

GREAT science from SOFIA

Volker Ossenkopf-Okada, I. Physikalisches Institut, Universität zu Köln

Volker Ossenkopf -Okada

DOA group meeting

Later

Beijing

3/7/17

Overview

- SOFIA
 - Telescope
 - Operations
 - Instruments
- (up)GREAT results
 - First detections
 - Velocity-resolved spectra
 - The [OI] ground-state line
 - Gas kinematics and composition

Outlook

(Disclaimer: Galactic science only here)

Beijing

2

SOFIA

Stratospheric Observatory for Infrared Astronomy

- Boeing 747SP (Special Performance)
- Operating altitude: 11-14km
 - Above 99.8% of the atmospheric water vapor
 - mainly from Palmdale/CA
- US/German project
 - 80/20 in cost & time
- Fully operational since mid 2014

Beijing

3/7/17

DOA group meeting

Telescope

- Telescope:
 - Primary Mirror:
 - 2.7 meters
 - λ > 0.3µm
 - Pointing accuracy ~1"
 - Diffraction
 limited for
 λ>20 μm

MPIfR KOSMA MPS DLR-Pf Bulk head Guide cameras

- Chopper: 10' at 2Hz
- optics temperature 240 K

Science

instruments

Nasmyth tube

Operations

- Flexible world wide deployment (Southern sky from New Zealand)
- Typical observing flight duration: 10 hours (8-9 hours at observing altitude)
- 100 flights per year in routine operation
- Planned lifetime 20 years +
- SOFIA Flight Operations Center
 - Armstrong Flight Research Center Dryden, Palmdale, CA

SOFIA Operations:

Volker Ossenkopf -Okada

DOA group meeting

Beijing

3/7/17

Flight planning

Flight Plan Name: File: SS2_01_RVSM110325.fp Flight ID: 2011/04/06 Est. Takeoff Time: 2011-Apr-06 03:35 UTC Est. Landing Time: 2011-Apr-06 13:15 UTC Flight Duration: 09:40 Weather Forecast : 0000 Wed Mar 09 2011 - 1200 Fri Mar 11 2011 UTC Saved: 2011-Mar-25 18:41 UTC User: rklein

What do we see?

• Spectrum of a star-burst galaxy

Wavelength coverage

Volker Ossenkopf -Okada

DOA group meeting

Beijing

3/7/17 10

- FORCAST (Faint Object IR Camera for the SOFIA telescope)
 - Simultaneous Dual Channel Imaging and Grism Spectroscopy (5–25 μm and 25–40 $\mu m)$
- Dusty circumnuclear ring in the Galactic Center (3 pc diameter)
- Large dust production in Sgr A East supernova remnant (dust surviving shock)

Lau et al. (2013), 19 31 37 micron

Lau et al. (2015)

DOA group meeting

- JA----
- HIPO (High Speed Imaging Photometer for Occultations)
 - Visible Light High-Speed Camera (0.3–1.1 µm)
 - used in combination with FLITECAM
 - Main purpose: stellar occultations: Surface structure of a solar system object (planetary atmospheres and rings, comets)
- 2 Pluto occultations (2011, 2015):
 - Density profile and spectroscopy of atmosphere
 - No change since 2011
 - Haze component required to reproduce light curves

Toward Star PLUTO Motion of Pluto Shadow of Pluto Shadow of Pluto EARTH

MPIfR

MPS

KOSMA

DLR-Pf

Courtesy of Amanda Bosh, MIT

13

3/7/17

Volker Ossenkopf -Okada

DOA group meeting

Beijing

- FIFI-LS (Far Infrared Field-Imaging Line Spectrometer)
 - Dual Channel Integral Field Grating Spectrometer (50–110 µm; 100–200 µm)

MPIfR

MPS

KOSMA

DLR-Pf

- Spectral line mapping of [CII] 158 μm, [OI] 63, 145 μm, [OIII] 52, 88 μm
- Absolute atmospheric calibration still being worked on

