The CO ladder in PDRs from HEXOS and WADI observations

V. Ossenkopf, C. Joblin, M. Röllig
Questions

Relevant for CO-ladder workshop

Energy balance in PDRs:

- distinguish role of UV radiation from shock heating
- gas heating efficiency
- role of different coolants and dust heating and cooling
Example 1: DR21C

- Central HII region
- Collimated outflow to SW, blister to NE
- Ridge in the front
- PDR around HII region and outflow cavities

Marston et al. (2007, Spitzer)

Lane et al. (1990)
DR21C

- Line profiles allow to:
 - Distinguish line intensities from different velocity components
 - Optical depth correction of line intensities
 - Exclude outflow wings and foreground components in PDR model fit

 • ambiguous!

HIFI observations of high-J lines of CO and HCO$^+$ isotopologues
- comparison with ground-based low-J lines
Modeling: KOSMA-τ PDR Code

- Spherical clumps
 → Layering of species and temperature structure as function of UV field

- Recent improvements:
 - Eley-Rideal H_2 formation
 - Arbitrary dust properties
 - Full isotopologue network
Modeling: KOSMA-τ PDR Code

- Ensemble of clumps
 - Broadening of excitation ladder

\[\sum M_i = 1 M_\odot \]

\[\log \left(\frac{n}{\text{cm}^{-3}} \right) = 4.00, \; \log \left(\frac{\text{Mass}}{M_\odot} \right) = 0.00, \; \log \left(\frac{\chi}{\chi_0} \right) = 2.00 \]
Model for clumpy structure of PDR required

PDR model fit to all lines:

- New HIFI data show two distinct UV fields: $10^5 \chi_D$ and $300 \chi_D$

 → Dense clumps facing the blister outflow
 + clumpy large scale distribution

Lane et al. (1990) + Röllig et al. (2010)
Model for clumpy structure of PDR required

PDR model fit to all lines:

- New HIFI data show two distinct UV fields: $10^5 \chi_D$ and $300 \chi_D$

→ Dense clumps facing the blister outflow + clumpy large scale distribution

No shock component needed!
Example 2: NGC 7023

- Iris nebula
- Focus here on Northern PDR (H$_2$-peak)

Misty (2004)

Spitzer IRAC (Joblin et al. 2008)
Line profiles

Compare 3 data sets:
- HIFI
- CO
 - Gerin et al. (1998)
- 13CO(1-0) and C18O(1-0) from PdBI
 - Pety et al. (2010)

Geometry:
shell-like structure with reabsorption by colder gas
PACS spectroscopy

CO (15-14) line intensity on the Spitzer 8µm map

PACS matrix overlaid on the telescope PSF 75 µm (blue) and 150 µm (red)

Cross-calibration extremely tricky
- Ongoing

Example: CII
- HIFI: 6.0×10^{-3} erg/(cm2 s sr)
- PACS: 8.6×10^{-3} erg/(cm2 s sr)
Modelling: Meudon PDR code

Version 1.4.3
- Le Bourlot et al. (2012)
- With Eley-Rideal for H\textsubscript{2} formation
- Isobaric: P=3 \(10^6\) K cm\(^{-3}\) fits [CII]
- But: second component needed for molecules/radicals

Diffuse gas:
"atomic" in warm gas (PAH, C+, O)

Dense gas (filaments):
warm molecular gas H\textsubscript{2}, CO,...
NGC7023: PDR code results

