

The Warm and Dense ISM Status December 2011

V. Ossenkopf, M. Gerin, R. Güsten, M. Akyilmaz, A.O. Benz, O. Berne, F. Boulanger, J. Le Bourlot, S. Bruderer, C. Dedes, K. France, A. Fuente, J.R. Goicoechea, A. Gusdorf, A. Harris, C. Joblin, T. Klein, E. Koumpia, C. Kramer, W. Latter, F. Le Petit, S. Lord, Z. Makai, P.G. Martin, J. Martin-Pintado, B. Mookerjea, D.A. Neufeld, Y. Okada, T. Phillips, P.Pilleri, R. Rizzo, M. Röllig, R. Simon, J. Stutzki, F.S.S. van der Tak, D. Teyssier, H. Yorke

WADI science goals

- How do winds and radiation from young stars affect the gas in their environment?
- density
- temperature
- velocity field
- WADI science:
 - → chemistry,
 - → energy balance,
 - → dynamics.

of the interaction regions:

- PDRs and SNRs

Pillars in Rosette (HOBYS team: Motte et al. 2010)

Matrix of sources and lines

H_3O^+	$1_{1,1} - 1_{1,0}$	1655.814	181.05	0		all PDRs
	$0_{0,1} - 1_{0,0}$	984.697		7	✓	all PDRs and SNRs
p-H ₂ O	$1_{1,1} - 0_{0,0}$	1113.343		0	✓	all PDRs and SNRs
	$2_{0,2} - 1_{1,1}$	987.927		53	/	all PDRs and SNRs
	$2_{1,1} - 2_{0,2}$	752.033		101		bright PDRs, all SNRs
	$2_{2,0} - 1_{1,1}$		100.98	53		all PDRs and SNRs
	$3_{1,3} - 2_{0,2}$		138.53	101		all PDRs and SNRs
	$4_{0,4} - 3_{1,3}$		125.35	205		all PDRs and SNRs
	$5_{1,5} - 4_{0,4}$		95.63	319		all PDRs and SNRs
	$6_{0,6} - 5_{1,5}$		83.28	470		all PDRs and SNRs
o-H ₂ O	$1_{1,0} - 1_{0,1}$	556.936		0	/	all PDRs and SNRs
	$3_{1,2}-2_{2,1}$	1153.127		160	✓	all SNRs
	$2_{1,2} - 1_{0,1}$		179.53	0		all PDRs and SNRs
	$2_{2,1} - 1_{1,0}$		108.07	27		all PDRs and SNRs
	$3_{0,3} - 2_{1,2}$		174.63	80		all PDRs and SNRs
	$4_{1,4} - 3_{0,3}$		113.54	162		all PDRs and SNRs
	$5_{0,5} - 4_{1,4}$		99.49	289		all PDRs and SNRs
	$6_{1,6} - 5_{0,5}$		82.03	434		all PDRs and SNRs
$p-H_2^{18}O$	$1_{1,1} - 0_{0,0}$	1101.698		0	1	all PDRs and SNRs
$o-H_2^{18}O$	$1_{1,0} - 1_{0,1}$	547.676		0		all PDRs
HDO	$1_{1,1} - 0_{0,0}$	893.639		0		bright PDRs
	-					

molecule	transition	frequency	wavelength	lower level	bonus	strategy
		[GHz] (HIFI)	$[\mu m]$ (PACS)	energy [K]	line	
CII	$^{2}P_{3/2} - ^{2}P_{1/2}$	1900.537		0		all PDRs and SNRs
¹³ CII	${}^{2}P_{3/2} - {}^{2}P_{1/2}$	1900.950		0		few PDRs
OI	${}^{3}P_{1} - {}^{3}P_{2}$		63.17	0		all PDRs and SNRs
	$^{3}P_{0} - ^{3}P_{1}$		145.53	228		all PDRs and SNRs
NII	$^{3}P_{2} - ^{3}P_{1}$		121.91	70		all PDRs and SNRs
	$^{3}P_{1} - ^{3}P_{0}$	1462.131	205.18	0		all PDRs and SNRs
NIII	$^{2}P_{3/2} - ^{2}P_{1/2}$		57.32	300		all PDRs
OIII	$^{3}P_{2} - ^{3}P_{1}$		88.36	0		all PDRs
HD	1-0,R(0)		112.07	0		all PDRs and SNRs
CH	$^{2}\Pi_{3/2}$ 1, 2^{-} $^{-2}\Pi_{1/2}$ 1, 1^{+}	536.761		0		all PDRs
	$^{2}\Pi_{5/2}$ 2,3 $^{-}$ - $^{2}\Pi_{3/2}$ 1,2 $^{+}$	1656.961	180.93	26	✓	all PDRs
CH^+	1-0	835.07		0		all PDRs
CO	9-8	1036.912		199		all PDRS
CO	10-9	1151.985		249		all SNRs
	>14-13		186.13	504		all PDRs and SNRs
¹³ CO	10-9	1101.350		238		all PDRs and SNRs
NH	$^{3}\Sigma^{-}$ 1, 1/2 – 0, 1/2	974.479		0		all PDRs
NH^+	$^{2}\Pi_{1/2}$ 3/2-1/2	1012.561		0		bright PDRs
NH_2	$1_{1,0} - 0_{0,0}$	952.578		54		few PDRs
NH_3	$1_0 - 0_0$	572.498		0.5		all PDRs
OH	$^{2}\Pi_{3/2}$ 5/2 – 3/2		119.44	0		all PDRs and SNRs
	$2\Pi_{1/2} 3/2 - 1/2$		163.40	181		all PDRs and SNRs
	$2\Pi_{1/2} - 2\Pi_{3/2}1/2 - 3/2$		79.18	0		all PDRs and SNRs
OH^+	$^{3}\Sigma^{-1}, 2, 5/2 - 0, 1, 3/2$	971.804		0	1	bright PDRs
•						

