

PDR dynamics from pv-diagrams

V. Ossenkopf, P. Pilleri, Y. Okada, M. Röllig, A. Fuente, D. Teyssier, J.R. Goicoechea, B. Mookerjea, O. Berné, M. Gonzalez, C. Dedes, M. Gerin, R. Güsten, M. Akyilmaz, A.O. Benz, F. Boulanger, S. Bruderer, K. France, A. Gusdorf, A. Harris, C. Joblin, T. Klein, C. Kramer, F. Le Petit, S. Lord, P.G. Martin, J. Martin-Pintado, D.A. Neufeld, T. Phillips, R. Rizzo, R. Simon, J. Stutzki, F.S.S. van der Tak, H. Yorke

Bonn, October 19, 2012

What do we expect?

Dynamics and kinematics:

- Photo-evaporation of PDRs dominates flow of ionized material
- High pressure zone at PDR surface \rightarrow cloud compression
 - \rightarrow shock fronts
- Ionization front "eats" into molecular cloud
- \rightarrow pillar formation
- Advection flows
- Unknown impact of turbulence

3-D MHD model by Henney et al. (2009)

HIFI Observations

Measure layering structure - example: NGC3603

- cuts across the interfaces of PDRs and shock regions
- deep integrations at selected positions for rare species

Pillars at PDR fronts (HST, Brandner et al. 2000)

Observed cuts overlaid on Spitzer 8µm (color) and CO 4-3 (contours)

Results

Summary of the HIFI mapping data. Numbers give the peak T_A^* in Kelvin for the considered stripe and transition.

