

PDR dynamics from pv-diagrams

V. Ossenkopf, P. Pilleri, Z. Makai, D. Teyssier, J.R. Goicoechea, B. Mookerjea, C. Joblin, O. Berné, C. Dedes, M. Gerin, R. Güsten, M. Akyilmaz, A.O. Benz, F. Boulanger, S. Bruderer, K. France, A. Fuente, M. Gonzalez, A. Gusdorf, A. Harris, T. Klein, E. Koumpia, C. Kramer, F. Le Petit, S. Lord, P.G. Martin, J. Martin-Pintado, D.A. Neufeld, Y. Okada, T. Phillips, R. Rizzo, M. Röllig, R. Simon, J. Stutzki, F.S.S. van der Tak, H. Yorke

Köln, December 20, 2011

What do we expect?

Dynamics and kinematics:

- Photo-evaporation of PDRs dominates flow of ionized material
- High pressure zone at PDR surface \rightarrow cloud compression
 - \rightarrow shock fronts
- Ionization front "eats" into molecular cloud
- \rightarrow pillar formation
- Advection flows
- Unknown impact of turbulence

3-D MHD model by Henney et al. (2009)

HIFI Observations

Measure layering structure - example: NGC3603

- cuts across the interfaces of PDRs and shock regions
- deep integrations at selected positions for rare species

Pillars at PDR fronts (HST, Brandner et al. 2000)

Observed cuts overlaid on Spitzer 8µm (color) and CO 4-3 (contours)

