

49

48 | [deg]

Be careful with observational data

Volker Ossenkopf-Okada

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

Volker Ossenkopf-Okada, KOSMA

EWASS 2017

Prague

06/28/17

47

1

The most simple problem

• What is the column density of an interstellar cloud?

G28.37+00.07: H₂ column density (SED 160-500 μ m) 0.15 0.1 0.05 0.05 0.05 28.45 28.45 28.4 28.45 28.4 28.35 28.3 (cm⁻²]

Schneider et al. (2015)

- What to observe to trace the column density?
- What is the "boundary" of a cloud?

Def.: synonymous here $N_{\rm H} = N({\rm H} + 2{\rm H}_2) = 1.9 \times 10^{21} {\rm cm}^{-2} \equiv A_{\rm V} = 1.0$

Masses, turbulent structure, gravitational stability:

• Turbulent clouds:

EWASS 2017,

Example

IRDC G28.37+0.07:

 Analysis of extinction data and Herschel column density maps:

• Schneider et al. (2015):

only power law tail

0.15

0.1

0.05

gal. lat.

 Kainulainen & Tan (2013), Lim et al. (2016): purely log-normal

- For same region!

Volker Ossenkopf-Okada, KOSMA

0.01

Prac

0.10 Σ (g cm⁻²) 1.00

EWASS 2017

Observational artifacts

Possible problems in observations and data handling

- Finite spatial resolution
- Finite map size
- Noise
- Interferometric observations
- Line-of-sight contamination

Volker Ossenkopf-Okada, KOSMA

EWASS 2017

Ossenkopf et al. (2016)

Prague

Main problem

- Line-of-sight contamination
 - Contamination does not create separate peak
 - Lognormal part "compressed"
 - Power-law tail is steepened
 - Original parameters can be recovered if contamination is known
 - Reasonable correction already by constant screen subtraction
 - Critical input: known contamination
 - What material is part of the cloud?
 - What is behind the cloud, what is in front of it?

Effect of contamination subtraction for G28.37 (Lim et al. (2016)

EWASS 2017.

Application of LOS correction

- Lim et al. (2016):
 - Contamination correction for G28.37
 - Assumes average Galactic column density profile
 - High contamination: $A_V > 30$
 - Possibly over-correction
 - Creates negative areas
 - Simulation of "over-correction":

Contamination subtracted map

- Over-correction creates PDF that seems log-normal, but has powerlaw tail
- Schneider (2013) analysis assumed only A_v ≈ 7 contamination
- What is the true LOS contamination?

Volker Ossenkopf-Okada, KOSMA

EWASS 2017,

Prague

LOS confusion

- Large-scale spatial distribution
 - Dust emission shows little extended material, but many individual features

- Distinction needs separation along the line of sight
 - Only possible when using velocity information from atomic or molecular lines

8

lat.

gal.

Contamination and line profiles

Comparison of line profiles going beyond the velocity range analysed in Beuther et al. (2014)

- IRDC G48.66 velocity component only minor contribution in total column!

Contamination and line profiles

Contamination correction requires detailed chemical analysis of all velocity components

Volker Ossenkopf-Okada, KOSMA

EWASS 2017,

Prague

Observation: Draco

- No confusion within the Galactic plane
- Column density from SED fit to Herschel SPIRE (250µm-500µm) and PACS (160µm) maps
- Two peaks, separation at $A_V \approx 0.3 \rightarrow assignment$ to phase transition $HI \rightarrow H_2$

Total column density

Column-density PDF (Schneider et al. subm.)

Some closer look

Draco column density

• Low column density peak stems from low-flux regions without reliable temperature determination

• What do we really see there?

Some closer look

Emission from "empty" regions

- Contamination by galaxies
 - Partially resolved
 - Resolved galaxies easy to remove
 - Cosmic Infrared Background (CIB)

Zoom in the 500 μ m SPIRE map before and after removal of resolved galaxies

/olker Ossenkopf-Okada, KOSMA	EWASS 2017,	Prague	06/28/17	14

Measure emission from "empty" regions

Zero-level in the maps

- Implemented in HIPE
 - large-scale corrections, from Planck data
- Determine from noise-dominated intensity distribution
 - Linear PDF
- Result:
 - 250µm: 1.7 MJy/sr
 - CIB subtracted: 0.9 MJy/sr
 - 350µm: 1.4 MJy/sr
 - CIB subtracted: 0.7 MJy/sr
 - 500µm: 0.7 MJy/sr
 - CIB subtracted: 0.3 MJy/sr
 - (CIB provides half of the emission.)

