



# The role of radiative triggering for star-formation

V. Ossenkopf, M. Röllig, N. Schneider, P. Pilleri, B. Mookerjea, Z. Makai, Y. Okada



Page 1

### Is star-formation significantly triggered?

- dynamic impact from winds and outflows
- → dispersion → prevents SF
- → compression → triggers SF
- UV radiation heats the gas
- → temperature/pressure increase
  → prevents SF
- UV radiation dissociates the gas
- change of chemical structure
- → remove cooling agents → prevents SF
- → create cooling agents → triggers SF



Pillars in Rosette (HOBYS team: Motte et al. 2010)

#### Total net effect ?



### **Observational evidence**

#### **Clear indication of sequential star formation:**

- Example: Cep B
- Age gradient of b [°] stars towards Cep B 2.







### **Observational evidence**

### Sequential star-formation in Cep B:



Cep B structure (Moreno-Corral et al. 1993)

2 embedded HII regions (Testi et al. 1995)



### Radiative impact: what do we expect?

### Theory:

- Radiation pressure
- Thermal pressure of heated gas →
  - Ionization and photo-chemistry
    - → Photon-dominated regions (PDRs)
  - Compression of clouds
  - Dispersion





### Radiative impact: what do we expect?

### **Dynamics:**

- Photo-evaporation of PDRs  $\rightarrow$  flow of ionized material
- High pressure zone at PDR surface  $\rightarrow$  cloud compression
  - $\rightarrow$  shock fronts
- Ionization front "eats" into molecular cloud
- $\rightarrow$  pillar formation

### **Unknowns:**

- Advection flows
- Impact of turbulence

3-D MHD model by Henney et al. (2009)



### **Observational verification**

Look for characteristic velocity flow patterns of triggered collapse

Chemical structure has to be taken into account, but can be exploited







### **Example 1: Rosette**



PACS/SPIRE map of Rosette (Motte et al. 2010, Schneider et al. 2010)

Investigation of individual pillars: Region 1+2



Page 8

### Rosette



#### Region 1 - high resolution:

- High density pillars
  - Temperature low from better cooling, heating only at surface
  - No SF in pillars
- (Schneider et al. 2010)







### Rosette

#### Region 1+2 - cuts through pillars to trace velocity structure:

Position-velocity diagrams

#### 2 interfaces:



#### [CII] (contour) on CO 9-8 (color)



2 separate velocity components, i.e. 4 instead of 2 surfaces

- CO only from dense gas
- No detection of a systematic flow





(Moreno-Corral et al. 1993)

CO 11-10 (black contours) over <sup>13</sup>CO 1-0 (colors) (Mookerjea et al. 2012)

50

0

-50

100

CO 11-10 (black contours) over [CII] (colors)

10<sup>s</sup> α (J2000) /"

22<sup>h</sup>57<sup>m</sup>20<sup>s</sup>

#### Embedded UC-HII-region • heats surrounding gas

-120

induces photon-dominated chemistry → trigger of SF?

-100

62°35'00'

00<sup>s</sup>

### **Example: Cep B**

#### Does the embedded HII-region compress/disperse the surrounding gas?



- Global velocity gradient changed around HII region
- No large-scale impact



Velocity structure:



Ablating wind from S155 external HII region

150

100

50

Dense gas not affected by radiation

#### Volker Ossenkopf Heidelberg, Dec 4, 2013



#### Page 13

### **Example: Cep B**

# Is there more star-formation at high radiation fields?

- → How to trace the spatial distribution of star-formation?
  - Look for high densities
    - → Column density PDFs
  - → Look for small structures
    - → Δ-variance
  - Infall/outflow signatures
    - Velocity structure analysis

#### Rosette:

Extinction map from Herschel observations (Motte et al. 2010, Schneider et al. 2011)

### **Statistical approach**





## **Column density PDFs**



High column density excess from gravitational collapse

- strongest in center region (3),
- weaker in PDR regions (1) and (2)



### Analysis of significant scales

#### Column densities in Rosette:



#### • Main ridge in center forms dominant structure

• No small-scale enhancement at PDR interfaces

#### **Δ-variance spectra:**

 Gravitational collapse enhances small-scale structures





Mach number derived from loc velocity dispersion (Csengeri et al. 2013)

# The velocity structure



- Very localized line broadening at PDR surface
  - Affects little gas volume
- Main line broadening from ongoing SF activity in center region



### Summary

- The layering of species in PDRs is quantitatively understood
- Pressure jump at the surface confirmed
  - But no detection of radiative core compression
- UV creates local heating and streams
  - Low-density gas is dynamically affected by UV radiation
  - But no large-scale collapse
  - Significant dispersion of gas
- Triggered SF around HII regions only in favourable conditions
  - Pillar formation rarely means star-formation triggering
- Statistically, we find no significant radiative triggering of star-formation on global scales.
- In contrast, sequential star formation is common.
  - Natural outcome of filament formation in titled colliding flows

