Physics of Photon Dominated Regions

PDR Models SS 2007 M. Röllig

- So far: all necessary components of a PDR model introduced:
 - energy balance: important heating and cooling processes
 - PE heating
 - H₂ vibrational deexctiation
 - H₂ formation heating
 - H₂ photodissociation heating
 - CR heating
 - fine-structure emission ([CII], [CI], [OI])
 - line emission (CO, H_2O , OH, Ly α , ...)
 - gas-grain collision (heating and cooling)

- chemical network:

- N species (e.g. 99)
- L reactions (e.g. 1548)
- M elements (e.g. 7)
- system of chemical rate equations
 - N+M+1 equations for N unknowns
 - numerical complexity scales $\propto N^2...N^3$

- radiative transfer
 - incoming radiation (radiation hitting the PDR surface from outside)
 - outgoing radiation (radiation leaving the PDR)

or

- emission of radiation
- absorption of radiation

these two descriptions are not fully exchangeable, since outgoing radiation means emitted radiation, which has partly been re-absorbed in the cloud.

or

- FUV radiation
- IR and FIR radiation

Energy Balance

• PE heating $\Gamma_{PE} = 10^{24} \varepsilon G_0 n$ [erg s⁻¹ cm⁻³] Γ denotes heating rates ε : PE efficiency, e.g.:

$$= 3 \times 10^{-2} < f(O) >= \frac{3 \times 10^{-2}}{1 + 4.2 \times 10^{-4} G_0 T^{1/2} / n_e}$$

(Bakes&Tielens, 1994) $\frac{\text{ionization rate}}{\text{recombination rate}} \propto \frac{G_0 T^{\frac{1}{2}}}{n_e}$

FIG. 11.—The numerically calculated efficiency (squares) of the net photoelectric heating rate per hydrogen atom for a range of different interstellar environments defined by the intensity of the incident UV field, G_0 , gas temperature, T, and electron density, n_e . The analytic fit (solid line) compares well with the numerical results for all gas temperatures less than 10⁴ K.

(Bakes&Tielens, 1994)

G₀ vs. χ

 G₀: FUV flux normalized to the Habing field for the solar neighborhood (Habing 1968) integrated over 6-13.6 eV

 $G_0 = 1.6 \times 10^{-3} \text{ erg cm}^{-2} \text{ s}^{-1}$

$$\left(-\frac{25}{6}\lambda_3^3+\frac{25}{2}\lambda_3^2-\frac{13}{3}\lambda_3\right) \times 10^{-14} \text{ ergs cm}^{-3}$$

 χ: FUV flux normalized to the Draine field (Draine 1978)

G₀=1.71 χ (isotropic radiation from 4π)

FIG. 3.—The ultraviolet background $F_E = \lambda^3 u_\lambda (4\pi h^2 c)^{-1}$ below 13.6 eV: theoretical estimates of Habing (1968), Witt and Johnson (1973), Jura (1974) and Gondhalekar and Wilson (1975); observations of Hayakawa *et al.* (1969), Belyaev *et al.* (1971), and Henry *et al.* (1977). The smooth curve labeled "standard UV" is the spectrum adopted in the present work.

(Draine, 1978)

G₀ vs. χ

• Draine intensity:

 $I(\lambda) = \frac{1}{4\pi} \left(\frac{6.3000 \times 10^7}{\lambda^4} - \frac{1.0237 \times 10^{11}}{\lambda^5} + \frac{4.0812 \times 10^{13}}{\lambda^6} \right)$ \lambda in [Å], I(\lambda) in erg s⁻¹ cm⁻² ster⁻¹ Å⁻¹

$$u(\lambda) = \frac{1}{c} \int I(\lambda) d\Omega$$

$$G = \frac{1}{5.6 \times 10^{-14}} \int_{912\text{\AA}}^{2400\text{\AA}} u(\lambda) d\lambda$$

