

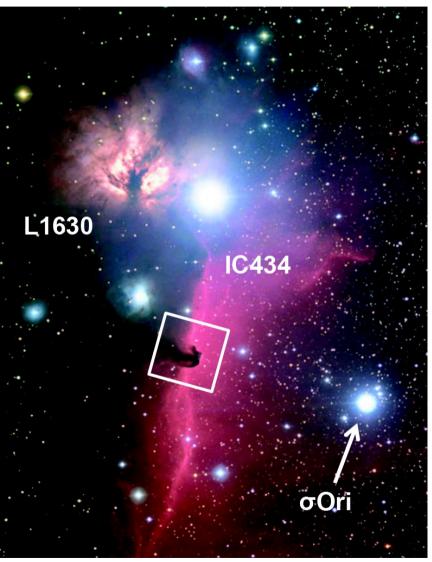
The Warm and Dense ISM Status October 2012

V. Ossenkopf, M. Gerin, R. Güsten, M. Akyilmaz, A.O. Benz, O. Berne, F. Boulanger, J. Le Bourlot, S. Bruderer, C. Dedes, K. France, A. Fuente, J.R. Goicoechea, A. Gusdorf, A. Harris, C. Joblin, T. Klein, E. Koumpia, C. Kramer, W. Latter, F. Le Petit, S. Lord, Z. Makai, P.G. Martin, J. Martin-Pintado, B. Mookerjea, D.A. Neufeld, Y. Okada, T. Phillips, P.Pilleri, R. Rizzo, M. Röllig, R. Simon, J. Stutzki, F.S.S. van der Tak, D. Teyssier, H. Yorke

Bonn, October 18, 2012

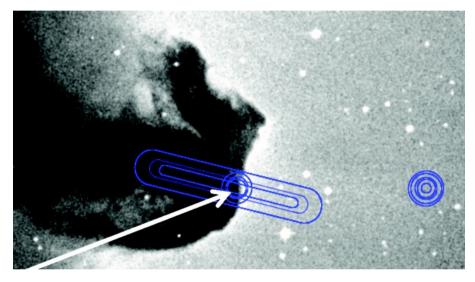
WADI science goals

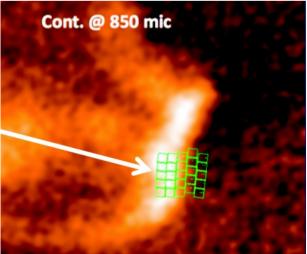
- How do winds and radiation from young stars affect the gas in their environment?
 - density
 - temperature
 - velocity field


- WADI science:
 - → chemistry,
 - energy balance,
 - dynamics.

of the interaction regions: PDRs and SNRs

Pillars in Rosette (HOBYS team: Motte et al. 2010)




The Horsehead as a typical PDR

 cuts across the interfaces of PDRs and shock regions

 deep integrations at selected positions for rare species

Matrix of sources and lines

H_3O^+	$1_{1,1} - 1_{1,0}$	1655.814	181.05	0		all PDRs
	$0_{0,1} - 1_{0,0}$	984.697		7	~	all PDRs and SNRs
p-H ₂ O	$1_{1,1} - 0_{0,0}$	1113.343		0	\checkmark	all PDRs and SNRs
-	$2_{0,2} - 1_{1,1}$	987.927		53	~	all PDRs and SNRs
	$2_{1,1} - 2_{0,2}$	752.033		101		bright PDRs, all SNRs
	$2_{2,0} - 1_{1,1}$		100.98	53		all PDRs and SNRs
	$3_{1,3} - 2_{0,2}$		138.53	101		all PDRs and SNRs
	$4_{0,4} - 3_{1,3}$		125.35	205		all PDRs and SNRs
	$5_{1,5} - 4_{0,4}$		95.63	319		all PDRs and SNRs
	$6_{0,6} - 5_{1,5}$		83.28	470		all PDRs and SNRs
o-H ₂ O	$1_{1,0} - 1_{0,1}$	556.936		0	1	all PDRs and SNRs
	$3_{1,2} - 2_{2,1}$	1153.127		160	~	all SNRs
	$2_{1,2} - 1_{0,1}$		179.53	0		all PDRs and SNRs
	$2_{2,1} - 1_{1,0}$		108.07	27		all PDRs and SNRs
	$3_{0,3} - 2_{1,2}$		174.63	80		all PDRs and SNRs
	$4_{1,4} - 3_{0,3}$		113.54	162		all PDRs and SNRs
	$5_{0.5} - 4_{1.4}$		99.49	289		all PDRs and SNRs
	$6_{1,6} - 5_{0,5}$		82.03	434		all PDRs and SNRs
p-H ₂ ¹⁸ O	$1_{1,1} - 0_{0,0}$	1101.698		0	~	all PDRs and SNRs
o-H ₂ ¹⁸ O	$1_{1,0} - 1_{0,1}$	547.676		0		all PDRs
HDÕ	$1_{1,1}^{1,0} - 0_{0,0}^{0,1}$	893.639		0		bright PDRs

