The CO ladder in PDRs from HEXOS and WADI observations

V. Ossenkopf, C. Joblin, M. Röllig

Exciting CO, Leiden, February 29, 2012

Questions

Relevant for CO-ladder workshop

Energy balance in PDRs:

- distinguish role of UV radiation from shock heating
- gas heating efficiency
- role of different coolants and dust heating and cooling

Example 1: DR21C

Marston et al. (2007, Spitzer)

- Central HII region
- Collimated outflow to SW, blister to NE
- Ridge in the front
- PDR around HII region and outflow cavities

• Line profiles allow to:

- Distinguish line intensities from different velocity components
- Optical depth correction of line intensities
- Exclude outflow wings and foreground components in PDR model fit
 - ambiguous!

HIFI observations of high-J lines of CO and HCO⁺ isotopologues
comparison with ground-based low-J lines

- Spherical clumps

 → Layering of species and temperature structure as function of UV field
- Recent improvements:
 - Eley-Rideal H₂ formation
 - Arbitrary dust properties
 - Full isotopologue network

- Ensemble of clumps
 - Broadening of excitation ladder

Model for clumpy structure of PDR required

PDR model fit to all lines:

- New HIFI data show two distinct UV fields: $10^5 \chi_D$ and $300 \chi_D$
- Dense clumps facing the blister outflow
 - + clumpy large scale distribution

DR21C

Model for clumpy structure of PDR required

PDR model fit to all lines:

- New HIFI data show two distinct UV fields: $10^5 \chi_D$ and $300 \chi_D$
- Dense clumps facing the blister outflow
 - + clumpy large scale distribution

No shock component needed !

Example 2: NGC 7023

- Iris nebula
- Focus here on Northern PDR (H₂-peak)

Misty (2004)

Spitzer IRAC (Joblin et al. 2008)

Line profiles

Compare 3 data sets: - HIFI

- CO

• Gerin et al. (1998)

- ¹³CO(1-0) and C¹⁸O(1-0) from PdBI

• Pety et al. (2010)

Geometry: shell-like structure with reabsorption by colder gas

PACS spectroscopy

Cross-calibration extremely tricky • Ongoing

Example: CII • HIFI: 6.0x10⁻³ erg/(cm² s sr) • PACS: 8.6x10⁻³ erg/(cm² s sr)

CO (15-14) line intensity on the Spitzer 8µm map

PACS matrix overlaid on the telescope PSF 75 μm (blue) and 150 μm (red)

Modelling: Meudon PDR code

NGC7023: PDR code results

	Instru ment	Flux [W m-2 sr-1]	Flux with correction	PDR P=3E6	PDR n=3E5	PDR n=7E5	P=3E6+n=3E5	P=3E6+n=7E5	Observation	
CII	PACS	8.60E-07		5.90E-07	4.70E-07	3.00E-07	1.1E-06	8.9E-07	8.60E-07	Extended
CII	HIFI	6.00E-07								Extended
OI-145 (PACS)	PACS	4.90E-07		2.10E-07	6.40E-07	6.50E-07	8.5E-07	8.6E-07	4.90E-07	Extended
13CO (5-4)	HIFI	8.00E-10	4.00E-09	4.70E-09	1.50E-09	2.40E-09	6.2E-09	7.1E-09	4.00E-09	Filament
13CO (8-7)	HIFI	3.70E-09	1.20E-08	1.50E-10	1.90E-10	7.40E-10	3.4E-10	8.9E-10	1.20E-08	Filament
13CO (10-9)	HIFI	5.30E-09	1.40E-08	3.00E-12	7.40E-11	4.30E-10	7.7E-11	4.3E-10	1.40E-08	Filament
C18O (5-4)	HIFI	1.60E-10	8.00E-10	1.00E-09	1.00E-10	1.60E-10	1.1E-09	1.2E-09	8.00E-10	Filament
C18O (9-8)	HIFI	2.90E-10	8.30E-10	3.20E-12	7.30E-12	3.00E-11	1.1E-11	3.3E-11	8.30E-10	Filament
HCO+ (6-5)	HIFI	6.30E-11	3.30E-10	2.30E-11	3.00E-10	3.00E-09	3.2E-10	3.0E-09	3.30E-10	Filament
CH*	HIFI	1.40E-10	7.40E-10						7.40E-10	Filament
CH+ (1-0)	HIFI	6.40E-11	2.10E-10	2.50E-11	9.10E-09	1.60E-08	9.1E-09	1.6E-08	2.10E-10	REABSORPTION
CH+ (2-1)	PACS	7.20E-09	8.40E-09	3.40E-11	1.60E-08	3.20E-08	1.6E-08	3.2E-08	8.40E-09	Extended/filament?
CH+ (3-2)	PACS	1.00E-08		3.30E-11	1.70E-08	3.30E-08	1.7E-08	3.3E-08	1.00E-08	Extended/filament?
CO (9-8)	HIFI	3.00E-08	8.10E-08	2.70E-09	9.50E-09	5.40E-08	1.2E-08	5.7E-08	8.10E-08	Filament
CO (15-14)	PACS	3.35E-08	3.89E-08	1.40E-13	3.10E-09	6.00E-08	3.1E-09	6.0E-08	3.89E-08	Filament
CO (16-15)	PACS	2.03E-08	2.33E-08	6.90E-14	2.50E-09	5.60E-08	2.5E-09	5.6E-08	2.33E-08	Filament
CO (17-16)	PACS	1.63E-08	1.90E-08	4.00E-14	1.90E-09	5.00E-08	1.9E-09	5.0E-08	1.90E-08	Filament
CO (18-17)	PACS	9.60E-09	1.02E-08	2.80E-14	1.50E-09	4.30E-08	1.5E-09	4.3E-08	1.02E-08	Filament
CO (19-18)	PACS	3.60E-09	3.70E-09	2.30E-14	1.10E-09	3.50E-08	1.1E-09	3.5E-08	3.70E-09	Filament
H2 (v1J3-v0J1)		2.10E-07	2.60E-07	2.30E-08	2.60E-07	6.60E-07	2.8E-07	6.8E-07	2.60E-07	Filament
S(1)		1.10E-07	1.10E-07	2.20E-07	3.80E-07	4.30E-07	6.0E-07	6.5E-07	1.10E-07	Filament
S(2)		6.90E-07	7.30E-07	1.70E-07	4.70E-07	5.70E-07	6.4E-07	7.4E-07	7.30E-07	Filament
S(3)		9.30E-07	1.00E-06	3.00E-08	1.60E-06	2.50E-06	1.6E-06	2.5E-06	1.00E-06	Filament
S(4)		1.70E-07	2.20E-07	5.40E-09	4.90E-07	8.60E-07	5.0E-07	8.7E-07	2.20E-07	Filament
HD (1-0)		1.70E-08								
eVSGs		9.60E-06								Extended/filament?
PAH0		9.80E-05								Extended/filament?
PAH+		4.20E-05								Extended/filament?
PAHx		1.30E-05								Extended/filament?