Draine vs. Habing

Draine vs. Habing

Cooling

- [CII] 158µm fine structure emission ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$
- 2-level system (collision + spont. emission)

now including absorption

$$\begin{array}{|c|c|c|c|c|} \gamma_{lu} & B_{lu}J_{ul} & \gamma_{ul} & A_{ul} & B_{ul}J_{ul} \\ \end{array} \\ \end{array}$$

J_{ul}: mean intensity B: Einstein coefficients for absorption and stimulated emission

 $n_l n \gamma_{lu} + n_l B_{lu} J_{ul} = n_u n \gamma_{ul} + n_u A_{ul} + n_u B_{ul} J_{ul}$

Attention:local population depends on JJ depends on population everywhere

new concept: escape probability $\beta(\tau_{ul})$

Assumptions:

- photons produced locally can only be absorbed locally
- in calculating τ_{ul} we assume that the local population holds globally

STRONG ASSUMPTIONS!

now: photon balance

net absorption = emitted photons that do not escape

$$\left(n_{l}B_{lu}-n_{u}B_{ul}\right)J_{ul}=n_{u}\left(1-\beta\left(\tau_{ul}\right)\right)A_{ul}$$

net # of photons used up for absorptions net # of photons made available for local absorptions

• $\beta(\tau_{ul})$: probability that a photon formed at opt. depth τ escapes through the surface

$$n_l n \gamma_{lu} + n_l B_{lu} J_{ul} = n_u n \gamma_{ul} + n_u A_{ul} + n_u B_{ul} J_{ul}$$

$$n_l n \gamma_{lu} + \left(n_l B_{lu} - n_u B_{ul} \right) J_{ul} = n_u n \gamma_{ul} + n_u A_{ul}$$

 $\left(n_{l}n\gamma_{lu}+n_{u}\left(1-\beta(\tau_{ul})\right)A_{ul}=n_{u}n\gamma_{ul}+n_{u}A_{ul}\right)$

 $n_l n \gamma_{lu} = n_u n \gamma_{ul} + n_u \beta(\tau_{ul}) A_{ul}$

simple 2-lev corrected with $n_l n \gamma_{lu} = n_u n \gamma_{ul} + n_u A_{ul}$ β factor

Cooling

- Line cooling rate $n^2\Lambda = n_u A_{ul} E_{ul} \beta(\tau_{ul})$ (erg s⁻¹ cm⁻³)
- n_u: number of atoms in upper level

- β=??
- depends e.g. on geometry
- turbulent, homogeneous, semi-infinite slab
- line-averaged opt. depth:

 $\tau_{ul} = \frac{A_{ul}c^3}{8\pi v_{ul}^3} \frac{n_u}{b/\Delta z} \left[\frac{n_1 g_u}{n_u g_l} - 1 \right]$

b: Doppler broadening parameter Δz : distance from the surface

- instead of thermal motion: velocity gradient b/∆z→dv/dz
- once a photon has traveled a distance $\Delta v_D/(dv/dz)$, with Δv_D its Doppler width of the line, it will be shifted to the line-wings, where the opt. depth is small, and the photon will escape

- For various geometries, β can be given analytically.
- For a semi-infinite, plane-parallel slab:

$$\beta(\tau) = \frac{1 - \exp(-2.34\tau)}{4.68\tau} \quad \tau < 7$$

$$\beta(\tau) = \left\lfloor 4\tau \left(\ln \left(\frac{\tau}{\sqrt{\pi}} \right) \right)^{2} \right\rfloor \qquad \tau > 7$$

small τ : $\beta \rightarrow 1/2$ (photons escape through half the hemisphere) large τ : $\beta \propto \tau^{-1}$