State of the second second										
	species	[C11]	CO	¹³ CO	HCO+	CH	CH^+	C_2H	H_2O	H_2O
	frequency [GHz]	1901	1037	1101	535	537	835	524	1113	557
	NGC3603 MM1	40.4	12.8	2.61	0.56	0.48	0.64^{a}	0.39	0.43	0.46
	NGC3603 MM2	44.0	11.3	2.69	0.47	0.51	0.60^{a}	0.30	0.39	0.45
•	MonR2	62.7	32.8	10.4	4.55	1.10	1.31	1.04	1.05	1.04
	S140	23.8	25.9	7.71	7.44	0.69	$0.39^{a,r}$	0.89	2.55	2.54
	Carina N	63.6	16.3	3.19	0.89	0.80	<0.1 ^a	0.46	< 0.15	0.16^{a}
	Carina S	9.82	3.48	< 0.1	0.09	< 0.05	<0.1 ^a	< 0.03	< 0.15	$< 0.02^{a}$
	NGC7023 N	33.6	19.9	3.46	0.27	0.71	0.37	0.11	< 0.15	0.12^{a}
	NGC7023 C	33.1	14	-	0.27	0.7	-	0.11	-	0.12^{a}
	NGC7023 E	13.8	3.93	< 0.1	< 0.07	0.09^{m}	$< 0.03^{a}$	< 0.05	< 0.1	$< 0.02^{a}$
	Rosette N	5.92	2.36	< 0.3	0.14	0.18	$< 0.07^{a}$	< 0.07	< 0.3	$< 0.03^{a}$
	Rosette S	5.3	< 0.5	< 0.3	< 0.03	< 0.1	$< 0.07^{a}$	< 0.07	< 0.3	0.04^{a}
	Horsehead	13.5	2.62	-	0.16	0.26	<0.1 ^a	< 0.03	-	0.09^{a}
	Ced 201	5.82	$< 0.15^{a}$	$< 0.03^{a}$	$< 0.03^{a}$	< 0.03 ^a	< 0.15 ^a	< 0.03 ^a	$< 0.03^{a}$	$0.02^{a,m}$
	species	H_2CO	CS	SO	SH^+	NH_3	N_2H^+			
	species frequency [GHz]	H ₂ CO 526	CS 539	SO 560	SH+ 526	NH ₃ 572	$N_{2}H^{+}$ 559			
	species frequency [GHz] NGC3603 MM1	H ₂ CO 526 <0.06	CS 539 0.08	SO 560 <0.1	SH ⁺ 526 <0.07	NH ₃ 572 0.13	$\frac{N_2H^+}{559}$			
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2	H ₂ CO 526 <0.06 <0.07		SO 560 <0.1 <0.1	SH ⁺ 526 <0.07 <0.07	NH ₃ 572 0.13 0.13	$\frac{N_2H^+}{559}$ <0.07 <0.1			
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2	H ₂ CO 526 <0.06 <0.07 0.31	$ \begin{array}{r} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ \end{array} $	SO 560 <0.1 <0.1 0.31	SH ⁺ 526 <0.07 <0.07 <0.03	NH ₃ 572 0.13 0.13 1.02		(a) Only s	single point	t on stripe
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140	$\begin{array}{r} H_2CO\\ 526\\ \hline <0.06\\ <0.07\\ 0.31\\ 0.52\\ \end{array}$	$\begin{array}{r} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \end{array}$	SO 560 <0.1 <0.1 0.31 0.42	SH ⁺ 526 <0.07 <0.07 <0.03 <0.03	NH ₃ 572 0.13 0.13 1.02 1.75		^(a) Only s	single point	t on stripe
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N	$\begin{array}{r} H_2CO\\ 526\\ \hline <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ \end{array}$	$\begin{array}{r} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \end{array}$	$SO \\ 560 \\ <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^{a} \\ \end{cases}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \end{array}$	$\begin{array}{r} \mathrm{N_{2}H^{+}}\\ 559\\ \hline <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^{a} \end{array}$	^(a) Only s obser	single point ved, no OT	t on stripe F map.
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S	$\begin{array}{r} H_2CO\\ 526\\ \hline <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ \end{array}$	$\begin{array}{r} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \end{array}$	$\begin{array}{r} \mathrm{N_{2}H^{+}}\\ 559\\ \hline <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^{a}\\ <0.02^{a}\\ <0.02^{a}\\ \end{array}$	^(a) Only s obser	single point ved, no OT	t on stripe 'F map.
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\\hline <0.07\\<0.1\\1.21\\1.44\\<0.02^a\\<0.02^a\\<0.03^a\\\end{array}$	^(a) Only s obser ^(m) Margin	single point ved, no OT nal/tentativ	t on stripe F map. e detection.
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\\ <0.03\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08 0.06	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \end{array}$	$\begin{array}{r} \mathrm{N_{2}H^{+}}\\ 559\\ \hline <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^{a}\\ <0.02^{a}\\ <0.03^{a}\\ <0.03^{a}\\ <0.03^{a}\end{array}$	(<i>a</i>) Only s obser (<i>m</i>) Margin	single point ved, no OT nal/tentativ	t on stripe F map. e detection.
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina N Carina S NGC7023 N NGC7023 C NGC7023 E	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ 0.05^m \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ \hline <0.1 \\ 0.31 \\ 0.42 \\ \hline <0.02^a \\ \hline <0.02^a \\ \hline <0.03^a \\ \hline <0.03^a \\ \hline <0.02^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08 0.08 0.06 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ < 0.02^a \\ < 0.02^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ \hline\\ <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.02^a\end{array}$	 ^(a) Only s obser ^(m) Margin ^(r) Emission 	ingle point ved, no OT nal/tentativ	t on stripe F map. e detection. bsorption
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ \end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ 0.05^m \\ < 0.03 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08 0.06 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ 0.05^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ \hline\\ <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.02^a\\ <0.03^a\end{array}$	 ^(a) Only s obser ^(m) Margin ^(r) Emission trunk 	single point ved, no OT nal/tentativ on above al of 0.27 K.	t on stripe F map. e detection. bsorption
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N Rosette S	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ <0.07\\ <0.07\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ 0.05^m \\ < 0.03 \\ < 0.03 \\ < 0.07 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \\ <0.03^a \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08 0.06 <0.05 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ < 0.02^a \\ < 0.02^a \\ < 0.03^a \\ < 0.03^a \\ < 0.03^a \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ \hline\\ <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ \end{array}$	 ^(a) Only s obser ^(m) Margin ^(r) Emission trunk 	ingle point ved, no OT nal/tentative on above al of 0.27 K.	t on stripe F map. e detection. bsorption
	species frequency [GHz] NGC3603 MM1 NGC3603 MM2 MonR2 S140 Carina N Carina S NGC7023 N NGC7023 C NGC7023 E Rosette N Rosette S Horsehead	$\begin{array}{r} H_2CO\\ 526\\ <0.06\\ <0.07\\ 0.31\\ 0.52\\ 0.10\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.03\\ <0.07\\ <0.07\\ <0.07\\ <0.02\end{array}$	$\begin{array}{c} \text{CS} \\ 539 \\ \hline 0.08 \\ 0.09^m \\ 0.38 \\ 0.36 \\ 0.08 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.03 \\ < 0.07 \\ < 0.02 \end{array}$	$\begin{array}{r} \text{SO} \\ \hline 560 \\ \hline <0.1 \\ <0.1 \\ 0.31 \\ 0.42 \\ <0.02^a \\ <0.02^a \\ <0.03^a \\ <0.01 \end{array}$	SH ⁺ 526 <0.07 <0.03 <0.03 0.07 ^m <0.03 0.08 0.06 <0.05 <0.05 <0.05 <0.05	$\begin{array}{r} \mathrm{NH_3} \\ 572 \\ \hline 0.13 \\ 0.13 \\ 1.02 \\ 1.75 \\ 0.08^a \\ < 0.02^a \\ 0.05^a \\ < 0.02^a \\ < 0.03^a \\ < 0.03^a \\ < 0.03^a \\ 0.02 \end{array}$	$\begin{array}{r} N_2H^+\\ 559\\ \hline\\ <0.07\\ <0.1\\ 1.21\\ 1.44\\ <0.02^a\\ <0.02^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ <0.03^a\\ \\0.01^{a,m}\end{array}$	 ^(a) Only s obser ^(m) Margin ^(r) Emission trunk 	single point ved, no OT nal/tentativ on above al of 0.27 K.	t on stripe F map. e detection. bsorption

