Updates on stability

V. Ossenkopf, I. Avruch, D. Teyssier

Status as of last colocation

Tests from long-term integrations in cycle 32

- 7 LO bands only
- Band 3a analysis affected by real astronomical line
- HSPOT predictions typically met
 - Large uncertainty in observations aiming at large binning widths
 - Often affected by insufficient statistics
 - Second-order Allan time irrelevant for any individual observation \rightarrow count only as overall average
- Drift is dominated by systematic effects
 - Thermal history of the instrument and the SVM has most impact
 - Could only be treated by scheduling constraints

HIFI Colocation

New measurements

Long-term integrations in four more LO bands

- Now 3 HEB bands covered
- More complete statistics

obsid	band	LO [GHz]	reference noise RMS [mK] ¹					
			bandwidth	1.6 MHz	2.7 MHz	7.3 MHz	30.0 MHz	144 MHz
1342213707	2a	643	1 GHz	6.0	4.7	2.9	1.5	0.72
			4 GHz	6.1	4.7	3.0	1.7	1.1
1342213728	2b	758	1 GHz	7.2	5.6	3.5	1.8	1.1
			4 GHz	7.3	5.7	3.8	2.6	2.6
1342214300	3a	814	1 GHz	7.4	5.7	3.6	2.0	1.3
			4 GHz	7.7	6.1	4.1	2.8	2.3
1342214322	3b	928	1 GHz	8.0	6.2	3.8	2.0	1.1
			4 GHz	8.1	6.3	4.1	2.4	1.8
1342213345	4a	995	1 GHz	13.0	10.1	6.2	3.2	1.8
			4 GHz	14.8	12.3	9.5	8.0	7.7
1342214383	5a	1145	1 GHz	35.4	27.3	16.9	8.7	4.4
			4 GHz	35.9	30.0	17.8	10.1	6.6
1342215849	5a	1177	1 GHz	40.0	30.9	19.1	9.8	5.0
			4 GHz	40.6	31.6	20.1	11.5	7.4
1342214400	6a	1457	1 GHz	78.5	61.4	39.8	24.9	20.3
			4 GHz	85.6	70.2	52.2	41.7	38.6
1342214451	6b	1667	1 GHz	53.3	41.3	25.6	13.4	7.4
			4 GHz	55.3	43.6	28.7	17.9	12.9
1342218415	7a	1720	1 GHz	54.4	42.3	26.8	15.3	10.2
			4 GHz	56.9	45.3	30.9	20.9	16.5

- Stability measurements around 1834GHz
 - · Make sure that new LO multiplier settings do not degrade stability

HIFI Colocation

1.000

Baseline RMS [K]

0.001

1.000

Baseline RMS [K] 0.10 0.010

0.001

0.04

0.02

0.00

Intensity -0.05

-0.06

-0.08

Ξ

10

 10^1

Bin size 1 channels

0.06

No binnning

Bin size 251 channels

5a 1145GHz 5a 1177GHz

Results

1.000

Baseline RMS [K]

0.001

1.000

Baseline RMS [K]

0.001

0.30

0.25

0.20

[Intensity [K] 0.15 0.10 0.05

0.00

-0.05

-0.10 LL 5000

.

6a

6b

Results

No binnning Binsize 11 Binsize 251

No binnning Binsize 11 Binsize 251

No binn ning Binsize 11 Binsize 251

<u>Results</u>

- Very good stability in 5a confirmed
 - Excellent reproducibility of result at somewhat higher frequency
- Good stability in band 6b
 - Radiometric behaviour up to binning widths of 30MHz
 - Erratic scaling for larger widths as usual
- Bad stability in 6a
 - In agreement with HSPOT predictions
 - Two thermal "events" visible in spectra
 - Possibly correctable by mixer-matching technique

Groningen – October 10 2011 - page 6

HIFI Colocation

Baseline RMS [K]

Baseline RMS [K]

Intensity [K]

No binnning _____ Binsize 11 _____ Binsize 251

No binnning

Binsize 11

Bineize 251

<u>Results</u>

Very bad stability in 7a-H

- Instable "spur" showing up after 80s
- Moving across IF

10

 10^{4}

- Polarization unusable
- "Normal" HEB stability for V
 - Thermal event visible
 - All binnings affected
 - Typical SW pattern

→ Measurement should be repeated/verified

Cesa

Netherlands Institute for Space Research

Waterloo

ดารม

CAISMI

NUI MAYNOOTI

<u>1834 GHz</u>

- New multiplier settings applied to kill spur
 - First measurements had indicated that stability is deteriorated
- Systematic fast stability measurements performed
 - One HRS subband only

HIFI Colocation

- Within the uncertainties the new settings are as good as the old settings
 - The C043 (new settings) stabilities are generally comparable to or better than C046 (old settings).
- The extremely bad stability in C046 at 1831GHz & 1833GHz is consistent with a moving spur.
 - Hit of HRS subband by chance.
 - The disappearance of the effect in the new settings proves that the purification works and helps the stability.
- Thermal history plays a big role
 - The repeat of the 1829 GHz test in C046 shows the strong effect.
 - An important clue may be hidden in 134226042. There we find a sudden onset of total-power spikes at t=280s with a strong impact on the stability parameters.
 - \rightarrow New multiplier settings released in CUS.

HIFI Colocation

Summary and Outlook

• Still very low number statistics

- More tests in DTCPs should still improve instrument knowledge.
- Focus on open points, like FSW.
- Band 7a test needs repetition.
- Bands 1, 4b, 7b still not covered.

HSPOT predictions typically met

- Large uncertainty in observations aiming at large binning widths
- Broad-line observations need to ask for large goal resolution and 4GHz reference bandwidth
- Drift is dominated by systematic effects
- Thermal history of the instrument and the SVM has most impact
 - Correlation of visible instability events with HK history may give further clues.

HIFI Colocation Groningen – October 10 2011 - page 10