Emergent Intensities

 2π : photons only escape through the front surface

$$I = \frac{1}{2\pi} \int_{0}^{z} n^{2} \Lambda(\tilde{z}) d\tilde{z}$$

In thermodynamic equilibrium ($n > n_{cr}\beta$)

$$I = B(T) \frac{vb}{c} f(\tau)$$

$$f(\tau) = 2 \int_{0}^{\tau} \beta(\tau) d\tau = 0.428 \left[E_{1}(2.34\tau) + \ln(2.34\tau) + 0.57721 \right]$$
for $\tau <<1: f(\tau) = \tau$ $I = \frac{A_{ul}N_{u}hv_{ul}}{4\pi}$

Cooling

• [CII] 158µm

$$n^{2}\Lambda = \frac{1.4 \times 10^{-4} \cdot 2.29 \times 10^{-6} \cdot 1.26 \times 10^{-14} n\beta}{1 + \frac{1}{2}e^{\frac{92K}{T}} \left(1 + \frac{2600\beta}{n}\right)} \quad \text{erg cm}^{-3} \text{ s}^{-1}$$

3-Level System [OI]

$$\begin{split} \Lambda_{12} &= A_{12} \, E_{12} \beta Z \left(\frac{n_{\text{OI}} \, \exp(E_{01}/T) \, g_1 \, n \, (n + \beta \, n_{cr,01})}{g_0 \, n^2 \, \exp(E_{01}/T) \, (n + \beta \, n_{cr,01}) \, (g_1 \, n + \exp(E_{12}/T) \, g_2 \, (n + \beta \, n_{cr,12}))} \right) & \text{erg cm}^{-3} \, \text{s}^{-1} \\ \Lambda_{01} &= A_{01} \, E_{01} \beta Z \left(\frac{n_{\text{OI}} \, g_0 \, n^2}{g_0 \, n^2 \, \exp(E_{01}/T) \, (n + \beta \, n_{cr,01}) \, (g_1 \, n + \exp(E_{12}/T) \, g_2 \, (n + \beta \, n_{cr,12}))} \right) & \text{erg cm}^{-3} \, \text{s}^{-1}. \end{split}$$

$$\begin{split} \Lambda_{63\ \mu\text{m}} &= 3.15 \times 10^{-14} \, 8.46 \times 10^{-5} \, \frac{1}{2} \, Z \\ &\times \frac{3 \times 10^{-4} \, n \, \exp(98 \, \text{K}/T) \, 3 \, n \, \left(n + \frac{1}{2} \frac{1.66 \times 10^{-5}}{1.35 \times 10^{-11} \, T^{0.45}}\right)}{n^2 + \exp(98 \, \text{K}/T) \left(n + \frac{1}{2} \frac{1.66 \times 10^{-5}}{1.35 \times 10^{-11} \, T^{0.45}}\right) \left(3 \, n + \exp(228 \, \text{K}/T) \, 5 \, \left(n + \frac{1}{2} \frac{8.46 \times 10^{-5}}{4.37 \times 10^{-12} \, T^{0.66}}\right)\right)} \right. \\ erg \, cm^{-3} \, s^{-1} \\ \Lambda_{146 \ \mu\text{m}} &= 1.35 \times 10^{-14} \, 1.66 \times 10^{-5} \, \frac{1}{2} \, Z \\ &\times \frac{3 \times 10^{-4} \, n \, n^2}{n^2 + \exp(98 \, \text{K}/T) \left(n + \frac{1}{2} \frac{1.66 \times 10^{-5}}{1.35 \times 10^{-11} \, T^{0.45}}\right) \left(3 \, n + \exp(228 \, \text{K}/T) \, 5 \, \left(n + \frac{1}{2} \frac{8.46 \times 10^{-5}}{4.37 \times 10^{-12} \, T^{0.66}}\right)\right)} \right. \\ erg \, cm^{-3} \, s^{-1}. \end{split}$$

!! β=0.5, Z: metallicity

Cooling – [CII] vs. [OI]

Energy Balance

Heating and Cooling

- H₂ vib. deexcitation
- H₂ dissociation
- H₂ formation
- CR heating
- PE heating
- gas-grain collisions