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Flux [W m⁻² sr⁻¹]</th>
<th>Flux with correction</th>
<th>PDR P=3E6</th>
<th>PDR n=3E5</th>
<th>PDR n=7E5</th>
<th>P=3E6+n=3E5</th>
<th>P=3E6+n=7E5</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI^2</td>
<td>PACS</td>
<td>8.60E-07</td>
<td>5.90E-07</td>
<td>4.70E-07</td>
<td>3.00E-07</td>
<td>1.1E-06</td>
<td>8.9E-07</td>
<td>Extended</td>
</tr>
<tr>
<td>CI^2</td>
<td>HIFI</td>
<td>6.00E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended</td>
</tr>
<tr>
<td>OI-145 (PACS)</td>
<td>PACS</td>
<td>4.90E-07</td>
<td>2.10E-07</td>
<td>6.40E-07</td>
<td>6.50E-07</td>
<td>8.5E-07</td>
<td>8.6E-07</td>
<td>Extended</td>
</tr>
<tr>
<td>13CO (5-4)</td>
<td>HIFI</td>
<td>8.00E-10</td>
<td>4.00E-09</td>
<td>4.70E-09</td>
<td>1.50E-09</td>
<td>6.2E-09</td>
<td>7.1E-09</td>
<td>Extended</td>
</tr>
<tr>
<td>13CO (6-7)</td>
<td>HIFI</td>
<td>3.70E-09</td>
<td>1.20E-08</td>
<td>1.50E-10</td>
<td>1.90E-10</td>
<td>3.4E-10</td>
<td>8.9E-10</td>
<td>Filament</td>
</tr>
<tr>
<td>13CO (10-9)</td>
<td>HIFI</td>
<td>5.30E-09</td>
<td>1.40E-08</td>
<td>3.00E-12</td>
<td>7.40E-11</td>
<td>7.7E-11</td>
<td>4.3E-10</td>
<td>Filament</td>
</tr>
<tr>
<td>C18O (5-4)</td>
<td>HIFI</td>
<td>1.60E-10</td>
<td>8.00E-10</td>
<td>1.00E-09</td>
<td>1.00E-10</td>
<td>1.1E-09</td>
<td>1.2E-09</td>
<td>Filament</td>
</tr>
<tr>
<td>C18O (9-8)</td>
<td>HIFI</td>
<td>2.90E-10</td>
<td>8.30E-10</td>
<td>3.20E-12</td>
<td>7.30E-12</td>
<td>1.1E-11</td>
<td>3.3E-11</td>
<td>Filament</td>
</tr>
<tr>
<td>HCO+ (6-5)</td>
<td>HIFI</td>
<td>6.30E-11</td>
<td>3.30E-10</td>
<td>2.30E-11</td>
<td>3.00E-10</td>
<td>3.2E-10</td>
<td>3.0E-09</td>
<td>Filament</td>
</tr>
<tr>
<td>CH^+</td>
<td>HIFI</td>
<td>1.40E-10</td>
<td>7.40E-10</td>
<td></td>
<td></td>
<td>7.40E-10</td>
<td></td>
<td>Filament</td>
</tr>
<tr>
<td>CH^+ (1-0)</td>
<td>HIFI</td>
<td>6.40E-11</td>
<td>2.10E-10</td>
<td>2.50E-11</td>
<td>9.10E-09</td>
<td>9.1E-09</td>
<td>1.6E-08</td>
<td>2.10E-10</td>
</tr>
<tr>
<td>CH^+ (2-1)</td>
<td>PACS</td>
<td>7.20E-09</td>
<td>8.40E-09</td>
<td>3.40E-11</td>
<td>1.60E-08</td>
<td>1.6E-08</td>
<td>3.2E-08</td>
<td>Extended/filament?</td>
</tr>
<tr>
<td>CH^+ (3-2)</td>
<td>PACS</td>
<td>1.00E-08</td>
<td>3.30E-11</td>
<td>1.70E-08</td>
<td>3.30E-08</td>
<td>1.7E-08</td>
<td>3.3E-08</td>
<td>Extended/filament?</td>
</tr>
<tr>
<td>CO (9-8)</td>
<td>HIFI</td>
<td>3.00E-08</td>
<td>8.10E-08</td>
<td>2.70E-09</td>
<td>9.50E-09</td>
<td>1.2E-08</td>
<td>5.7E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>CO (15-14)</td>
<td>PACS</td>
<td>3.35E-08</td>
<td>3.89E-08</td>
<td>1.40E-13</td>
<td>3.10E-09</td>
<td>3.1E-09</td>
<td>6.0E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>CO (16-15)</td>
<td>PACS</td>
<td>2.03E-08</td>
<td>2.33E-08</td>
<td>6.90E-14</td>
<td>2.50E-09</td>
<td>2.5E-09</td>
<td>5.6E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>CO (17-16)</td>
<td>PACS</td>
<td>1.63E-08</td>
<td>1.90E-08</td>
<td>4.00E-14</td>
<td>1.80E-09</td>
<td>1.9E-09</td>
<td>5.0E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>CO (18-17)</td>
<td>PACS</td>
<td>9.60E-09</td>
<td>1.02E-08</td>
<td>2.80E-14</td>
<td>1.50E-09</td>
<td>1.5E-09</td>
<td>4.3E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>CO (19-18)</td>
<td>PACS</td>
<td>3.60E-09</td>
<td>3.70E-09</td>
<td>2.30E-14</td>
<td>1.10E-09</td>
<td>1.1E-09</td>
<td>3.5E-08</td>
<td>Filament</td>
</tr>
<tr>
<td>H2 (v=1J3-v0J1)</td>
<td>PACS</td>
<td>2.10E-07</td>
<td>2.60E-07</td>
<td>2.30E-08</td>
<td>2.60E-07</td>
<td>2.8E-07</td>
<td>6.8E-07</td>
<td>Filament</td>
</tr>
<tr>
<td>S(1)</td>
<td>1.10E-07</td>
<td>1.10E-07</td>
<td>2.20E-07</td>
<td>3.80E-07</td>
<td>4.30E-07</td>
<td>6.0E-07</td>
<td>6.5E-07</td>
<td>1.10E-07</td>
</tr>
<tr>
<td>S(2)</td>
<td>6.90E-07</td>
<td>7.30E-07</td>
<td>1.70E-07</td>
<td>4.70E-07</td>
<td>5.70E-07</td>
<td>6.4E-07</td>
<td>7.4E-07</td>
<td>7.30E-07</td>
</tr>
<tr>
<td>S(3)</td>
<td>9.30E-07</td>
<td>1.00E-06</td>
<td>3.00E-08</td>
<td>1.60E-06</td>
<td>2.50E-06</td>
<td>1.6E-06</td>
<td>2.5E-06</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>S(4)</td>
<td>1.70E-07</td>
<td>2.20E-07</td>
<td>5.40E-09</td>
<td>4.90E-07</td>
<td>8.60E-07</td>
<td>5.0E-07</td>
<td>8.7E-07</td>
<td>2.20E-07</td>
</tr>
<tr>
<td>HD (1-0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eVSGs</td>
<td>9.60E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended/filament?</td>
</tr>
<tr>
<td>PAH0</td>
<td>9.80E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended/filament?</td>
</tr>
<tr>
<td>PAH+</td>
<td>4.20E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended/filament?</td>
</tr>
<tr>
<td>PAHx</td>
<td>1.30E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extended/filament?</td>
</tr>
</tbody>
</table>