Example 1: Horsehead

Measure layering structure – **p-v diagrams**:

p-v diagrams reveal details of the PDR layering including the dynamical structure

Interpret line parameters

- Stratified chemical structure
- Layering $C^+ \rightarrow HCO^+ \rightarrow CO$
- CH very extended
- C⁺ in sharp surface layer
- Confirmation of expected pressure "jump" at interface
- [CII] wider than molecules
 - stronger coupling to radiation pressure
- Wider width of CH mysterious

No new results.

Interpret line parameters

Velocity structure from p-v diagrams:

Line center velocities:

- Gradient along the neck
- Offset between [CII] and high-density tracers

Consistent with dynamical picture of Hily-Blant et al. (2005):

- Rotation of large-scale structure
- C⁺ accelerated by radiation pressure

Example 2:-5 Carina North-10

Multiple interfaces:

Cut through Carina North PDR

- Very difficult to interpret due to multiple components
- New data for HCO⁺, C₂H, CH, SH⁺, H₂CO

Top: [CII] (contour) and HCO⁺ 6-5 (color) Bottom: CO 9-8 (contour) ¹³CO 10-9 (color)

Carina North

New observations provide detections of H_2CO , SH^+ , C_2H

SH⁺ (colors) + H_2CO (contours).

Top: HCO⁺ 6-5 (colors) + [CII] (contours). Bottom: C_2H (colors) + CH (contours)

Example 3: NGC3603 MM1

Velocity structure from p-v diagrams:

Observed cuts in NGC3603 overlaid on Spitzer 8µm

Velocity gradient across the core

NGC3603 MM1

- Chemical layering partially inverted!
 - [CII] peaks deeper in the core than all molecules
 - CO slightly deeper than ¹³CO
- CH again very extended
- Tail of [CII] "behind" the core

NGC3603 MM1

Line position and width:

- Broadening of most lines at surface
- [CII] is red-shifted relative to molecular tracers at interface
- Stronger velocity gradient in [CII] than in molecules
- Long turbulent [CII] tail of material "behind" the core

\rightarrow C⁺ must be blown from the surface into a clumpy medium

- → Redshifted profiles → affected material sits behind the cluster
- The gradient along the core measures radiative (?) compression!

