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The start – building on the heritage of the Δ-variance

Measure the spatial density and velocity structure of interstellar clouds
 

Δ-variance: Probe the amount of structural variation on a scale l:

Stutzki et al. (1998), Ossenkopf, Krips, Stutzki (2008)
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The Δ-variance

 

But computation can use significance/weighting function w(r):

→ 

with
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The Δ-variance

Use of the weighting function pre-requisite
to deal with real observational data:

• Include effect of variable noise across 
the map

• Avoid edge-effects from finite map size

 

Δ-variance spectrum of 1.2 mm dust continuum 
map of ρ Oph by Motte et al. (1998) including 
irregular boundaries and a variable noise
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Main advantages of the Δ-variance

• Insensitive to 
edge effects, 

finite map sizes, 

truncation of emission in the mapped area, 

irregular boundaries

• Inclusion of information on reliability of every individual data point

• Analytic description of impact observational artifacts 
from telescope beam smearing 

instrumental noise.

• Extends usable dynamic range.

 

Impact of finite telescope beam and the typical 
S/N of observed data on the Δ-variance 
spectrum of a simulated, fully sampled 13CO 2-1 
map from an HD turbulence simulation. 
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Applications

Measure spatial scaling relations over a dynamic range covering more than 
three orders of magnitude and tracers of different phases of the ISM.

Cygnus X region as seen at 
8 μm by MSX overlaid with 
FCRAO 13CO 1→0 emission 
as black contours.

Schneider et 
al. 2011

Eventually measured 13CO 
1→0 map tracing the 
molecular gas
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Applications

Characteristic scales: 

• Self-similarity only in very small dynamic range  

β measured from resolution limit to first dominant scale

Origin of characteristic scales:

• geometry (e.g. length/width of filaments) 

Typical width of filaments is 0.1 pc, 

- corresponds to the sonic scale

• energy injection scales due to SNR shells, 
outflows, HII-regions ... 

4 pc could be the scale where the 
systematic velocity from a SN shock 
turns into turbulence

• tracer turns optical thick 

peak in the Δ-variance spectrum shows 

the 13CO „photosphere“  

at column densities > 1022 cm-2

resolution

4 
pc 40 

pc

Schneider et al.(2010)
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Dust and molecules

Comparison of the dust extinction map (from reddening of 2MASS sources) 
with the 13CO 1-0 emission map:

 

• The dust distribution follows a self-similar relation up to the size of the 
whole region

→ Prominent scales in 13CO due to 

Chemical transition from atomic to molecular gas ?

Line radiative transfer effects ?
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Radiative transfer effects

Full 3-D line radiative transfer using a two scale-approximation (Ossenkopf 2002):

Column density and 13CO 
mapsin different transitions 
for a large-scale driven 
hydrodynamic turbulence 
model (Heitsch et al. 2001).

 

At low densities and optical depths the transition is hardly excited; at high optical 
depths the variation of the velocity structure along the line of sight dominates the 
integrated line intensities.
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The X factor

Radiative transfer results in a variable conversion from column density to 13CO 
brightness for every pixel:

• Low-J lines turn optically thick above 1022 cm-2

• Higher-J lines are sub-thermally excited at low densities

→ Molecular lines are sensitive to a narrow density interval only 

Integrated intensity of the 13CO 1-0 (left) and 3-2 (right) transitions relative to the line-of-sight integrated 

LTE emissivity as a function of the column density in a collapsing large-scale turbulence model. 
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Side effect: pseudo-virialization

Result of a GAUSSCLUMPS decomposition of the original 3-D density cubes and 
the simulated position-velocity cubes:

The column density truncation by optical depth effects creates clumps that 
artificially follow a virial-equilibrium relation.
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Δ-variance spectra

•

• The low-J CO transitions always trace the large scale distribution only.

