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Overview

• Observing modes 

• Instrument stability as main driver

• Sequencing for best performance

• Calibration

• Internal calibrators

• Celestial calibrators

• Beam calibration

• Standing waves

• Typical science use

• Data processing



Observing modes

Instrumental drifts require loop of 
reference and calibration observations
 

HIFI HEB gain variations as function of time:
● LO-stability is absolutely essential!
● Multipliers, mechanics, standing waves
● Include atmosphere for CCAT! 
 

Allan variance quantifies the drift:
● distinguish spectroscopic and total power Allan 
  variance



HIFI Observing modes

Instrumental drifts require loop of 
reference and calibration observations

Determined by Allan stability time tA:

• Depends on the goal resolution of the 
observation! 
        → Not universal number!

● The stability of spectroscopic instruments: a 
unified Allan variance computation scheme, 
A&A 479 (2008), 915
● Optimization of mapping modes for 
heterodyne instruments, A&A 495 (2009), 677



HIFI Observation “Sequencing” Concept

Observing setup 
• target, sky setup
• LO frequencies
• spectrometers, 
etc.

Observing goals:
• Total observing time
• SSB Noise goal
• Min/max goal resolution

Calibration Files
•  Stability parameters
•  Tsys, beam parameters
•  Slew model
•  ...

Observer
Sequencer AOT Logic 

• Configure instrument 
and telescope pointing 
mode

Sequence Parameters 
• backend readout period
• chop or switch cycle
• load periods, etc.

Command Sequence

HSpot

GUI

To guarantee best integration and calibration sequence, HIFI uses a 
sequencer, which minimizes an observing cost function  
           2 = (total noise)2 ×  tobs + penalties 
with   (total noise)2 = (radiometric noise)2 + (drift noise)2

χ2



Observing Modes

HIFI’s observing modes 
very successful overall:  

• Concepts of all but load-chop modes applicable to CCAT.

• DBS has been HIFI’s workhorse.
• Good optical design and stability at most frequencies in the SIS bands would 

even allow for an efficient single beam switch mode → option for CCAT?  



Calibration issues

Internal calibrators:
● 100 K and 12 K blackbodies provide reliable absolute scale
● Depend critically on exact temperature measurement

● No easy adjustment for linearity tests
● Standing waves towards non-perfect blackbodies
● Temperature scale should cover celestial intensities 

● Exception for HIFI: Jupiter
● Non-linearities need to be covered

Non-linear response:
● Noticeable non-linearity in FTS
● IF design
● Mixer-bias change from direct detection in HEBs → prefer SIS for CCAT ?
● Additional continuum response from LO phase noise



Calibration issues

Celestial calibration sources:
● Very few bright, compact targets with 
accurately known SED available
● The bright AGB stars are time-variable, 
structured or radially extended at many 
frequencies.

→ CCAT must rely on Herschel calibration for 
its point source calibrators at high frequencies!

● HIFI relies primarily on Mars for beam 
calibrations.  

● Uranus and Neptune used for 
verifications.  

● Planet models from R. Moreno.
IRC+10216 
(Cordiner & Miller 2009)



HIFI beam Parameters

• Beam shape profile from DBS raster maps of Mars and optics 
simulations
– Mapping at all frequencies is time-expensive
– Parameters determined so far assume a Gaussian profile

• The measured beam patterns have several unexplained deviations from 
full optical model of HIFI + telescope.
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Typical example (2H) of actual beam
Peak side-lobe level: -17.51 dB
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As-designed nominal beam
Peak side-lobe level: -18.85 dB



PACS beam parameters

• Fraction of PSF seen by a pixel depends on
– Wavelength
– Pointing jitter 
– Details of beam pattern

      → Flux calibration error: 30% !

• Jiggle mode / jittering mode essential for
   sub-sampled arrays

– Stability constrained
– Differential measurement 

increases noise

Theoretical illumination of the PACS array 
from a point source based on beam pattern
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Standing waves

Common problem in sub-mm instruments 
since the wavelength of radiation is 
comparable with the optics dimensions

Standing waves present:

• Optical path to primary and secondary mirrors
• Optical path to calibration source (hot/cold)
• Standing waves to LO
• Standing waves to diplexer roof-top
• Standing wave in the HEB electrical chain
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Standing waves in optics

● Avoid having surfaces perpendicular to each other in the optics:
● Mixer and LO horns/lenses
● Calibration loads
● Diplexer mirrors
● Beam truncations

● Standing waves in the optics are particularly seen towards the lower 
frequencies bands with bigger beams

Diplexer rooftop mirror angle Hot calibration load
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Standing waves physics

Scatter cone

Secondary mirror as main culprit
→ eliminated by scatter cone
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Standing waves in LO path

● Standing waves lead to baselines ripples
● Problematic for frequency switch observations, leading to a gain 
difference between the 2 phases.

Mixer current for H and V 
mixers when changing LO 
frequency with fixed LO power. 

● 92MHz modulation corres-
ponding to distance between 
the LO and mixer focus
● 680MHz standing wave 
corresponding to a reflection 
between diplexer rooftop mirror 
and the mixer focus
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Effect on line intensity

Standing wave introduce a 5-10% uncertainty in line intensity for the diplexer bands



Typical science use

● 90% of engineering and calibration effort goes into 5% of frequencies

HIFI Tsys plot in 
ground-based 
tests: Most effort 
went into all the 
“spikes” with 
insufficient LO 
power, impurities 
and spurious signals

 
● 80% of all science is done at 10% of frequencies



Typical science use

● Broad IF always always
encourages multi-line usage

● Double-sideband taken as 
advantage, not as burden
→ requires good transmission
     to be applicable to CCAT

● Most observations go for 
     >0.5km/s resolution

● Very little HRS usage
 

● Resolution-dependent stability 
counts. In most cases

– even the slow Herschel pointing 
is fast enough for narrow lines,

– even 4Hz chopping is not fast 
enough for very broad lines and 
continuum.

Simultaneous observation of 10 lines in 4GHz. 
In frequency-switch, lines from the two 
sidebands can be easily identified.



Data Processing

• Astronomers stick to what they know, particularly at the point that basic 
data processing/calibration can be separated from data refinements 
and science tools.  
• Herschel offers many analysis tools following 100’s of man years of 
effort.  These may or may not be exploited.  
• GILDAS or CASA provide a sound base that CCAT should be able 
to build on.

• The key is flexible I/O data formats which are robust in commonly used 
environments.  
• Do not force astronomers to think about data management.

• searchable database of science and calibration data essential
• common infrastructure from instrument-level-tests to science

• Housekeeping at high rate (1s) important
• temperatures, mixer currents, LO settings, mirror settings, telescope 
settings 
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