PDRs:

		NGC3603	MonR2	Carina	NGC7023	IC63/IC59	Ced201	S140	Rosette	Horsehead	D60
				Cullin	NGC /023	1003/1039	Ceuzui	3140	Rosette	Horsenead	B68
Δv		0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.3 km/s	0.2 km/s
					HIFI -	- single lines					
[CII]	1901	2 HIFI cuts	1 HIFI cut	2 HIFI cuts	3 HIFI cuts	3 HIFI cuts	1 HIFI cut	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	1 HIFI cut
	GHz	(1.4K)	(1.0K)	(1.0K)	(1.0K)	(0.75K)	(0.5K)	(0.7K)	(0.7K)	(1.3K)	(0.2K)
[13CII]	1901	1 HIFI pt.	1 HIFI pt.	2 HIFI pts.							
	GHz	(150mK)	(120mK)	(100mK)							
[NII]	1462	1 HIFI cut	1 HIFI cut	2 HIFI pts.		2 HIFI pts.			2 HIFI pts.	2 HIFI pts.	
	GHz	(0.6K)	(0.6K)	(0.6K)		(0.25K)			(0.4K)	(0.4K)	
CH	537	2 HIFI cuts	1 HIFI cut	2 HIFI cuts	3 HIFI cuts	3 HIFI cuts	1 HIFI cut	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	1 HIFI pt.
	GHz	(40mK)	(50mK)	(100mK)	(50mK)	(50mK)	(30mK)	(50mK)	(50mK)	(90mK)	(50mK)
CH^+	835	2 HIFI pts.	1 HIFI cut	2 HIFI pts.	1 cut+2 pts.	3 HIFI cuts	1 HIFI cut	3 HIFI pts.	3 HIFI pts.	2 HIFI cuts	1 HIFI pt.
	GHz	(50mK)	(50mK)	(50mK)	(50mK)	(50mK)	(50mK)	(50mK)	(50mK)	(90mK)	(15mK)
NH ⁺	1013	1 HIFI pt.		2 HIFI pts.	2 HIFI pts.			1 HIFI pt.	1 HIFI pt.		
	GHz	(80mK)		(80mK)	(80mK)			(17mK)	(20mK)		
NH ₂	953	-		2 HIFI pts.	1 HIFI cut				1 HIFI pt.		
	GHz			(80mK)	(80mK)				(50mK)		
CO 9-8	1036	2 HIFI cuts	1 HIFI cut	2 HIFI cuts	3 HIFI cuts	3 HIFI cuts	1 HIFI cut	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	
	GHz	(1.0K)	(1.0K)	(1.0K)	(1.0K)	(0.2K)	(0.15K)	(0.1K)	(0.5K)	(0.45K)	
p-H ₂ O	752	2 HIFI cuts	1 HIFI cut	2 HIFI cuts	1 HIFI cut	2 HIFI pts.		2 HIFI pts.	3 HIFI pts.	2 HIFI pts.	
	GHz	(100mK)	(100mK)	(100mK)	(100mK)	(10mK)		(20mK)	(20mK)	(40mK)	
HDO	894			2 HIFI pts.	1 HIFI pt.					3 HIFI pts.	
	GHz			(20mK)	(15mK)					(30mK)	
					HIFI – mul	tiple line settii	ıgs				
p-H ₃ O ⁺	1656										
	GHz										
CH	1657	2 HIFI pts.	1 HIFI cut	2 HIFI pts.	2 HIFI pt.	2 HIFI pts.	1 HIFI pt.	2 HIFI pts.	3 HIFI pts.	2 HIFI pts.	
	GHz	(200mK)	(200mK)	(200mK)	(200mK)	(200mK)	(200mK)	(200mK)	(200mK)	(230mK)	