- [OI] 63, 146, 44µm
- CO rot. lines
- [CII]158µm
- [CI] 610, 370, 230µm
- Si⁺
- ¹³CO rot. lines
- OH
- H₂O
- gas-grain collisions

T [K]

- N species, M elements
- one rate equation per species

particle conservation

 $n_M = \sum_i n_i c_i^M$ c_i^M : number of atoms of element M in species i e.g.: $n = n_H + 2n_{H_2}$

charge conservation

 $n_e = \sum_i n_i c_i^{charge}$ c_i^{charge} : number of charges in species i

 $\overline{e.g.:n_e} = \overline{n_{C^+}}$

N+M+1 quations for N unknown quantities

• e.g.: H/H₂ balance

 $\frac{\partial n(H_2)}{\partial t} = R_f - f_{shield} e^{-\tau} I_{diss} (\tau = 0) \chi n_{H_2} - \frac{\partial (n_{H_2} v)}{\partial z}$ $R_f \sim 3 \times 10^{-17} nn_H \quad \text{cm}^3 \text{s}^{-1} \text{ (observation)}$ $R_f = \frac{1}{2} S(T, T_D) \eta(T_D) n_D n_H \sigma_D v_H \quad \text{(theory)}$ $I_{diss} (\tau = 0) \approx 5.2 \times 10^{-11} \text{ s}^{-1}$

Assumptions:

- steady-state chemistry $\Rightarrow \frac{\partial n}{\partial t} = 0$
- τ=0: cloud surface

$$Rnn_{H} = I_{diss}(0) \chi n_{H_{2}}$$

$$n = n_{H} + 2n_{H_{2}}$$

$$n_{H} = n \frac{1}{1 + 2\alpha}, n_{H_{2}} = n \frac{\alpha}{1 + 2\alpha}, \alpha = \frac{nR}{\gamma I(0)}$$

$$\tau \neq 0 : I \to I(0)e^{-\tau_{UV}}$$
$$\Rightarrow \alpha = \frac{nR}{\chi I(0)e^{-\tau_{UV}}}$$

 $\tau {\rightarrow}$ connection to RT

 $\tau_{UV} = k A_v (e.g. k=3.02)$ $A_v = 6.289 \times 10^{-22} N_{Htot}$ \Rightarrow $A_v = 1 \text{ entspricht}$ $N_H = 1.59 \times 10^{21} \text{ cm}^{-2}$

FIG. 8.—H₂ fractions in stationary, plane-parallel photodissociation fronts for $n_{\rm H} = 10^2$ cm⁻³ and $T_0 = 200$ K, for selected values of $\chi/n_{\rm H}$ (cm³) and dust with $R_V = 3.1$ ($\sigma_{d,1000} = 2 \times 10^{-21}$ cm²) and $R_V = 5.5$ ($\sigma_{d,1000} = 6 \times 10^{-22}$ cm²). $\lambda > 912$ Å radiation with $u_v \propto v^{-2}$ is propagating in the +x direction at $N_{\rm H} = 0$. $N_{\rm H}$ is the total column density of H nucleons. Self-shielding of the H₂ is computed for 27,983 lines using eq. (30) with $W_{\rm max} = 0.2$.

dust shielding important $G_0/n \ge 4 \times 10^{-2} \text{ cm}^3$ self shielding important $G_0/n \le 4 \times 10^{-2} \text{ cm}^3$

self shielding factor approximation

$$\beta_{SS} = \left(\frac{N(H_2)}{N_0}\right)^{-0.75}$$
$$N_0 = 10^{14} \le N(H_2) \le 10^{21} \text{ cm}^{-2}$$

Draine & Bertoldi, 1996, Ap.J., 468
Chemistry

H2 and CO are photodissociated via line absorption, hence they are both subject to line shielding effects

(see. e.g. van Dishoeck & Black, 1988)

Lee et al. 1996

Chemistry

- τ , A_V , N are exchangeable measures of the amount of matter passed by radiation.
- Pay attention when you exchange them!