molecule	transition	fraquancy	wavelength	lower level	honus	strotagy
molecule	u ansition	frequency		lower level	bonus	strategy
CH	20 20	[GHz] (HIFI)	$[\mu m]$ (PACS)	energy [K]	line	
CII	${}^{2}P_{3/2} - {}^{2}P_{1/2}$	1900.537		0		all PDRs and SNRs
¹³ CII	${}^{2}P_{3/2} - {}^{2}P_{1/2}$	1900.950		0		few PDRs
OI	${}^{3}P_{1} - {}^{3}P_{2}$		63.17	0		all PDRs and SNRs
	${}^{3}P_{0} - {}^{3}P_{1}$		145.53	228		all PDRs and SNRs
NII	${}^{3}P_{2} - {}^{3}P_{1}$		121.91	70		all PDRs and SNRs
	${}^{3}P_{1} - {}^{3}P_{0}$	1462.131	205.18	0		all PDRs and SNRs
NIII	${}^{2}P_{3/2} - {}^{2}P_{1/2}$		57.32	300		all PDRs
OIII	${}^{3}P_{2} - {}^{3}P_{1}$		88.36	0		all PDRs
HD	1-0,R(0)		112.07	0		all PDRs and SNRs
CH	${}^{2}\Pi_{3/2}$ 1, 2 ⁻ - ${}^{2}\Pi_{1/2}$ 1, 1 ⁺	536.761		0		all PDRs
	$^{2}\Pi_{5/2} 2, 3^{-} - ^{2}\Pi_{3/2} 1, 2^{+}$	1656.961	180.93	26	1	all PDRs
CH^+	1-0	835.07		0		all PDRs
CO	9-8	1036.912		199		all PDRS
CO	10-9	1151.985		249		all SNRs
	>14-13		186.13	504		all PDRs and SNRs
¹³ CO	10-9	1101.350		238		all PDRs and SNRs
NH	${}^{3}\Sigma^{-}$ 1,1/2-0,1/2	974.479		0		all PDRs
$\rm NH^+$	$^{2}\Pi_{1/2}$ 3/2-1/2	1012.561		0		bright PDRs
NH ₂	$1_{1,0} - 0_{0,0}$	952.578		54		few PDRs
NH ₃	$1_0 - 0_0$	572.498		0.5		all PDRs
OH	$^{2}\Pi_{3/2}5/2-3/2$		119.44	0		all PDRs and SNRs
	$2\Pi_{1/2}^{3/2} 3/2 - 1/2$		163.40	181		all PDRs and SNRs
	$2\Pi_{1/2}^{1/2} - 2\Pi_{3/2}^{1/2} - 3/2$		79.18	0		all PDRs and SNRs
OH ⁺	${}^{3}\Sigma^{-1}1, 2, 5/2 - 0, 1, 3/2$	971.804		0	1	bright PDRs

Status

- Reality
 - Most of our line estimates were very optimistic
 - Many non-detections (in particular N-bearing species)
 - H₂O usually weak
 - \rightarrow Revision of the AORs:
 - Only sparse matrix of sources vs. frequencies kept
 - IC63/59 completely dropped
 - Split of PACS spectral scans into dedicated line observations
 - More lines dropped due to expected non-detections
- All released AORs observed:
 - Large fraction of data is already public
 - We are still bound to the KP policy rules for data usage

Summary of HIFI cuts

Summary of the HIFI mapping data. Numbers give the peak T_A^* in Kelvin for the considered stripe and transition.