- Reasonable fit by two-component model
- But: high-J CO isotopologues still much stronger than predicted
- Problem of plane-parallel setup: stratification not resolvable (A_V=1 → 3'' for 10^5 cm⁻³)
Example 3: The Orion Bar

To be clumpy or not to be clumpy?

FORECAST: 19.7 and 37μm (Shuping et al. 2012)

CO 6-5 (color), 13CO 3-2 (white contours), OI 1.32μm (red), H_2 v=1-0 S(1) (black), H^{13}CN 1-0 (blue) (Lis & Schilke 2003)

HIFI central position: 5h35m20.81s -5d25m17.1s
Orion Bar

Full HIFI spectral scan:

- CO excitation flat up to J=15
- Excitation increasing in energy
- Turn over around 700K
- PACS detection up to J=22

Integrated HIFI line intensities for CO isotopologues and CI,CII:

Top: in integrated intensities vs. frequency

Bottom: radiated energy vs. excitation energy
Orion Bar

Full HIFI spectral scan:

- Lines Gaussian, but:
 - Line width strong function of J
 - also for optically thin species
 - Larson-like dependence (?)
 - Contradiction to normal modelling approach

Top: integrated HIFI line intensities for CO isotopologues and Cl, CII

Bottom: Corresponding measured line width
Spatial structure

- Very smooth distribution
Problem:
- negative continuum flux in some spaxels at long wavelengths
- likely due to emission in 1 of the 2 reference positions.
Dominated by [CII] and [OI]

PACS SED Scan
CO excitation

PACS (central + mean; HEXOS) + SPIRE (21" + convolved 42", SAG 4):

12CO: Green: Measured
 Blue and red: With opacity correction

13CO: Blue: Measured
 Red: With opacity correction
Modelling: Meudon PDR code

Fit of CO excitation temperature by isobaric model:

- For \(E_{\text{up}} > 500 \text{K} \) : \(T_{\text{ex}}(\text{CO}) \) is independent of the radiation field
- Abundance and column density depend on the radiation field
- Low-J CO \((E_{\text{up}} < 300 \text{K}) \) overpredicted

\[P = 2 \times 10^8 \text{ K cm}^{-3}, A_v = 5 \]
Comparison to NGC7023

Orion Bar:
- Spitzer (Pilleri et al. 2011):
 - $N_H = 1.1 \times 10^{22} \text{ cm}^{-2} \leftarrow A_V = 6.1 \text{ mag}$
- Herschel:
 - [CII]: $8.5 \times 10^{-6} \text{ W m}^{-2} \text{ sr}^{-1}$
 - high-J CO: $T_{ex} = 140 \text{ K}, N = 4 \times 10^{17} \text{ cm}^{-2}$

NGC 7023:
- Spitzer:
 - $N_H = 2.0 \times 10^{22} \text{ cm}^{-2} \leftarrow A_V = 11.3 \text{ mag}$
- Herschel:
 - [CII]: $8.6 \times 10^{-7} \text{ W m}^{-2} \text{ sr}^{-1}$
 - high-J CO: $T_{ex} \sim 110 \text{ K}, N = 6 \times 10^{16} \text{ cm}^{-2}$
Modeling: KOSMA-τ PDR Code

Based on Orion Bar picture from Hogerheijde et al. (1995):

H II region

thermal radiocont. vibrational H_2 molecules

background molecular cloud

0.05 pc

0.6 pc

Trapezium Stars

$\Delta \alpha = -20$

$\Delta \alpha = 0$

$\Delta \alpha = 20$

$\Delta \alpha = 40$

$\Delta \alpha = 60$
Modeling: KOSMA-τ PDR Code

2-Component clumpy model

- assume stratification of 2 clumpy layers
- deeper layer sees weaker FUV field due to attenuation
- neglect mutual shielding and shadowing

yellow: closer to the FUV source
beige: further away from the FUV source
Modeling: KOSMA-\(\tau\) PDR Code

2-Component clumpy model:

- Diffuse:
 - \(n = 2.7 \times 10^4\) cm\(^{-3}\)
 - \(\chi = 3 \times 10^4\)
- Dense:
 - \(n = 7 \times 10^6\) cm\(^{-3}\)
 - \(\chi = 2000\)

- model mass: \(0.26\, M_\odot\)

\(\rightarrow\) matches observed col. density of \(6.5 \times 10^{22}\) cm\(^{-2}\) on \((9.6''\)^2\) pixel

Result:

- \(^{12}\)CO lines fitted up to \(J=15-14\), \(J>20\) overpredicted, \(^{13}\)CO well reproduced
- fine structure lines reproduced ([OI] 63\(\mu m\) overestimated due to opt. thick.)
Summary

- High-J CO excited in all three PDRs in spite of moderate average gas temperatures.
 - Explained by enhanced H_2 formation rates at high temperatures through Eley-Rideal mechanism
- Still no comprehensive fit to full CO ladder and spatial stratification structure
- Combination of multiple density components needed
 - Nature of dense component?
 - Filaments vs clumps?
 - Small dense components must be transient
 - Evaporating?
 - How many of these structures are needed?
Summary

• PDR model fits

 – Major progress made thanks to NGC7023 and Orion Bar
 – Need for a two component model:
 • diffuse gas traced by PAH and C+
 • dense component for warm molecular emission (CO, OH, H$_2$, ...)
 – need to form H$_2$ in the warm layers (Eley-Rideal mechanism)
 – still challenging to get a good fit for CO (T_{ex} and N)
 – difficulties on the description of geometry and local physical conditions.
 • predicted transitions on too small scales
 → no stratification would not be observable
 – dense components: → better use KOSMA-τ approach
Summary

But:

- Fits to integrated line intensities miss all the information contained in the line profiles!
 - Assumption of equal line profiles for optically thin tracers is wrong!
 - Self-absorption, outflow wings, turbulence, advection flows, pressure gradients

- More sophisticated models needed
- Modelling/interpretation has only started