

Wavelet approaches for measuring interstellar cloud structure

Volker Ossenkopf-Okada

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

Bordeaux

Turbulent cascade

Self similarity

- Same type of structures on all scales
 - Confirmed by observations:

- Integrated ¹³CO 1-0 line map from the BU-FCRAO survey of the Galactic Ring at different "zoom levels" (Simon et al. 2002)
- 🖙 Self-similar over a large range of scales.

Power spectrum

Scale invariance results in a power-law power spectrum:

Analysis of G44.5 subfield of ¹³CO 1-0 line map from BU-FCRAO-GRS

• For rectangular maps, the power spectrum can be easily computed by FFT.

 $P(k) \propto k^{-\beta}$

Measure spatial scaling

Δ -variance

Filter map by radially symmetric wavelet $\,\psi_l(r)$

- characteristic length scale /
- Measure variance in convolved image as function of the filter size I
- Gives relative amount of structure as a function of structure size
- Advantages compared to power spectrum
 - ∆-variance can measure spatial scaling of irregular maps, maps with variable noise.
 - In the application to observed maps the ∆-variance is much more robust.

Δ -variance

Power-law power spectrum gives power-law Δ -variance: $\sigma_{\Delta}^2(l) \propto l^{lpha}$

- Spectral index related to the power spectral index by lpha=eta-2

Analysis of G44.5 subfield of ¹³CO 1-0 line map from BU-FCRAO-GRS

Analysis of Orion Bar maps

Δ -variance spectra

- No artifacts from combination of single dish and interferometer or mosaicing
- Perfect power law for ¹³CO, β=3.1
- Some characteristic scales in all spectra

 Δ -variance spectra of integrated maps (top) and 8.8km/s channel maps (bottom, Acre et al. in prep)

10

100

10 E

0.1

0.01

10-4

² [(K km/s)²]

12CO 1-0 ··×·· 13CO 1-0

10-3

0.01

log [degrees]

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

1.5pc

0.1

INRIA approach (Hussein Yahia)

Spatial distribution of box-car dimension at small scales

- h(x) is scaling exponent for 3-D "ball" around point x with radius r
- For $r \to 0$ (smallest resolution available), scales as $r^{h(x)} \to h(x)$ is the singularity exponent at x.
- Provide precise evaluation of the strength of fronts observables in clouds, and the possibility of computing fine statistics on them

Singularity distribution for Draco 250 μm map

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

Use for singularity spectrum

Use Δ -variance slope at small scale instead of box-car dimension: Application to same data set:

- Exponent threshold ightarrow Manifold \mathcal{G}_0
 - \rightarrow background galaxy detection

GENESIS kick-off meeting

Wavelet-weighted cross-correlation analysis (WWCC)

WWCC:

- Cross correlation in maps filtered by Δ-variance wavelet
- compare map structures depending on their scale

Apply to line observations of G333 (MOPRA):

(Arshakian & Ossenkopf 2015)

Result:

- ¹³CO-C¹⁸O perfectly correlated above the noise scale
- HCN behaves different at scales <7' (~8pc)

Difference in chemical structure or excitation conditions?

12/17/18

Volker Ossenkopf-Okada, KOSMA

Wavelet-weighted cross-correlation analysis (WWCC)

WWCC:

- Cross correlation in maps filtered by Δ-variance wavelet
- compare map structures depending on their scale

Apply to line observations of G333 (MOPRA):

Scale-dependent offsets:

(Arshakian & Ossenkopf 2015)

• Increasing offset along the filament towards larger scales

 cometary density structure or/and anisotropic radiation field

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

12/17/18

Simulations: (M)HD models from Federrath & Klessen (2012)

Compute line radiative transfer (Simline3D, Ossenkopf 2002):

Simplifications applied here:

- Constant abundances
- Isothermal

Integrated line intensities [K km/s]

FK12 Model 20:

 $M=10 M_{\odot}$

D = 8pc *<n>* = 207cm⁻³ ** = 3µG C¹⁸O 1-0

• No line traces true column density,

• Rare CO isotopes best approximation

12/17/18

Cross-correlation function

Results:

- Perfect correlation between spatial density structure and C¹⁸O emission
 - High correlation between C¹⁸O and ¹³CO like in the observations
- Lower correlation for CS (like HCN in observations)
 - But no critical size scale
- ¹²CO hardly reflects underlying density structure
 - only measures the velocity structure

Cross-correlation function

Compare direct properties of simulations:

Column density - magnetic field

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

Bordeaux

12/17/18

Column density - Protostellar cores

Herschel and FCRAO maps of Rosette molecular cloud:

Analysis:

Comparison with dust map (Veltchev et al. 2017)

- ¹²CO and ¹³CO best correlate at small scales
- ¹³CO good column density tracer at intermediate scales
- Negative trend at large scales

Conditions for CO dissociation unclear

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting

14

Application to M33 maps

Correlation between [CII], CO 2-1, and HI:

Center(top) and BCLMP302 (right) maps, Colours: [CII], contours: CO 2-1 (left), HI (right) Mookerjea et al. (2015)

- Mismatch between global correlation and scale-dependent correlation
- Obvious anti-correlation of small-scale structures in maps
- Good global correlation does not prove origin from similar regions

Volker Ossenkopf-Okada, KOSMA

GENESIS kick-off meeting