Linear PDF of the intensities at 350µm. The peak is governed by the large "empty" regions.

Emission from "empty" regions

Corresponding column density

• SED fit to zero level after CIB subtraction:

$$\beta = 2.0 \rightarrow T = 12.1 \text{ K}, N_H = 2.0 \times 10^{20} \text{ cm}^{-2} \cong A_V = 0.1$$

- $\beta = 1.8 \rightarrow T = 12.8 \text{ K}, N_H = 1.6 \times 10^{20} \text{ cm}^{-2} \cong A_V = 0.08$

- Resulting new PDF
 - No double peak any more!
 - Column densities below 3 10²⁰ cm⁻², i.e. A_V = 0.15 very questionable!
- Origin of zero-level emission?
 - Unclear

Contamination correction from line profiles?

Only IVC velocity component shows up in dust: Dust-to gas ratio not constant!

EWASS 2017,

```
Prague
```

06/28/17

Contamination correction from line profiles?

Compare spatial distribution with HI and CO

CO-based column density (with dust contours)

16^h 50^m

R.A.

Total HI column density map

40

06/28/17

- Molecular gas (CO) well correlated with dust column density, but total column low.
- Total HI distribution very different
 - Not consistent with extended zero offset
- → Every tracers sees a somewhat different column density!
 - Even dust does not trace the full column density

Prague

17^h 00^m

1019 CM⁻²

4.0×10²⁰

3.5×10²⁰

3.0×10²⁰

2.5×10²⁰

 2.0×10^{20}

1.5×10²⁰

Way out

Combine information from different velocity-resolved tracers

Volker Ossenkopf-Okada, KOSMA

EWASS 2017,

Prague 06/28/17

Chemical differentiation – consequence of varying density + UV field

Photodissociation regions:

- Layering of chemical transitions and temperatures
- Molecules dissociated at the cloud surfaces.
- Complex molecules only in the dense cores.

• Abundance of selected species as a function of optical depth from the cloud surface

(KOSMA-τ PDR model with $\chi = 1$, M_{tot} = 100M_O, n = 500cm⁻³: Röllig et al. 2006)

06/28/17

Exploit chemical differentiation

- Compare spatial distribution of many differentiated species
- Use dependence on UV flux as a distance estimate from illuminating sources
 - Provides 3-D model of the source
 - Solves contamination problem

E

Exploit chemical differentiation

- Compare spatial distribution of many differentiated species
- Use dependence on UV flux as a distance estimate from illuminating sources
 - Provides 3-D model of the source
 - Solves contamination problem

Derived 3-D structure (Chevance et al. 2016) Red circle = main illuminating source

22

06/28/17

Multi-source analysis

Combine with analysis of temperature gradients from radiative transfer

So far velocity information not fully exploited yet!

EWASS 2017.

The future

Different species and fully exploit velocity information

Volker Ossenkopf-Okada, KOSMA

EWASS 2017,

Prague

[CII]

The future

Different species and fully exploit velocity information

- 5-D problem:
 - Extended maps for many species (n > 10)
 - Fit individual velocity components
 - GAIA provides accurate 3-D locations of illuminating sources

\rightarrow Calibrate your 3-D models!

Observed data always give you the whole picture

- You have to extract the limited view of your source of interest
 - No controlled boundary conditions
 - LOS confusion is unavoidable
 - Abundance and temperature variations along the LOS are normal
 - Velocity information helps exploit the full line profiles

Conclusions

Observed data never give you the whole picture

- All observations provide a very limited dynamic range only
 - Line emission scans only a narrow density range
 - Optical depth + subthermal excitation
 - Noise and non-linearities are at best at the level of few percent
 - There are (almost) no absolute measurement
 - The sky reference is usually "polluted" as well
 - Large scale emission is extremely difficult to quantify
- Log-scales are often misleading!