PDRs:

		NGC3603	MonR2	Carina	NGC7023	IC63/IC59	Ced201	S140	Rosette	Horsehead	B68
Δv		0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.3 km/s	0.2 km/s
¹³ CO 10-9	1101										
	GHz										
p-H ₂ O	1113	2 HIFI cuts	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	3 HIFI cuts	1 HIFI cut	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	
	GHz	(100 mK)	(100 mK)	(100mK)	(100 mK)	(100mK)	(80mK)	(200mK)	(200mK)	(220mK)	
p-H ₂ ¹⁸ O	1102				+1 HIFI pt.	+2 HIFI pt.		+2 HIFI	+2 HIFI	+ 2	
	GHz				(20mK)	(30mK)		pts.	pts.	HIFI pts.	
								(50mK)	(50mK)	(55mK)	
NH	974										
	GHz										
o-H ₃ O ⁺	985	3 HIFI pts.	2 HIFI pt.	2 HIFI pts.	3 HIFI pts.	2 HIFI pts.	1 HIFI pt.	3 HIFI pts.	3 HIFI pts.		1 HIFI pt.
	GHz	(50mK)	(50mK)	(60mK)	(60mK)	(30mK)	(60mK)	(30mK)	(70mK)		(20mK)
OH ⁺	972										
	GHz										
NH	974										
	GHz										
o-H ₃ O ⁺	985	3 HIFI pts.	1 HIFI cut	2 HIFI pts.	1 HIFI cut	2 HIFI pts.	1 HIFI pt.	3 HIFI pts.	3 HIFI pts.	2 HIFI pts.	
***	GHz	(50mK)	(100mK)	(60mK)	(60mK)	(30mK)	(50mK)	(70mK)	(70mK)	(140mK)	
p-H ₂ O	988										
- 11.0	GHz										
o-H ₂ O	557										
NIII.	GHz	2 HHEL outs	1 IIIII out	2 HIFI cuts	3 HIFI cuts	3 HIFI cuts	1 IIIII out	1 HIFI cut	2 HIFI cuts	2 HIFI cuts	1 IIIII et
NH ₃	572 GHz	2 HIFI cuts (200mK)	1 HIFI cut (50mK)	(100mK)	(50mK)	(100mK)	1 HIFI cut (50mK)	(50mK)	(100mK)	(140mK)	1 HIFI pt. (10mK)
o-H ₂ O	557	(200HK)	(Solities)	(TOOIIIX)	(Solite)	(100IIIX)	(JUHK)	(Solik)	(TOOLIK)	(140111X)	(TOHIK)
0-H ₂ O	GHz										
o-H ¹⁸ O	548	1 HIFI pts.	2 HIFI pts.	2 HIFI pts.	2 HIFI pts.	2 HIFI pts.		3 HIFI pts.	3 HIFI pts.	3 HIFI pts.	
0-112 0	GHz	(10mK)	(20mK)	(20mK)	(10mK)	(5mK)		(10mK)	(10mK)	(20mK)	
	OHZ	(Ionne)	(ZVIIIX)	(ZVIIIX)	(IVIIIX)	(Jints)		(Ionne)	(IOIIIX)	(Zonna)	

PDRs:

		NGC3603	MonR2	Carina	NGC7023	IC63/IC59	Ced201	S140	Rosette	Horsehead	B68
Δv		0.7 km/s	0.7 km/s	0.7 km/s	0.7 km/s	0.3 km/s	0.2 km/s				
					PACS bl	ue spectroscop	У				
[OI]	63	3 PACS arr.	1 PACS arr.	2 PACS arr.	4 PACS arr.	2 PACS arr.	1 PACS arr.	2 PACS arr.	2 PACS arr.	2 PACS arr.	1 PACS arr.
	$\mu \mathrm{m}$	(1x WS)	(1x WS)	(1x WS)	(1x WS)		(1x WS)	(1x WS)	(1x WS)	(1x WS)	(2x BS)
[NIII]	57	2 PACS arr.	1 PACS arr.	2 PACS arr.		2 PACS arr.		2 PACS arr.	2 PACS arr.	2 PACS arr.	
	$\mu \mathrm{m}$	(1x WS)	(2x WS)	(1x WS)		(1x WS)		(1x WS)	(1x WS)	(4x WS)	
					PACS	red SED scan					
[CII]	158										-
	$\mu \mathrm{m}$										
[OI]	146										1 PACS arr.
	$\mu \mathrm{m}$										(4x BS)
[NII]	122										1 PACS arr.
	$\mu \mathrm{m}$										(2x BS)
[NII]	205										1 PACS arr.
	$\mu\mathrm{m}$										(12x BS)
[OIII]	88										-
	$\mu\mathrm{m}$										
HD	112	3 PACS arr.	1 PACS arr.	2 PACS arr.	4 PACS arr.	2 PACS arr.	1 PACS arr.	2 PACS arr.	2 PACS arr.	3 PACS arr.	1 PACS arr.
	$\mu\mathrm{m}$	(4x SED)	(4x SED)	(4x SED)	(4x SED)	(4x SED)	(10x BS)				
CH	181										-
	$\mu\mathrm{m}$										
OH	119										1 PACS arr.
	$\mu \mathrm{m}$										(10x BS)
OH	163										-
** 6	μm										
o-H ₂ O	179										-
GO: 14.13	μm										
CO >14-13	173										-
	$\mu\mathrm{m}$										

