON #9525 gh ™
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