- Reasonable fit by two-component model
- But: high-J CO isotopologues still much stronger than predicted
- Problem of plane-parallel setup: stratification not resolvable ($A_v = 1 \rightarrow 3''$ for 10^5 cm^{-3})

Example 3: The Orion Bar

To be clumpy or not to be clumpy?

FORECAST: 19.7 and 37µm (Shuping et al. 2012)

CO 6-5 (color), ¹³CO 3-2 (white contours), OI 1.32 μ m (red), H₂ v=1-0 S(1) (black), H¹³CN 1-0 (blue) (Lis & Schilke 2003)

HIFI central position: 5h35m20.81s -5d25m17.1s

Orion Bar

Full HIFI spectral scan:

- CO excitation flat up to J=15
 - Excitation increasing in energy
 - Turn over around 700K
 - PACS detection up to J=22

Integrated HIFI line intensities for CO isotopologues and CI,CII:

Top: in integrated intensities vs. frequency

Bottom: radiated energy vs. excitation energy

Orion Bar

Full HIFI spectral scan:

- Lines Gaussian, but:
 - Line width strong function of J
 - also for optically thin species
 - Larson-like dependence (?)
 - Contradiction to normal modelling approach

Top: integrated HIFI line intensities for CO isotopologues and CI,CII

Bottom: Corresponding measured line width

Spatial structure

¹³CO 3-2

Very smooth distribution •

PACS SED Scan

Problem:

- negative continuum flux in some spaxels at long wavelengths

- likely due to emission in 1 of the 2 reference positions.

PACS SED Scan

Dominated by [CII] and [OI]

CO excitation

PACS (central + mean; HEXOS) + SPIRE (21" + convolved 42", SAG 4):

¹²CO: Green: Measured Blue and red: With opacity correction ¹³CO: Blue: Measured Red: With opacity correction

Modelling: Meudon PDR code

Fit of CO excitation temperature by isobaric model:

- For $E_{up} > 500K : T_{ex}(CO)$ is independent of the radiation field
- Abundance and column density depend on the radiation field

Comparison to NGC7023

2-Component clumpy model

- assume stratification of 2 clumpy layers
- deeper layer sees weaker
 FUV field due to attenuation
- neglect mutual shielding and shadowing

yellow: closer to the FUV source

beige: further away from the FUV source

 \rightarrow matches observed col. density of 6.5 10²² cm⁻² on (9.6")² pixel

Result:

- ¹²CO lines fitted up to J=15-14, J>20 overpredicted, ¹³CO well reproduced
- fine structure lines reproduced ([OI] 63µm overestimated due to opt. thick.)

- High-J CO excited in all three PDRs in spite of moderate average gas temperatures.
 - Explained by enhanced H₂ formation rates at high temperatures through Eley-Rideal mechanism
- Still no comprehensive fit to full CO ladder and spatial stratification structure
- Combination of multiple density components needed
 - Nature of dense component ?
 - Filaments vs clumps ?
 - Small dense components must be transient
 - Evaporating ?
 - How many of these structures are needed?

- PDR model fits
 - Major progress made thanks to NGC7023 and Orion Bar
 - Need for a two component model:
 - diffuse gas traced by PAH and C+
 - dense component for warm molecular emission (CO, OH, H₂,...)
 - need to form H_2 in the warm layers (Eley-Rideal mechanism)
 - still challenging to get a good fit for CO (T_{ex} and N)
 - difficulties on the description of geometry and local physical conditions.
 - predicted transitions on too small scales
 → no stratification would not be observable
 - dense components: \rightarrow better use KOSMA- τ approach

But:

• Fits to integrated line intensities miss all the information contained in the line profiles!

- > Assumption of equal line profiles for optically thin tracers is wrong!
- Self-absorption, outflow wings, turbulence, advection flows, pressure gradients
- More sophisticated models needed
- Modelling/interpretation has only started