species[CII]CO ^{13}CO HCO+CHCH+C_2HH_2Ofrequency [GHz]1901103711015355378355241113	
	H_2O
	557
NGC3603 MM1 40.4 12.8 2.61 0.56 0.48 0.64 ^a 0.39 0.43	0.46
NGC3603 MM2 44.0 11.3 2.69 0.47 0.51 0.60 ^a 0.30 0.39	0.45
MonR2 62.7 32.8 10.4 4.55 1.10 1.31 1.04 1.05	1.04
S140 23.8 25.9 7.71 7.44 0.69 0.39 ^{<i>a</i>,<i>r</i>} 0.89 2.55	2.54
Carina N 63.6 16.3 3.19 0.89 0.80 <0.1 ^a 0.46 <0.15	0.16 ^a
Carina S 9.82 3.48 <0.1 0.09 <0.05 $<0.1^a$ <0.03 <0.15	$< 0.02^{a}$
NGC7023 N 33.6 19.9 3.46 0.27 0.71 0.37 0.11 <0.15	0.12^{a}
NGC7023 C 33.1 14 - 0.27 0.7 - 0.11 -	0.12^{a}
NGC7023 E 13.8 3.93 < 0.1 < 0.07 0.09^m < 0.03^a < 0.05 < 0.1 ·	$< 0.02^{a}$
Rosette N 5.92 2.36 <0.3 0.14 0.18 $<0.07^a$ <0.07 <0.3	$< 0.03^{a}$
Rosette S 5.3 <0.5 <0.3 <0.03 <0.1 $<0.07^a$ <0.07 <0.3	0.04^{a}
Horsehead 13.5 2.62 - 0.16 $0.26 < 0.1^a < 0.03$ -	0.09^{a}
Ced 201 5.82 $<0.15^a$ $<0.03^a$ $<0.03^a$ $<0.03^a$ $<0.03^a$ $<0.03^a$ $<0.03^a$ $<0.03^a$	$0.02^{a,m}$
species H_2CO CS SO SH^+ NH_3 N_2H^+	
species H_2CO CS SO SH^+ NH_3 N_2H^+ frequency [GHz] 526 539 560 526 572 559	
1 2 2 2	
frequency [GHz] 526 539 560 526 572 559	
frequency [GHz] 526 539 560 526 572 559 NGC3603 MM1 <0.06	on stripe
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map. detection.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map. detection.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map. detection.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	map. detection.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	map. detection.

Results

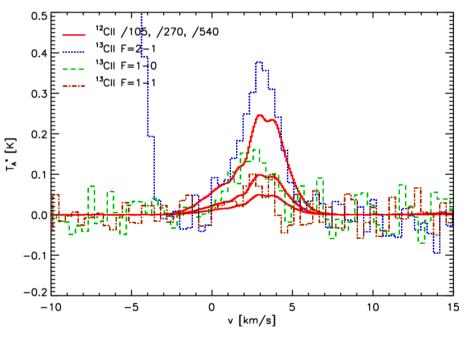
- Analysis of the data in very non-uniform way so far
 - Not all data inspected yet
 - Entries in results matrix very sparse
 - > Uniform analysis only for dedicated science subtopics
- More sophisticated models needed
- Modelling/interpretation has only started
- Data delivery to HSA:
 - No formal request yet
 - Informal discussions ongoing

Results

- Recent papers:
 - > H_2O and NH_3 in MonR2 structure accepted (Paolo)
 - > PE heating submitted (Yoko)
 - [CII] and [¹³CII] submitted (Volker)
- Pending (overdue):
 - > NGC3603 (Zoltan)
 - Horsehead (David)
 - > pv-diagrams (Volker)
 - > NGC7023 + Orion Bar (Christine)

- Follow-up on WADI sources for ¹³C fractionation study
 - > Only 2 observations still missing:
 - [13CII] in NGC3603 and Carina N

OD	Target	RA	DEC	AOT	Duration	Start time	Obs. Id	AOR Label
1233	MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	3314	2012-09-28T16:46:40Z	1342251588	13C+ MonR2
	MonR2-C+peak	6h07m45.600s	-6d23m16.80s	HifiPoint		2012-09-28T15:49:27Z		13C+ MonR2-C+peak
	MonR2-C+peak	6h07m45.600s	-6d23m16.80s	HifiPoint	1387	2012-04-20T19:51:04Z		13C_MonR2-C+peak
1072	MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	1387	2012-04-20T19:26:04Z	1342244633	13C_MonR2
					and the	encontration and the second states of the	a second seco	
1218	Orion Bar front-veil	5h35m19.000s	-5d24m46.80s	HifiPoint	176	2012-09-13T05:58:18Z	1342251023	13C_OrionBar
1203	Orion Bar front-veil	5h35m19.000s	-5d24m46.80s	HifiPoint	399	2012-08-29T07:12:25Z	1342250416	13C+_OrionBar
		stento per topo						
1106	N7023-H2peak	21h01m32.400s	+68d10m25.00s	HifiPoint	1387	2012-05-23T19:33:28Z	1342246033	13C_NGC7023
1105	N7023-H2peak	21h01m32.400s	+68d10m25.00s	HifiPoint	3384	2012-05-23T17:19:03Z	1342246026	13C+_NGC7023
11. 19 M		attenten mene					- Alter and the second	trineses estimates en es
. 1134	NGC3603-MM2-pillar	11h15m10.890s	-61d16m15.20s	HifiPoint	1333	2012-06-21T03:21:45Z	1342247185	13C_NGC3603MM2
sector.	section pression produces	estimation to the en-	the test sector states				second second sec	
1134	CarinaN-point-IF	10h43m35.140s	-59d34m04.30s	HifiPoint	1407	2012-06-21T02:35:41Z	1342247183	13C_CarinaN