spe

Summary

C. 19 3 3	species	[C11]	CO	¹³ CO	HCO ⁺	CH	CH^+	C_2H	H_2O	H_2O
	frequency [GHz]	1901	1037	1101	535	537	835	524	1113	557
-	NGC3603 MM1	40.4	12.8	2.61	0.54	0.48	0.64^{a}	0.41	0.43	0.46
	NGC3603 MM2	44.0	11.3	2.69	0.47	0.51	0.60^{a}	0.30	0.39	0.45
)	MonR2	62.7	32.8	10.4	4.55	1.10	1.31	1.04	1.05	1.04
	S140	23.8	25.9	7.71	7.44	0.69	$0.39^{a,r}$	0.89	2.55	2.48^{a}
	Carina N	63.6	16.3	3.19	0.87	0.82	<0.1 ^a	0.49	< 0.15	0.16 ^a
	Carina S	9.82	3.48	< 0.1	0.09	< 0.05	<0.1 ^a	< 0.03	< 0.15	$< 0.02^{a}$
	NGC7023 N	33.6	19.9	3.46	0.27	0.71	0.37	0.11	< 0.15	0.12^{a}
	NGC7023 C	33.1	14	-	0.27	0.7	-	0.11	-	0.12^{a}
	NGC7023 E	13.8	3.93	< 0.1	< 0.07	0.09^{m}	$< 0.03^{a}$	< 0.05	< 0.1	$< 0.02^{a}$
	Rosette N	5.92	2.36	< 0.3	0.14	0.18	$< 0.07^{a}$	< 0.07	< 0.3	<0.03 ^a
	Rosette S	5.3	< 0.5	< 0.3	< 0.03	< 0.1	$< 0.07^{a}$	< 0.07	< 0.3	0.04^{a}
	Horsehead	13.5	2.62	-	0.16	0.26	<0.1 ^a	< 0.03	-	0.09^{a}
	Ced 201	5.82	$< 0.15^{a}$	$< 0.03^{a}$	$< 0.03^{a}$	$< 0.03^{a}$	$< 0.15^{a}$	$< 0.03^{a}$	$< 0.03^{a}$	$0.02^{a,m}$
=	species	H ₂ CO	CS	SO	SH^+	NH_3	N_2H^+			
=	species frequency [GHz]	H ₂ CO 526	CS 539	SO 560	SH+ 526	NH ₃ 572	N ₂ H ⁺ 559			
-	species frequency [GHz] NGC3603 MM1	H ₂ CO 526 <0.07	CS 539 <0.07	SO 560 <0.1	SH ⁺ 526 <0.07	NH ₃ 572 0.13	N_2H^+ 559 <0.07			
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2	H ₂ CO 526 <0.07 <0.07	CS 539 <0.07 0.09 ^m	SO 560 <0.1 <0.1	SH ⁺ 526 <0.07 <0.07	NH ₃ 572 0.13 0.13	$\begin{array}{r} N_2 H^+ \\ 559 \\ <0.07 \\ <0.1 \end{array}$			
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2	H ₂ CO 526 <0.07 <0.07 0.31	CS 539 <0.07 0.09 ^m 0.38	SO 560 <0.1 <0.1 0.31	SH ⁺ 526 <0.07 <0.07 <0.03	NH ₃ 572 0.13 0.13 1.02	$\begin{array}{r} N_2 H^+ \\ 559 \\ <0.07 \\ <0.1 \\ 1.21 \end{array}$		v single po	int on stripe
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ <0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \end{array}$	$SO \\ 560 \\ <0.1 \\ <0.1 \\ 0.31 \\ 0.38^a$	SH ⁺ 526 <0.07 <0.07 <0.03 <0.03	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a \end{array}$	(a) Onl	y single po	int on stripe
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline <0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ <0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline <0.1 \\ 0.31 \\ 0.38^a \\ < 0.02^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \end{array}$	$\begin{array}{r} N_2 H^+ \\ 559 \\ <0.07 \\ <0.1 \\ 1.21 \\ 1.22^a \\ <0.02^a \end{array}$	^(a) Onlos	y single po served, no (int on stripe OTF map.
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ \end{array}$	CS 539 <0.07 0.09 ^m 0.38 0.36 <0.03 <0.03	$\begin{array}{r} \text{SO} \\ 560 \\ <0.1 \\ <0.1 \\ 0.31 \\ 0.38^a \\ <0.02^a \\ <0.02^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.02^a\end{array}$	^(a) Onl obs	y single po served, no (int on stripe OTF map.
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline <0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ <0.03 \\ <0.03 \\ <0.03 \\ <0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline <0.1 \\ 0.31 \\ 0.38^a \\ <0.02^a \\ <0.02^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.03^a\end{array}$	^(a) Onloobs ^(m) Mar	y single po served, no (ginal/tentat	int on stripe OTF map. tive detection
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ <0.03\\ <0.03\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ <0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ <0.03 \\ <0.03 \\ <0.03 \\ <0.03 \\ <0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline <0.1 \\ 0.31 \\ 0.38^a \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08 0.06	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\end{array}$	^(a) Onl obs ^(m) Mar	y single po served, no G ginal/tentat	int on stripe OTF map. tive detection
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina N Carina S NGC7023 N NGC7023 C NGC7023 E	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline < 0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ 0.05^m \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline < 0.1 \\ < 0.1 \\ 0.31 \\ 0.38^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \\ < 0.03^a \\ < 0.03^a \\ < 0.02^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08 0.06 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \\ < 0.02^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.02^a\end{array}$	^(a) Onl obs ^(m) Mar ^(r) Emis	y single po served, no (ginal/tentat ssion above	int on stripe OTF map. tive detection
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline < 0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ 0.05^m \\ < 0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.38^a \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08 0.06 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\end{array}$	^(a) Only obs ^(m) Mar ^(r) Emis	y single po served, no (ginal/tentat ssion above	int on stripe OTF map. tive detection absorption
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N Rosette S	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ <0.07\\ <0.07\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline < 0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.07 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline < 0.1 \\ < 0.1 \\ 0.31 \\ 0.38^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08 0.06 <0.05 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \\ < 0.03^a \\ < 0.03^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ <0.07\\ <0.1\\ 1.21\\ 1.22^a\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\end{array}$	^(a) Onl obs ^(m) Mar ^(r) Emis trui	y single po served, no (ginal/tentat ssion above nk of 0.27	int on stripe OTF map. tive detection absorption K.
-	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N Rosette S Horsehead	$\begin{array}{r} H_2CO\\ 526\\ <0.07\\ <0.07\\ 0.31\\ 0.52\\ 0.14^m\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ <0.07\\ <0.07\\ <0.02\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline < 0.07 \\ 0.09^m \\ 0.38 \\ 0.36 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.07 \\ < 0.02 \end{array}$	$\begin{array}{r} \text{SO} \\ 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.38^a \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.01 \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 0.08 0.06 <0.05 <0.05 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.56^a \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \\ < 0.02^a \\ < 0.03^a \\ < 0.03^a \\ < 0.03^a \\ 0.02 \end{array}$	$\begin{array}{r} N_2H^+\\559\\<0.07\\<0.1\\1.21\\1.22^a\\<0.02^a\\<0.02^a\\<0.03^a\\<0.03^a\\<0.03^a\\<0.03^a\\<0.03^a\\<0.03^a\\<0.03^a\\0.01^{a,m}\end{array}$	^(a) Only obs ^(m) Mar ^(r) Emis trus	y single po served, no G ginal/tentat ssion above nk of 0.27	int on stripe OTF map. tive detection absorption K.