• pure absorption
$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}I_{\nu}$$

absorption +emission

 I_{ν}

$$\frac{dI_{v}}{ds} = -\kappa_{v}I_{v} + \varepsilon_{v}$$

with
$$d\tau_v = \kappa_v ds$$
, $\frac{dI_v}{d\tau_v} = -I_v + \frac{\varepsilon_v}{\kappa_v} = -I_v + S_v$

ds

• **extinction** $k_{\nu} = \kappa_{\nu} + \sigma_{\nu} \implies d\tau_{\nu} = k_{\nu}ds$ $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int e^{-\tau_{\nu}'}S(\tau_{\nu}')d\tau_{\nu}'$

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-\tau_{\nu}'}S(\tau_{\nu}')d\tau_{\nu}'$$

background radiation

radiation emitted inside the cloud and partly re-absorbed within the cloud

- in case of LTE (local thermodynamic equilibrium) und e.g. constant temperature $S_v \rightarrow B_v(T)$ (black body)
- Problem:

emission depends on n_u/n_l and T_A

emission depends on n_u/n_1 and T at A and n_u/n_1 and T at B

- radiative properties at plave B depends on conditions at place A! → non-local problem
- To solve the RT problem at B it is necessary to have it already solved at all other places. Same argument holds for all positions.
- Analytical solution only for special cases possible.
 - numerical, iterative solution
 - special simplifications to de-couple the RT
 - escape probability
 - LVG (large velocity gradient) (Sobolov approx.)

- Through RT geometry enters the stage
- Since RT couples distant mass elements to each other it becomes necessary to define the model geometry

•Cloud

- plane-paralle (semi-infinite or finite), spherical, disk
- spatial size
- structure (density/velocity gradient or fluctucations)
- Environment
 - FUV field (isotropic?, strength)
 - other radiation background (IR?)
 - density, presure, temperature of the ambient medium

Some configurations more advantageous due to their symmetry.

- pp-models with directed or isotropic FUV
- spherical clouds with isotropic FUV

real clouds:

- fractal or clump ensemble
- diffuse interstellar radiation field plus local young stellar clusters

modelling:

- 3D density/velocity structure and Monte-Carlo rad. transfer plus PDR physics
- sperical clump ensemble
 - directed and/or isotropic illumination
 - interclump p.p. PDR
 - pre-shielding of clumps by interclump medium

If we put a model cloud in an isotropic FUV field with $G_0=1$, the flux at the cloud's edge is 0.8×10^{-3} erg s⁻¹ cm⁻² (1/2 G_0)

If we put a model cloud in an isotropic FUV field with $G_0=1$, the flux at the cloud's edge is 0.8×10^{-3} erg s⁻¹ cm⁻² (1/2 G_0)

irradiation with inclination angle

$$\mu = \cos \theta$$
$$\mu \frac{dI_{\nu}(\mu, x)}{dx} = -\kappa_{\nu}(x)I_{\nu}(\mu, x) + \varepsilon_{\nu}(x)$$

for pure absorption:

$$\frac{J}{J_0} = E_2(\tau) = \int_0^1 \frac{\exp(-\tau\mu)}{\mu^2} d\mu$$

E2: second order elliptical integral J: mean intensity, integral over 4π

directed vs. isotropic attenuation

Flannery et al. 1980 (Legendre polynomial expansion) g: mean cosine of scattering angle (1=forward) ω: scattering albedo

 ω : single scattering albedo $0 \le \omega \le 1$ the fraction of light that is actually absorbed is 1- ω

Flannery et al. 1980

- uni-directional: A_V is a function of depth
- isotropic: A_V depends on the depth and the angle
- it is difficult to directly compare the output of isotropic models with uni-directional models.
- Solution: definition of an effective A_V

$$e^{-A_{V,eff}} = E_2(A_V)$$
$$A_{V,eff} = -\ln(E_2(A_V))$$

Solution scheme

Standard Setup

- plane-parallel slab, semi-infinite
- FUV radiation hits surface perpendicular extinction ∞exp(-A_V)
- total gas density n=n(H)+2n(H₂)=const. $\Rightarrow A_V \propto N_H \propto z$
- steady-state chemistry $\Rightarrow \frac{\partial n}{\partial t} = 0$