Additional [¹³CI] Orion Bar data from Olivier can be used

GT2

• First glance, preliminary results:

- CI] also shows only the blue component in MonR2 like [¹³CII]
- NGC7023 [¹³CII] results already included in submitted paper
 - Slightly optically thick
 - Possibly fractionated in blue wing

- > [CI]/[¹³CI] ratio in Orion Bar matching isotopic abundance ratio
- CII]/[¹³CII] ratio in veil seems to show fractionation
- [CI]/[¹³CI] in veil not significant

 \rightarrow Problem: no systematic analysis yet

OT1

WADI follow-up or related:

- DR21 and Mon R2 H_2O^+ :
 - > Only one obsid still missing (972GHz DR21)
 - > Analysis coordinated by Ed Chambers
 - Ground state lines of OH⁺ and H₂O⁺ very similar
 - > Excited lines with different profile

		DA	DEO	AOT	Demotion Otent fire a	
> No H₃O⁺	OD Target		DEC	AOT	Duration Start time	Obs. Id AOR Label
	924 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	843 2011-11-24T05:34:21Z	1342232818 DR21-H2Oplus-1115
5	1105 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	7493 2012-05-23T14:27:51Z	1342246023 DR21-H2Oplus-1816
	923 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	286 2011-11-23T14:16:10Z	1342232699 DR21-H2Oplus-607
$\square \square \square + ManD2$	939 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	230 2011-12-08T14:35:31Z	1342233886 DR21-H2Oplus-722
≻ H ₂ O⁺ MonR2	1106 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	7782 2012-05-24T06:52:51Z	1342246057 DR21-H3Oplus-1656
2	932 DR21	20h39m01.100s	+42d19m43.00s	PacsLineSpec	7111 2011-12-02T09:28:35Z	1342233448 DR21-H3Oplus-2972
non-detections	929 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	345 2011-11-29T14:22:28Z	1342233298 DR21-OH-1835
	932 DR21	20h39m01.100s	+42d19m43.00s	PacsLineSpec	406 2011-12-02T11:29:16Z	1342233449 DR21-OH-2509
	1061 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	345 2012-04-09T09:48:53Z	1342244093 DR21-OHplus-1892
	895 DR21	20h39m01.100s	+42d19m43.00s	HifiPoint	246 2011-10-25T18:09:35Z	1342231441 DR21-OHplus-909
	708 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	795 2011-04-22T08:47:15Z	1342219303 MonR2-H2Oplus-1115
	1066 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	7493 2012-04-14T09:45:46Z	1342244392 MonR2-H2Oplus-1816
	1062 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	286 2012-04-10T06:44:27Z	1342244040 MonR2-H2Oplus-607
	1065 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	230 2012-04-13T12:10:14Z	1342244297 MonR2-H2Oplus-722
	1069 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	7782 2012-04-17T12:56:48Z	1342244490 MonR2-H3Oplus-1656
	881 MonR2	6h07m46.200s	-6d23m08.00s	PacsLineSpec	7111 2011-10-11T21:37:09Z	1342230893 MonR2-H3Oplus-2972
	1061 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	345 2012-04-09T08:24:35Z	1342244089 MonR2-OH-1835
	881 MonR2	6h07m46.200s	-6d23m08.00s	PacsLineSpec	406 2011-10-11T23:37:50Z	1342230894 MonR2-OH-2509
	1061 MonR2	6h07m46.200s	-6d23m08.00s	HifiPoint	345 2012-04-09T08:16:52Z	1342244088 MonR2-OHplus-1892
	1066 MonR2	6b07m46 200s	-6d23m08.00e	HifiPoint	246 2012-04-14T03-13-477	

OT1

WADI follow-up or related:

- [CII] and CO 8-7 in Horsehead and NGC7023 (C. Joblin):
 - All observations taken
- ≻ HF, HCI, SH⁺ in Mon R2 (M. Gonzalez):
 - Only 4 obsids so far: HCI, HCI⁺, SH⁺
- Rosette pillars- [CII] and PACS spectro. (N. Schneider):
 - Finished, analysis ongoing
- > Orion large scale mapping (J. Goicoechea):
 - Many data arrived in September including Horsehead
- CO ladder in DR21 (M. Röllig):
 - Only ¹³CO 5-4 map obtained so far
- > Anything overlooked?