Interpretation

- Clumps \rightarrow cometary clumps
- Evaporation flow towards cluster suppressed
- Material is "blown" into the cloud
- Compression and dispersion of the core

 \rightarrow Pillar

formation

Driving mechanism

• Comparison to radiation pressure:

$$\chi = 2 \times 10^4 \chi_D \longrightarrow a_{rad} = 3.2 \times 10^{17} \frac{\text{km/s}}{\text{a}} \times \frac{\text{cm}^{-2}}{N}$$

$$N = \frac{700 M_0}{\pi (0.4 \text{pc})^2} = 1.7 \times 10^{23} \text{ cm}^{-2} \rightarrow v = 20 \text{ km/s} \text{ after 1 Ma}$$

- Additional momentum must have dispersed more gas that is no longer present in the core
- Other pressure contributions only add up
- Signs evaporation flows or pressure gradient across front hidden in compression pattern

100

50

Observed cut in Mon R2 on ¹³CO 2-1 and H recombination lines

- Additional observation of inner region available
- Still needs to be combined with cut

p-v diagrams: Top: CO 9-8 (colors) + [CII] (contours). Bottom: $o-H_2O$ (colors) + ¹³CO 10-9 (contours).

0

d ["] from 06 07 46.2 -06 23 08.2

-50

-100

Top: CS 10-9 (colors) + CH⁺ (contours). Bottom: C_2H (colors) + CH (contours)

Bottom: N_2H^+ (colors) + NH_3 (contours)

Bottom: SO (colors) + H_2CO (contours)

3

[¥] 2 ⊢

0.2

0.1 ¥

0.0

Interpretation

- Large-scale infalling cloud
 - Increasing density
 - Accelerated infall
 - Large-scale rotation
- Expanding walls of HII region
 - Harbors bipolar outflow
- Water in absorption for low velocities, red-shifted velocities in emission
 - Emission from backside or core-infall
- Double-peaked [CII] profile mainly from walls of HII region
 - Wings trace ionized flow
 - Some self-absorption in the HII region

Multi-line model fit

1-D PDR and radiative transfer model:

- High-velocity expanding layer: T > 100K, X(o-H₂O) ~ 10⁻⁷
- Low-velocity cloud: T < 100K, X(o-H₂O) ~ 10⁻⁸ Pilleri et al. (2012)

The asymmetry puzzle

In spherically symmetric picture, central velocity at 11km/s and dip in [CII] due to self-absorption
But red component invisible in [¹³CII] and [CI] !

Comparison of the profiles of the [¹³CII] hyperfine lines in **Mon R2** with the scaled [¹²CII] profiles at central position.

Example 5: S140

External PDR + embedded source IRS1 with internal PDRs:

Observed cuts in S140 overlaid on IRAC 3.6-8µm image

Top: HCO⁺ 6-5 (colors) + [CII] (contours). Bottom: ¹³CO 10-9 (colors) + CO 9-8 (contours)

Top: C_2H (colors) + CH (contours) Bottom: SH⁺(colors) + CH⁺ (contours)

Bottom: $p-H_2O$ (colors) + $\dot{o}-H_2O$ (contours)

Interpretation

- Configuration of IRS1 should be similar to Mon R2
- Also broad wings in CO, H₂O
- Same self-absorption pattern in H₂O lines
- But: [CII] is much weaker
 - Only seen from outer PDR
 - HII region still much smaller?
 - [CII] only shows red wing

Summary

- Radiation pressure driven PDR dynamics is complex
 - Pressure jump at the surface confirmed
 - Chemical stratification often resolved
 - But inversion possible due to stronger coupling of interclump gas tracers to radiative pressure
 - Line width sequence: [CII]/CH⁺ CH other molecules
 - Significant dispersion of gas traced
 - Possibly first direct observation of radiative core compression in NGC3603
 - Pillar formation \rightarrow star-formation triggering ?
 - No evaporation flows!
 - No indication of turbulent stirring through radiation
- More data analysis to come (too many spectra for the models