Summary of the HIFI mapping data. Numbers give the peak T_A^* in Kelvin for the considered stripe and transition.

Example 1: Horsehead

Measure layering structure – **p-v diagrams**:

p-v diagrams reveal details of the PDR layering including the dynamical structure

Interpret line parameters

Fit of line profiles along the cut:

Intensity profiles:

- Stratified chemical structure
- Layering $C^{+} \rightarrow HCO^{+} \rightarrow CO$
- C⁺ in sharp surface layer
- CH extended, in between
 HCO⁺ and CO

Interpret line parameters

Velocity structure from p-v diagrams:

Line center velocities:

- Gradient along the neck
- Offset between [CII] and high-density tracers

Consistent with dynamical picture of Hily-Blant et al. (2005):

- Rotation of large-scale structure
- C⁺ accelerated by radiation pressure

Interpret line parameters

Velocity structure from p-v diagrams:

- Confirmation of expected pressure "jump" at interface
- Wider width of [CII] compared to molecules expected from stronger coupling to radiation pressure
- Wider width of CH mysterious

Line width:

- CH systematically broader
- Significant broadening at front

Example 2: Carina North

Multiple interfaces:

Cut through Carina North PDR

• Very difficult to interpret due to multiple components

Top: [CII] (contour) and HCO⁺ 6-5 (color) Bottom: CO 9-8 (contour) ¹³CO 10-9 (color)

Example 3: Rosette

2 interfaces:

2 cuts through Rosette

2 Separate velocity components

 → only density clumps traced, no
 substructure

pv-examples: tilted "North" cut, UV source to the right

Top: [CII] (contour) and HCO⁺ 6-5 (color) Bottom: CO 9-8 (contour) on CH (color)

Example 4: ²³ NGC3603 MM1²⁰

Known velocity gradient in clump:

Observed cuts in NGC3603 overlaid on Spitzer 8µm

Top: [CII] (contour) and HCO⁺ 6-5 (color) Bottom: CO 9-8 (contour) ¹³CO 10-9 (color)

NGC3603 MM1

- Chemical layering partially inverted!
 - [CII] peaks deeper in the core than all molecules
 - CO slightly deeper than ¹³CO
- CH again very extended
- Tail of [CII] "behind" the core

NGC3603 MM1

Line position and width:

- Broadening of most lines at surface
- [CII] is red-shifted relative to molecular tracers at interface
- Stronger velocity gradient in [CII] than in molecules
- Long turbulent [CII] tail of material "behind" the core

\rightarrow C⁺ must be blown from the surface into a clumpy medium

- → Redshifted profiles → affected material sits behind the cluster
- The gradient along the core measures radiative (?) compression!

