Galactic ecology with OST heterodyne observations

Volker Ossenkopf-Okada, Robert Simon

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

V. Ossenkopf-Okada

Galactic Ecology with HERO

Science with OST - Oxford

9/6/18

What determines the ISM structure that drives star and planet formation in galaxies?

- Gas flow over large scales: $\text{Mpc} \rightarrow \text{AU}$
 - Accretion onto galactic disks
 - Formation of neutral and molecular clouds
 - Formation of clouds and clumps
- Governed by
 - Heating and cooling
 - Turbulence
- Feedback
 - Winds, radiation, SNe

Approach:

Observe the dynamics of the different phases of the ISM in the Milky Way and nearby galaxies

How to probe the different ISM phases

Cloud

- Complex configuration
- Mixture of phases including HII regions
- Separated only in velocity space

Velusamy et al. (2013)

- [CII] from HII regions, CNM, PDRs
- [NII] from HII regions, little from WIM
- [OI] for hot dense gas
- [CI] for part of CO-dark gas

Pineda et al. (2014)

How to probe the different ISM phases

- Complex configuration
- Mixture of phases including HII regions
- Separated only in velocity space

Ignoring the LOS confusion in other face-on galaxies does not solve the problem!

Typical spectra across 30 Dor (Okada et al. 2018)

V. Ossenkopf-Okada

OST-HERO science

• Main problem – atmosphere:

- [OI] 145µm often impossible for Galactic sources, both [OI] lines impossible for nearby galaxies
- Sparse redshift coverage of [CII] below z=3
- Basic hydrides impossible from SOFIA: CH, CH⁺, H₂O, HF, (HD)
- And of course we would profit from a factor 2 higher spatial resolution!

Science example I: Assembly of Galactic ISM and molecular clouds

Critical component - CO dark gas:

 PDR model for χ=1, n=10³ cm⁻³:

- Large fraction of H₂ not traced by CO
- Visible in [CII], HF, CH, CH⁺

Fraction of material

- In Galactic Plane (GOTC+, Pineda, Langer et al. 2010, 2013, 2014)
 - 20-75%
 - Highest fraction in diffuse clouds
- Across molecular cloud boundaries:
 - Up to 80% (Xu 2016)

- Not much information yet for $b \neq 0$
- Fraction certainly higher
- We may still miss the majority of the interstellar gas today!

Galactic Ecology with HERO

Mass assembly of the Milky Way disk

- Disk ISM fed by infall of high- and intermediate velocity clouds
 - Ejected material?
 - Intergalactic material?
 - Dwarfs?

- 2 Intermediate-velocity clouds mapped by Röhser et al. (2014)
 - p-v-diagrams show interaction with disk material at $\Delta v \sim \text{few km/s}$
 - Dust column vs. HI column shows very different dust content
 - Clouds dense but invisible in CO

Open questions

- Inflow of material along filaments and spurs
 - Does the magnetic field direct the gas or does the gas assemble the magnetic field?
 - At which column density does the material turn molecular?
 - Relation between chemical transition time scales and infall time scale?
 - What is the infall velocity?
 - Does the infall create shocks?

DR 21 filament

W75N

Science example II: Driver of interstellar turbulence

ISM feeding as main driver of interstellar turbulence?

- Colliding flows unavoidably create turbulence
 - Mach-number of infall?
 - Impact relative to Galactic shear?
- Flows always chemically unstable
 - CO-dark material tracers

Size-linewidth relation of clumps in colliding flow $\begin{array}{c}
0.5 \\
0.0 \\
1 \\
km/s \\
-0.5 \\
0 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-2.5 \\
-2.0 \\
-1.5 \\
-2.0 \\
-2.5 \\
-2.0 \\
-2.5 \\
-2.0 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5$

Colliding-flow simulation (column density map)

Klessen & Hennebelle (2010)

V. Ossenkopf-Okada

Galactic Ecology with HERO

9/6/18 11

Open questions

Driver of large-scale turbulence in the ISM

- Mass accretion as a feed of turbulent motions
 - Primarily diffuse atomic gas, but too confused in HI emission lines
 - Low density molecular hydrogen:
 - CO-dark molecular gas
- Deconvolve the effect of Galactic shear
- Quantify SN driving

Hierarchy of intermittent scales of turbulence dissipation

- Low velocity shocks as tracers of intermittency
- Line cooling of shocks
- Localized and direct measure of energy losses due to turbulent dissipation observed in post-shock gas

Science example III: Role of stellar feedback on galactic scales

[CII] and [OI] as cooling lines and star-formation tracers:

• The Herschel view:

- Complex [CII] and [OI] profiles
- Spectral resolution is the key!
- Explanation of FIR line deficit needs resolved lines

(Leurini et al. 2015)

50

100

-5

-50

9/6/18 13

0

Velocity (km/s)

- 85% of [OI] emission obscured by foreground
- Consistent with foreground hydrogen column density 10²² cm⁻²

V. Ossenkopf-Okada

9/6/18 14

Open questions:

- Role of stellar feedback on the Galactic scale
 - What are good star-formation tracers ?
 - Contributions of different phases to Galactic emission of [OI], [NII], [CII]
 - Role of PDRs in the total line cooling of a galaxy

Science example IV: Nearby Galaxies

Same questions also for resolved galaxies

30Dor (Okada et al. 2018)

- Quantify the amount of each ISM phase
- Determine how the phase distribution varies
 - for different type of galaxies.
 - as function of environment
- Deduce how these properties affect star formation rates

But: For most nearby galaxies both OI lines not observable from SOFIA

V. Ossenkopf-Okada

Galactic Ecology with HERO

Science with OST - Oxford

Velocity [km s⁻¹]

Summary of the science case

What determines the ISM structure that drives star and planet formation in galaxies?

- Formation, growth, evolution, and dispersal of ISM clouds
 - Accretion of high-latitude material onto the Milky Way
 - Mass assembly of molecular clouds
 - Galactic scale statistics on the CO-dark molecular gas
 - 3-D distribution of the different phases
- Main driver of turbulent flows in the ISM
 - Mass accretion as a feed of turbulent motions
- Role of stellar feedback on the ISM dynamics on Galactic scale
 - [CII] as a star-formation tracer ?
- Large scale chemical and metallicity structure of the Galaxy
 - Including isotopes

All requires spectral resolution better than 1 km/s.

V. Ossenkopf-Okada

17