Standard Setup

• Example: C⁺/C

$$C + hv \rightarrow C^{+} + e^{-}$$

$$C^{+} + e \rightarrow C + hv$$

$$C^{+} + H_{2} \rightarrow CH_{2}^{+} + hv$$
larger A_v

$$\chi I \exp(-A_{v}k)n_{c} = a_{c}n_{c} + n_{e} + k_{c}n_{c^{+}}n_{H_{2}}$$

$$n_{c} + n_{c^{+}} = X_{c}n$$

$$n_{c} = (X_{c}n - n_{c^{+}})$$

$$n_{c^{+}} = n_{e}$$

$$\alpha = 2.5 \times 10^{-11}, I = 3 \times 10^{-11}, k_{c} = 7 \times 10^{-16}, k = 1.8$$

Standard Setup $\chi I \exp(-A_V k) (X_C n - n_{C^+}) = a_C n_{C^+}^2 , n=10^4, X_C = 10^4$ $n_{C^+}^2 + \frac{\chi I \exp(-A_V k)}{a_C} n_{C^+} - \frac{\chi I \exp(-A_V k)}{a_C} X_C n = 0$ $n_{C^+} = -6000 \exp(-1.8A_V) +$ $+2 \times 10^{10} \sqrt{9 \times 10^{-14}} \exp(-3.6A_V) + 3 \times 10^{-17} \exp(-1.8A_V)$

layers: C⁺ outsinde, C inside next step C \rightarrow CO C + OH \rightarrow CO + H C + O₂ \rightarrow CO + O

 \Rightarrow classical C⁺-C-CO stratification

Standard Setup

 χ =10³, C/H=10⁻⁴, n=10⁴ cm⁻³ (solid), n=10⁶ cm⁻³ (dashed) H (red), H₂ (blue), C⁺ (green), C (black)

Standard Setun

PDR

Basic structure:

1-D steady-state model, escape probability method.

Hollenbach&Tielens, 1999

Resulting Model Cloud

PDR model for Orion

n=2.3*10⁵ cm⁻³ G₀=10⁵

Tielens & Hollenbach 1985

CII 158 µm fine-structure line cooling:

Expected theoretically e.g. Dalgarno & McCray 1972.

First far-IR (Lear jet) detections by Russell et al. 1980 in NGC 2024 and Orion.

Widely detected since with KAO, ISO...

Fine-Structure Line Emission:

Kaufman et al. 1999 ApJ, 527, 795

[OI] 63µm can become optically thick.

Hollenbach et al. 1991

Hollenbach et al. 1990

OH driven chemistry in warm H/H₂ transition zone:

T = 300 – 1000 K

Prediction:	
CO ⁺ /HCO ⁺	large in PDR
CO ⁺ /HCO ⁺	small in dark core

For example, CO⁺ / HCO⁺

Polycyclic Aromatic Hydrocarbons (PAHs):

NGC 7023 (reflection nebula) ISO spectrum of NGC7023 (D. Cesarsky et al. 1996) 2000 7.62 11.3 1500 8.6 6.25 $I_{\nu}(MJy \ sr^{-1})$ 12.7 12.0 13.55 500 C skel mono duo trio quartet in-plane C-H bend out-of-plane C-H bend 0 6 8 10 12 14 $\lambda(\mu m)$

Optical \rightarrow "internal conversion" \rightarrow IR

B. T. Draine 2003.04.25

PAHs in PDRs:

Bakes & Tielens 1998 ApJ 499, 258

PAH+ ← → PAH ← → PAH-

dashed – without PAHs

H density - n=10³ cm⁻³, χ =10

Resulting Model Cloud

Resulting Model Cloud