• High-J transitions “see” the dense clumps

→ no diagnostics of true density structure or gravitationally collapse state
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The velocity structure

The Δ-variance can be applied in the same way to velocities

• Velocity channel analysis (VCA, see Sun et al. 2006) 

• Centroid maps

Centroids contain the convolved information about density and velocity 
variations:

There is no direct match between line centroid scaling and the properties of 
the underlying turbulent velocity field. 
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The velocity structure

When assuming 3-D isotropy, deconvolution of the true velocity spectrum is 
possible when knowing

• the centroid spectrum

• the projected density spectrum

• the average density

Ossenkopf, Esquivel, Lazarian, Stutzki  (2006)
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The velocity structure

Application:
 

• Universal power law from 0.03 pc to 3 pc

 deviation from self-similarity around 5 pc (3°).

• β
centroid

 = 2.8 . . . 3.2 ≈ β
vel-3D 

-1 matches HD simulations with β
vel-3D 

= 3.9 . . . 4.2
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Measuring densities

The column density PDF shows a high density 
excess that may trace gravitational collapse. 

10 pc

NGC 2244
7 O stars

Column densities in Rosette:

Herschel observations
(Motte et al. 2010, Schneider et al. 2011)
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Density PDFs
High column density excess from gravitational collapse:

Progressing time steps in a large-scale driven turbulence simulation including gravity (Ossenkopf, 
Klessen, Heitsch 2001): deviation from a log-normal distribution at late stages
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Density PDFs
High column density excess from gravitational collapse:

Time-average over all steps: Strong high-density excess in agreement with observations (Csengeri et al. 
in prep.)

Different evolutionary steps of gravitational collapse provide a natural 
explanation for non-log-normal density PDFs.
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The future (2012-2014)

Understand the interplay of the different chemical and physical phase 
transitions with the turbulent structure.

Compare structure seen in different tracers:

21cm radio 
continuum 
overlaid  13CO 
1→0 emission as 
black contours.

Cygnus X region 
as seen at 8 μm 
by MSX overlaid 
with FCRAO 13CO 
1→0 emission as 
black contours.
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G333 seen in different molecular tracers
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G333 seen in different molecular tracers

• Different density and velocity structure seen in 
different molecules

Excitation effects

Chemistry

Average line profiles in for the 8 species 

Principal component 
analysis for the 
individual maps. At 
smaller scales the 
spatial  correlation 
drops. C

2
H deviates 

first.(Lo et al. 2009) 
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Phase transition from atomic to molecular carbon

State of the art provided by simulations of Simon Glover
• full MHD model coupled with small chemical network and escape probability 

radiative transfer (Glover 2010, Shetty et al. 2011)
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How to compare species?

Idea: Re-use the power of the Δ-variance, but do not measure the 
variation in one tracer, but the difference between two maps as a 
function of the scale (similar to Rainer's wavelet cross correlation)

 

IC348: CI in colors and 13CO 1-0 in contours (Sun et al. 2006). Right panel: Δ-variance spectra of the two 
maps and the cross correlation variance spectrum.

The saturation shows a characteristic chemical correlation scale of  2-3'.
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The plan (2012-2014)

• Compare statistical properties of observed maps in various tracers 
with simulated observations from turbulence models

• Measure the spatial correlation and systematic variation between 
different tracers

Δ-variance spectra and spatial correlation analysis, 

Non-sperical wavelets in Δ-variance

PDFs of intensities, velocities and increments

Structure functions of variable order

Principal component analysis

Clump decomposition

Bispectrum

• Identify observable tracers and statistical tools sensitive to different 
aspects of cloud structures

chemical structure

dynamical, and energetic state

• Measure observational bias introduced by the limitations of today's 
observational technology

• Determine scales of numerical artifacts in models
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Main goals

Quantify the impact of physical and chemical 
processes in the structure formation:

• phase transition from atomic to molecular gas at cloud boundaries

• formation of essential cooling species (C+,O)

• local energy balance and deviations from LTE

• impact of optically thick cooling lines

• dynamical instabilities driven by ram pressure

• turbulent heating and mixing

• radiation pressure from the ISRF
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