Interpretation

Vgas

 \rightarrow Pillar

formation

LOS

- Clumps \rightarrow cometary clumps
- Evaporation flow towards cluster suppressed
- Material is "blown" into the cloud
- Compression and dispersion of the core

Compare: Mackey & Lim (MNRAS submitted)

Example 5: NGC 7023

3 PDRs in one source:

Observed cuts in NGC7023 overlaid on IRAC 3.6-8 μm image

pv-examples: North cut through H_2 peak, UV source to the left

Bottom: ¹³CO 10-9 (colors) + CO 9-8 (contours)

Bottom: SH⁺(colors) + CH⁺ (contours)

Bottom: ¹³CO 10-9 (colors) + CO 9-8 (contours)

 $[\Sigma]$

_×

NGC 7023 N

Interpret line parameters:

- "Normal" stratification structure with respect to [CII] – molecules
- No significant positional shift between other tracers
- Most lines broadened at interface, [CII] most significantly
- Smooth transition of [CII] into HII region
- CH⁺ significantly broader than other molecular lines (except [CII])
 - CH⁺ velocity structure overall different
 - \rightarrow origin (?)

(dashes) showing the HII region

Bottom: ${}^{13}CO$ 10-9 (colors) + [CII] (contours).

Top: CS 10-9 (colors) + CH⁺ (contours). Bottom: C_2H (colors) + CH (contours)

Bottom: N_2H^+ (colors) + NH_3 (contours)

Bottom: SO (colors) + H_2CO (contours)

3

[⊻] 2 ⊢

0.2

0.1 ¥

0.0

Mon R2

Interpret line parameters:

- No reasonable parametrization of double-peaked [CII] lines and water lines with absorption
- CH⁺ also shows a well separated absorption component
 - Forground ?
 - Separate expansion layer ?
- CH⁺ again very broad from source
- 2 clumps/PDR interfaces not equally prominent in different tracers
- Different velocity distribution from hot and cold tracers
- S-shape tracing large-scale rotation

Interpretation

- Large-scale infalling cloud
 - Increasing density
 - Accelerated infall
 - Large-scale rotation
- Expanding walls of HII region
 - Harbors bipolar outflow
- CO 9-8 shows the PDR
 - Illumiated dense molecular material
- Water in absorption for low velocities, red-shifted velocities in emission
 - Emission from backside or core-infall
- Double-peaked [CII] profile mainly from walls of HII region
 - Wings trace ionized flow
 - Some self-absorption in the HII region

Example 7: S140

External PDR + embedded source IRS1 with internal PDRs:

Observed cuts in S140 overlaid on IRAC 3.6-8µm image

Top: HCO⁺ 6-5 (colors) + [CII] (contours). Bottom: ¹³CO 10-9 (colors) + CO 9-8 (contours)

Top: C₂H (colors) + CH (contours) Bottom: SH⁺(colors) + CH⁺ (contours) Top: HCO⁺ 6-5 (colors) + [CII] (contours). Bottom: ¹³CO 10-9 (colors) + CO 9-8 (contours)

S140

Interpret line parameters:

- Very different outflow characteristics from IRS1 seen in [CII] and CO+H $_2$ O
 - Red outflow in [CII]
 - Blue outflow in CO and H₂O absorption
- PDR at interface only showing up in [CII] and CH
 - [CII] much brighter than at IRS1
- IRS1 is very similar to Mon R2 in all molecular tracers, but very different in [CII]
 - Geometry of inner ionized region unclear

Summary

- Radiation pressure driven PDR dynamics is complex
 - Pressure jump at the surface confirmed
 - Chemical stratification in PDRs often resolved
 - But inversion possible due to stronger coupling of interclump gas tracers to radiative pressure
 - Line width sequence: [CII]/CH⁺ CH other molecules
 - Significant dispersion of gas traced
 - Possibly first direct observation of radiative core compression
 - No evaporation flows!
 - No indication of turbulent stirring through radiation