[¹³CII] observations to constrain fractionation chemistry and column densities of C⁺

V. Ossenkopf, M. Röllig, C. Joblin, U. Graf, A. Fuente, D. Lis, J. Stutzki, P. Pilleri, F. van der Tak, E. Bergin

Theory

See talk by M. Röllig

Fractionation reaction

 $^{13}C^+ + CO \rightleftharpoons C^+ + {}^{13}CO + 34.8 \text{ K}$

drives transition from C⁺ to CO to different depths for ^{12}C and ^{13}C

 The ¹²C⁺/¹³C⁺ ratio can be enhanced by factor > 100

Chemical structure of a spherical PDR for χ =1000 χ_0

Theory

 In most cases, the true intensity ratio is rather governed by the optical depth of the [CII] line

$$\frac{IR_{\nu}}{FR} = \frac{1 - \exp(-\tau_{\rm [CII]})}{\tau_{\rm [CII]}}$$

where we assume the "standard" abundance ratio (without chemical fractionation) $FR \approx 67$ in the solar neighborhood

- If all carbon is ionized: $A_v = 1 \leftrightarrow N_{c+} = 2.5 \ 10^{17} \ cm^{-2} \leftrightarrow <\tau_{rcm} > = 0.8$
- [CII] turns optically thick for $A_v \approx 1$!

Theory

Integrated [CII]/[¹³CII] intensity ratio for spherical PDRs

- PDRs bright in [CII] have an abundance ratio $FR \approx 67$
- They are optically thick in [CII] \rightarrow intensity ratio < 67 determined by $\tau_{r_{CIII}}$

H₂ peak **N-PDR S-PDR** 48.0 36.0 01:24.0 RA (2000)

Spitzer IRAC (Joblin et al. 2008)

Observations: Case 1: NGC 7023

• Focus on Northern PDR (H₂-peak)

[CII] distribution (Joblin et al. in prep.)

[CII]:

 Self-absorption dip indicates moderate optical depth for emission in line center

[¹³CII]:

- All 3 HF detected
- Slightly stronger than expected from [CII] and optically thin emission
- τ_{center} ≈ 0.7-0.8
- Tentative detection of enhanced *FR* in blue wing (scaled [CII] above [¹³CII])

[¹³CII] hyperfine components compared to [CII] scaled by normal HF ratio (remember the recent correction) and FR=67 for optically thin emission (Ossenkopf et al. 2013)

Case 2: The Orion Bar

Clumpy in high-density tracers, but very smooth in [CII]

[¹³CII]

Average profile of the two strongest [¹³CII] hyper-fine components compared to the scaled [¹²CII] profile that would be expected from the canonical abundance ratio and optically thin lines.

• Average peak optical depth of [CII] line $\tau_{\rm center} \approx 2.2$

Optical depth from [CII]/[¹³CII]

- Peak optical depth exceeds three at intensity maximum
- Optical depth (= column density) layering shifted relative to intensity structure into the molecular cloud

C⁺ column density

 Combine intensity and optical depth to derive C⁺ column density and excitation temperature

Temperature gradient in $C^+ \rightarrow \text{consistent}$ with stratification of the Orion Bar

Modeling: see poster by S. Andree

Based on Orion Bar picture from Hogerheijde et al. (1995):

v [km/s]

Interpretation

- Large-scale infalling cloud
 - Increasing density
 - Accelerated infall
 - Large-scale rotation
- Expanding walls of HII region
 - Harbors bipolar outflow
 - \rightarrow [CII] mainly from walls of HII region
 - Wings trace ionized flow
 - Some self-absorption in the HII region

- But: non-detection of the red component in [¹³CII]
 - First observation of ¹³C⁺ fractionation in a PDR ?
 - But [CI] also shows only the blue component

Case 4: NGC2024

Optical image with mapped region

Structure of the source:

The HII region expands into an inhomogeneous medium with a denser hotter PDR in the back (Graf et al. 1993)

Modelling

Background: $N(C^+) = 1.0 \ 10^{19} \ cm^{-2}$, $T_{ex} = 400 \ K$ **Foreground:** $N(C^+) = 2.4 \ 10^{18} \ cm^{-2}$, $T_{ex} = 80 \ K$

 \rightarrow Very high C⁺ column density required

Dust

Bar

FIR2

FIR3

+ FIR5

🚔 - FIR4

IRS2

NCP A HII Region

SCP

Column densities

Other sources:

Source Integr	ation range [km s ⁻¹]	[C II] [K km s ⁻¹]	IR ^a	$\langle au_{[\text{CII}]} angle$ [10	$N_{C^+}{}^b$ $N^{18} \text{ cm}^{-2}$]
Orion Bar, peak	7-13	857 ± 5	30 ± 2	1.9 ± 0.2	10.1
Orion Bar, ridge ^c	7-13	772 ± 5	38 ± 3	1.3 ± 0.2	7.2
Orion Bar, front ^d	7-13	506 ± 7	69 ± 12	0.0 ± 0.4	2.3
Orion Bar, back ^e	7-13	529 ± 6	50 ± 6	0.7 ± 0.3	3.9
Mon R2, total	5-25	362 ± 5	38 ± 10	1.3 ± 0.6	5.7
Mon R2, blue	5-12.5	173 ± 3	20 ± 5	3.2 ± 0.8	4.8
Mon R2, red	12.5 - 25	188 ± 4	170 ± 120	0.0 ± 0.5	0.9
NGC 3603	1019	130 ± 2	25 ± 5	2.4 ± 0.4	3.6
NGC 7023	-1-7	91 ± 2	51 ± 6	0.6 ± 0.3	1.0

• C⁺ column densities consistent with known gas column assuming C/H=1.2 10⁻⁴, but all carbon being in ionized form!

- [CII] very extended
 - Emission broad in space and velocity space
 - Very smooth emission structure across the Orion Bar
 - > Origin probably mainly in a diffuse gas component
- Indications for carbon fractionation, i.e. enhanced [CII]/[¹³CII] in few velocity components, in particular the red component of MonR2
- Where detected [¹³CII] allows to measure actual C⁺ column density
 - Large columns in all sources
 - > Too large ?

83.850 83.845 83.840 83.835 83.830 83.825 RA [deg]

Compare spatial structure

0

[CII]

 C_2H (v.d. Wiel et al. 2010)

• Best correlation with C₂H

[CII]

Very smooth structure

 No clumpiness in [CII]
 Similar to MIR
 FORECAST: 19.7 and 37µm
 (Shuping et al. 2012)

