Understanding the Orion Bar stratification

"KOSMA-τ-3D"

Volker Ossenkopf, S

Silke Andree-Labsch,

n, Markus Röllig

Kölner Observatorium für SubMm Astronomie, KOSMA I. Physikalisches Institut, Universität zu Köln

OSSF14: The Olympian Symposium on Star Formation

Table of contents

- What is the Orion Bar?
- What is PDR stratification?
- Why yet another Orion Bar model?
- What is KOSMA- τ -3D?
- Fit of the observations
- What is the Orion Bar?

The Orion Bar

Main characteristics:

- The PDR prototype
- Edge-on geometry
- Exposed to high UV field from Θ^1 Ori C

OSSF14: The Olympian Symposium on Star Formation

Overall geometry:

- HII region around Trapezium stars
- Cavity wall forming the Orion Bar

Hogerheijde et al. (1995), Menten et al. (2007), Pellegrini et al. (2009), van der Werf et al. (2013)

Stratified structure

• Layering of chemical transitions and temperatures across the PDR:

Based on Hollenbach & Tielens (1999)

Stratified structure observationally confirmed

3.3 μ m PAHs (blue), H₂ v=1-0 S(1) (green), CO 1-0 (red) (Hollenbach & Tielens 1999)

OI 1.32µm (red), H₂ v=1-0 S(1) (black), CO 6-5 (color), ¹³CO 3-2 (white contours), H¹³CN 1-0 (blue) (Lis & Schilke 2003)

New Herschel observations (Combined with ground-based data)

V. Ossenkopf

OSSF14: The Olympian Symposium on Star Formation

7

Fit with Meudon PDR model (Version 1.5.2)

• Model with $p = 2 \ 10^8 \text{ K cm}^{-3}$

ORION BAR: P = $2 \, 10^8 \, \text{K cm}^{-3}$, G₀ = 4.5 10⁴ Habing

Photodissociation Region

Dark Gas

C⁺/C/CO

Av (magnitudes)

H/H,

Η,

CO

T~10-100 K

0/0,

10

UV Flux

UV Flux

UV Flux

н7н

Η

 C^+

0

T~100-1000 K

 H^+

The PDR stratification in such a model would not be observable!

Solution

Clumpy medium

KOSMA-τ PDR Code

Individual spherical clumps

 → Layering of chemical species
 and excitation around each clump

• Recent improvements:

- Eley-Rideal H_2 formation
- Arbitrary dust properties
- Dust surface chemistry
- Full isotopologue network

5/27/14

KOSMA-τ-3D

- Simulate PDR by clump ensembles with full size distribution (embedded in interclump medium)
- Individual clumps computed by KOSMA- $\!\tau$

UV field attenuated in the cloud by foreground clumps

Radiative transfer

- Probabilistic approach for optical depths
- Common approach for UV extinction and line emission

Random maps of [CII] line peak opacities in scaled voxels.

Probability distribution for line-of-sight optical depths: $p\left(e^{-\tau}\right)$

for each pixel

Resulting FUV flux distribution in the best fitting Orion Bar model.

0

Simultaneous fit of line intensities and stratification profile

Decent match of the observations

- Large number of free parameters in a 2D model
 - Variation along the Bar ignored here
- No fit in χ^2 sense performed yet, due to huge parameter space

OSSF14: The Olympian Symposium on Star Formation

 A successful fit does not prove that we found the true geometry and parameters of the PDR

• But:

 We can exclude scenarios if it turns impossible to reproduce the observed properties in them.

\rightarrow We do not know what the Orion Bar is, but we know what it is not:

Geometry

Orion Bar = (cylindrical) filament (Walmsley et al. 2000, Arab et al. 2012) Orion Bar = (straight or concave) cavity wall (Hogerheijde et al. 1995, Pellegrini et al. 2009, Bernard Salas et al. 2012, van der Werf et al. 2013)

OSSF14: The Olympian Symposium on Star Formation

70

60

50

40

20

10

0

-10

Z 30

Х

Convex structures provide no layering of high-density tracers

Illumination

 Θ^1 Ori C deep in the cavity (Jansen et al. 1995, implicite)

 Θ^1 Ori C at the cavity upper edge (Pellegrini et al. 2009, van der Werf et al. 2013)

Illumination

Location deep in the cavity produces foreground self-absorption

Density structure

Homogeneous mixture of clumps and interclump medium (simplicity first)

Deficiency of dense clumps at the PDR surface (Parmar et al. 1991, Hogerheijde et al. 1995, Young Owl et al. 2000)

V. Ossenkopf

OSSF14: The Olympian Symposium on Star Formation

5/27/14

20

Stratification between [CII] and HCO⁺ requires thin medium in front of dense clumps

Other parameters

- Overall, the scenario proposed by Hogerheijde et al. (1995) matches well
 - > FUV flux 4 10⁴ χ_0 confirmed

• Deviations:

- > The cavity is only around 0.3pc deep (compared to 0.6pc)
- Consequently, the mass per voxel is higher by a factor 2.5
- > The clump-to-interclump mass ratio is 4:2 (compared to 1:9)
- > Dense clump and interclump medium densities are slightly higher:
 - 4 10⁶ and 4 10⁴ cm⁻³