- FLITECAM (First Light Infrared TEst CAMera)
 - Near Infrared Imaging and Grism Spectroscopy (1–5.5 $\mu m)$
 - can be used in combination with HIPO
- PAH/Pa α emission and search for Brown Dwarfs
- SN 2014J (M82): near-IR spectrum, evolving with time (ionized Cobalt lines)

MPIfR

MPS

Vacca et al. 2015

3/7/17

Beijing

KOSMA

DLR-Pf

• Pluto occultation (June 29, 2015)

DOA group meeting

MPIfR KOSMA MPS DLR-Pf

- EXES (Echelon-Cross-Echelle Spectrograph)
 - High Resolution (R=10⁵) Echelle Spectrometer (5–28 μm)
- 28/17µm para/ortho-H₂ rotational mapping for Jupiter and several star-forming regions
- Water in protoplanetary disks (AFGL 2591)
 - 10 lines detected, one from $H_2^{18}O$
- D/H ratio in water on Mars •

17 and 28µm maps of Jupiter (de Witt et al.)

AFGL 2571 water spectrum compared to Vega (Indriolo et al. 2015)

3/7/17

25

- HAWC+ (High-Angular resolution Wideband Camera)
 - Polarimeter with 5 Channels (53, 63, 89, 154, 214 µm)
- Commissioned 2016
 - Mapping of W3 and OMC1
 - Maximum degree of polarization in the 5 bands: 1.6-2.3%

Linear polarization maps of W3 and the Orion Nebula at 89 μm (Dowell et al. In prep.)

Beijing

17

GREAT

German REceiver for Astronomy at Terahertz-Frequencies

- Heterodyne receiver
 - Single pixel
 - Dual channel
 - Two frequencies simultaneously
 - 1.2 4.7 THz
 - in 5 frequency-bands

- Spectrometers: XFFTS
 - 64000 channels
 - Bandwidth: 2.4GHz
 - Resolution: 44kHz (R = 10^8)

Volker Ossenkopf -Okada

DOA group meeting

Beijing

upGREAT: GREAT multiplexed

- 2 hexagonal arrays, operating in parallel
 - 2 x 7 low freq. Pixels (LFA)
 - 2 x 7 high freq. Pixels (HFA)
 - or combinations with GREAT single pixel detectors

MPIfR

MPS

KOSMA

DLR-Pf

GREAT

Frequencies:

Channel		Frequencies [THz]	Lines of interest	T _{min} [K] / BW _{3dB} [GHz]
low-frequency	L1	1.26 – 1.52	[NII], CO series, OD, H_2D^+	500 / 2.5
low-frequency	L2	1.82 – 1.91	NH ₃ , OH, CO(16-15), [CII]	700 / 2.5
mid-frequency	Ma/b	2.49 – 2.56, 2.67	⁽¹⁸⁾ ОН(² П _{3/2}), HD	1500 / 2.5
high-frequency	Н	4.74	[OI]	800 / 2.5
upGREAT	LFA	2x7 (1.9 – 2.5)	CO series, [CII], [OI], OH	1000 / 3.3
upGREAT	HFA	2x7 (4.74)	[OI]	1400 / 3.3

• Beams:

- 22" (1.26 THz), 6.6" (4.74 THz)
- Future: 4GREAT
 - Additional 2 channels: 0.490 0.635 THz, 0.890 1.100 THz
 - 4 pixels at simultaneously: new channels + L1 + L2
 - Can be operated in parallel to H or HFA
 - Commissioning: May 2017

GREAT science

- Focused on main cooling lines:
 - -[OI], [CII]
- OH, HD
- High-J CO transitions
- Hydrides
- Covers HIFI-gap

Bergin (2008)

Governed by frequency coverage:

- Gap between HIFI bands
- Frequencies above 1.9THz
- Abundant species:
 - Light Hydrides

Courtesy: Caselli (2015)

OD:

- Comparison to APEX observations of HDO 1_{11} - 0_{00}
- OD/HDO = 17 ... 90 depending on assumed excitation conditions
 - Too high compared to model predictions

Parise et al. (2012)

para-H₂D⁺:

- IRAS16293-2422
 - Measure o/p ratio in H₂ through o/p of H₂D⁺
 - At low T $p-H_2D^+ + o-H_2 \rightarrow o-H_2D^+ + p-H_2$ dominates over back reaction
 - Chemical clock

→ Cold gas in dense envolope for 5 10^5 - 5 10^6 a

Brünken et al. (2014)

v_{LSR} (km/s)

MPIfR

MPS

KOSMA

DLR-Pf

DOA group meeting

Beijing

SH:

• In absorption towards W49N, W31C, W51, G29.96-0.02, G34.3+0.1

Neufeld et al. (2015): Spectral fingerprint through A-doublet and HF split

• Several foreground clouds \rightarrow spiral structure

50

50

50

SH:

- SH/H₂ = 5 ... 26 10⁻⁹
- Large variation
- SH only produced at elevated temperatures
 - Requires shock or turbulence-dissipation models (TDR)
 - But so far they fail to explain H₂S/SH ratio

Neufeld et al. (2015)

Volker Ossenkopf -Okada DOA group meeting

High-resolution spectra

OH absorption:

- 119µm ground state transitions
 - First >2THz spectroscopy
 - Absorption towards W49N
 - Spectral features of Sagittarius arm

Г_{ть} [К]

- Discovery of ¹⁸OH
- OH saturated towards W49N
- $-X(OH)=10^{-7}-10^{-8}$

OH, ${}^{2}\Pi_{3/2}$, J = ${}^{5}/_{2} \rightarrow {}^{3}/_{2}$, ν_{0} = 2.514 THz 15 W49 Sagittarius spiral arm 10 5

H. Wiesemeyer - A&A 542 L7 (2012)

Ο

 $[OI] (^{3}P_{1} - ^{3}P_{2} = 63 \mu m)$

[OI] absorption:

Wiesemeyer et al. (2015)

- OH⁺ traces atomic, OH rather molecular diffuse gas
- [OI] traces both atomic & molecular diffuse gas, up to $A_V \sim 1 \text{ mag}$

Volker Ossenkopf -Okada

DOA group meeting

Beijing

3/7/17

28

$[OI] ({}^{3}P_{1} - {}^{3}P_{2} = 63 \mu m)$

[OI] ³P₁ -³P₂

Cooling budget of high mass YSOs:

• The Herschel view: Karska et al. (2014)

-Brightest source: G5.89-0.39

$[OI] {}^{3}P_{1} - {}^{3}P_{2}$

Great observations of G5.89-0.39:

- Complex [OI] profile with broad wings
- [OI] is main coolant:
 - 75% of total line luminosity
 - Strongly self-absorbed
 - High-velocity emission!
- The large scale molecular outflow is driven by atomic jets!
 - -10^{-4} M $_{\odot}/a$
- Spectral resolution is the key!
 - Explanation of FIR line deficit needs resolved lines

Leurini et al. (2015)

Conclusions

We are still at the very beginning!

- More new detections with (up)GREAT are to be expected! (e.g. $C_3^+...$)
- [OI] and [CII] spectra are complex
 - > traces velocity structure and foreground in a complex way
 - Emitted from CO-dark molecular gas
 - Gas distribution towards many sources poorly known
 - Large fraction of gas only seen in [CII] and cold OH
- Assessment of the full gas reservoir only from velocity-resolved observations of many species: at least CO, CI, CII, OI, OH, and OH⁺
- We need more observations!
- Third generation instrument selected:
 - > High Resolution Mid-InfrarEd Spectrometer (HIRMES)
 - Spectroscopy at wavelengths between 28 and 112 microns.

3/7/17

Cycle 6 call

- Observing period: Feb 2018 Jan 2019
- Call to be expected in March
- Proposal deadline: Probably early July
- 7 instruments will be offered:
 - EXES, FIFI-LS, FLITECAM, FORCAST, upGREAT, HAWC+, HIPO, and the FLITECAM/HIPO combination
 - Instruments for Southern deployment to be selected based on requests
 - SOFIA Impact Programs solicited
 - Multi-year programs
 - Joint US German Impact Programs

Details: http://www.sofia.usra.edu/Science/announcements.html