SNRs:

		IC443	3C391	W28	W44
Δv		10.0 km/s	10.0 km/s	10.0 km/s	10.0 km/s
		HIFI – sin	gle lines		
[C II]	1901 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(100mK)	(100mK)	(100mK)	(100mK)
p-H ₂ O	752 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(30mK)	(30mK)	(30mK)	(30mK)
		HIFI – multiple	line settings		
CO 10-9	1152 GHz				
o-H ₂ O ⁺	1153 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(200mK)	(200mK)	(200mK)	(200mK)
¹³ CO 10-9	1101 GHz				
p-H ₂ O	1113 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(80 mK)	(80 mK)	(80mK)	(80mK)
p-H ₂ ¹⁸ O	1102 GHz				
NH	974 GHz				
o-H ₃ O ⁺	985 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(50mK)	(50mK)	(50mK)	(50mK)
p-H ₂ O	988 GHz				
o-H ₂ O	557 GHz				
NH ₃	572 GHz	3 HIFI maps	1 HIFI map	1 HIFI map	1 HIFI map
		(16mK)	(16mK)	(16mK)	(16mK)
		PACS blue sp			
[OI]	63 μm	3 PACS arr.	1 PACS arr.	1 PACS arr.	1 PACS arr.
		(1x BS)	(1x BS)	(1x BS)	(1x BS)
		PACS red S	ED scan		
72 –	$210 \mu \mathrm{m}$	3 PACS arr.	1 PACS arr.	2 PACS arr.	4 PACS arr.
		(6x SED)	(6x SED)	(6x SED)	(6x SED)
Total [h]	HIFI	12.5	3.2	3.2	3.2
	PACS	13.4	3.3	3.3	3.3
Total	[h]	25.9	6.5	6.5	6.5

Matrix of sources and lines

Reality:

- Early observations showed that most of our line estimates were at the very optimistic limit
 - Many non-detections
 - Non-detections of most N-bearing species,
 - H₂O usually weak

→ Revision of the AORs:

- Sparse/incomplete matrix kept
- IC63/59 completely dropped
- Single integrations instead of 1-D OTF stripes
- Split of PACS spectral scans into dedticated line observations
- More lines dropped due to expected non-detections

Status

- All released AORs observed:
 - > 294 in total covering 125.4h
 - 3 AORs currently rejected
 - 530GHz setting in NGC7023E, RosettteS, Carina S
 - See HIFIMC-236 discussion later
 - Will be re-observed
 - 9 AORs permanently blocked
 - Non-detections expected for 752GHz water line in NGC3603 and Carina, ¹³CO 10-9 and 1113 GHz water line in Rosette and Horsehead, 988 GHz water line in Carina
 - Many AORs observed multiple times due to failures/problems
 - 972/974GHz FSW, CO 10-9 in SNRs

Status

- All released AORs observed:
 - > 294 in total covering 125.4h
 - More efficient than in original plan
 - Formally some GT remaining, but no new observations can be scheduled
 - No good argument for desired Mon R2 H₂¹⁸O
 - It may be possible to ask for a few re-observations
 - Large fraction of data is already public
 - We are still bound to the KP policy rules for data usage

Results

- Analysis of the data in very non-uniform way so far
 - Not all data inspected yet
 - Entries in results matrix very sparse
 - Uniform analysis only for dedicated science subtopics
- Paper submissions:
 - Special A&A issues: 6 papers
 - Recent resubmissions:
 - PE heating in Carina (Yoko)
 - H₂O in MonR2 structure (Paolo)
 - > 5 more papers in preparation

Follow-up projects

OT1, GT2, and OT2:

- DR21 CO: 11.6h (OT1p2 no OT2)
- DR21 H₂O⁺: 18.1h (OT1p1)
- H₂O in Mon R2: 3.4h (OT1p2 OT2p2)
- Rosette pillars: 31.0h (OT1p1)
- Horsehead (in OMC1): 27.7h (OT1p1)
- Water in Horsehead: (OT2p1)
- [13CII] in MonR2: (GT2)