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Background fitting of Fermi GBM observations
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ABSTRACT MODEL SELECTION

The Fermi Gamma-ray Burst Monitor (GBM) detects gamma-rays in
the energy range 8 keV - 40 MeV. We developed a new background
fitting process of these data, based on the motion of the satellite. Here
we summarize the result of this method, called Direction Dependent
Background Fitting (DDBF), regarding the GBM triggered catalog and
compare some parameters with the 2-years Fermi Burst Catalog.

The Akaike Information Criterion (AIC) is a commonly used method of choosing the right model to the

data (1). Assume that we have M models so that the kth model has k free parameters (k = 1...M). When

the deviations of the observed values from the model are normally and independently distributed, every

model has a value AIC, so that
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, where RSSy is the Residual Sum of Squares from the estimated model (RSS = Zﬁ\:’ (yi —y(xi, k) )2), N is

the sample size and k is the number of free parameters to be estimated. Given any two estimated models,

the model with the lower value of AICy is the one to be preferred. Given many, the one with lowest AIC;

will be the best choice: it has as many free parameters as it has to have, but not more.

We loop over the pseudoinverse operation and choose Sy as the limit of singular values in the kth step, and

compute the corresponding AICi. The number of singular values which minimalize the AICj as a function

of k will be the best choice when calculating the pseudoinverse.

As an example we analyze the lightcurve of GRB 090113. GRB 090113 is a long burst with T§3'=17.408+3.238

s in the GBM Catalogue, here we show Detector 0 data:

AIC, =N - log +2-k

INTRODUCTION

Fermi has some specific motion in order to survey the sky and catch gamma-ray bursts in the most effective
way. However, bursts with an Autonomous Repoint Request (ARR) have a highly varying background, and
modeling it with a polynomial function of time is not efficient — one needs more complex, Fermi-specific
methods. Here we present the effect of these special moving feature for the measured data, and we introduce

some variables based on the position of the satellite related to the Earth and the Sun. We use them together
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with the time variable to fit a general multidimensional linear function for the background. +250 " chi2=1.053 — COS Sun ----roro- normalized fime -------
1200
1150 | T
FERMI LIGHTCURVES WITH VARYING BACKGROUND 1100 | 08 |
9 1050 |
Fermi uses a complex algorithm in order to optimize the observation of the Gamma-Ray Sky. In Sky Survey 2 1000 | 06 | | ) L
Mode, the satellite rocks around the zenith within 4-50°, and the pointing alternates between the northern 3 950 U | ,,f"""‘f;(”\.:.:-.:;;7;_-1 ~~~~
and southern hemispheres each orbit (3; 2). 12 Nal detectors are placed such a way that the entire hemisphere 900 I 1\(" ”m LAl 'u(,. e i “4 | ' A
is observable with them at the same time. The GBM data, which we use in our analysis (called CTIME), 850 | ‘ AT ROeY T i M wa' '“” ! .| L
are available at 8 energy channels, with 0.064-second and 0.264-second resolution (for triggered and non- 800 | ’ il - e
750 ' 0 .

triggered mode, respectively). The position data is available in 30-second resolution. This data were evenly

proportioned to 0.256-second and 0.064-second bins using linear interpolation, in order to correspond to the
CTIME data.
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Using GBM data, 1-second bins and summarizing the counts in the channels between 11.50-982.23 keV, one 19000 - min =13 T90=19.363
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Fig. 3 has some extra counts around 400 and 600 seconds. Both of them can be explained with the variation

fime of the underlying variables, that is, the motion of the satellite. These are not GRB signals!.

Figure 1: Lightcurve of the Fermi burst 091030613 measured by the 3rd GBM-detector, without any background filtering, with 1-second
bins. The grey line is a fitted polynomial function of time of order 3, between -200 and 200 seconds, which does not seem to be a correct

ERROR ANALYSIS

model for this whole background: reduced "chi-square" statistics is given in the top right corner. (4).

The DDBF method is too complicated to give a simple expression for the error of Ty using general rules
of error propagation. We therefore repeated the process for 1000 MC simulated data. Distribution of the

DirecTION DEPENDENT BACKGROUND FiTTING (DDBF) Poisson-modified Teo and Tso values are shown in Fig. 4 for GRB091030613.

Analyzing ancillary spacecraft and other directional data we have found the following (x;) variables, which
seem to contribute to the variation of the background: celestial distance between burst and detector orientation,
celestial distance between Sun and detector orientation, rate of the Earth-uncovered sky and time.

We use the method of General Least Square for multidimensional fitting of the y; counts to the corresponding
(x) explanatory variables. The maximum likelihood estimate of the model parameters aj is obtained by
minimizing the quantity of
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Minimizing x* leads us to the following equation: e e
a=( AT A) —1 ATb, (3) Figure 4: Distibution of the Ty (left) and Ty (right) values obtained from the MC simulated data for Fermi burst 091030613.

, where AT means the transpose of A, and the expression (ATA) 'AT are called generalized inverse or
pseudoinverse of A.

One cornerstone of the fitting algorithm described above is the definition of the boundaries which divide the
interval of the burst and the intervals of the background. In this work, we follow the common method of
using user-selected time intervals (5).

Fig. 4 shows two significant peaks around 22 and 47 seconds. The first peak at 22 seconds corresponds to
the measured Toy value. However, in some cases of the Poison noise simulation, the measured Tqy value is
systematically longer: that is because this burst has a little pulse around 47 seconds (see Fig. 1.). There is no
sign of this second peak in the T3¢ distribution, as it is more robust.

Burst Too(s) errors (s) T;gt“"’g (s) | Tso(s) errors (s) T;Stalog (s)
081009360 | 176.228 | +1.357 |—9.477 | 176.191 |15.852|+3.006 —2.350| 25.088
090102122 | 29.756 | +2.971 |—1.198| 26.624 |10.859|+0.531|—0.556| 9.728
o000 090113778 | 19.679 | +10.883 | —6.421| 17.408 | 6.408 |+0.498| —0.344 6.141
090618353]103.338| +3.842  —6.725| 112.386 | 22.827|+2.201|—1.530 23.808
R 090828099 | 63.608 | +1.467 | —1.652| 68.417 |11.100|+0.198 —0.194| 10.752
3 3 Cosine of 091030613 | 22.609 | +13.518| —4.522| 19.200 |10.770| +0.388| —0.424| 9.472
708 petmeen 100130777 | 80.031 | +3.755 —3.485| 86.018 |32.340 +0.931|—1.363| 34.049
Rate oy e T 78° and borst Some results and confidence intervals).
Overed sky ¢ detec%;i.s Fo.i,/s
Figure 2: The 2-dimensional hypersurface of 3rd degree fitting to a Fermi lightcurve is shown. The fitted variables (x", x>') are along SUMMARY

the horizontal axes, while vertical axis represents the counts of the lightcurve y; (shown by the black curve on the fitted

Eqn. (3) describes a hypersurface, and it is a generalization of fitting a straight line to the data. In the most
complicated cases of the ARR backgrounds, however, higher degree of the explaining variables are needed.

1) and xgs), both

One can illustrate the lightcurve data y; and the fitted hypersurface y(x;) using 2 variables x;

of 3rd degree, on a 3D plot, see Fig. 2. The design matrix of this problem is

(xgl) xil)z x§3) x§3)2 xil) -x§3) 1\

The commonly used methods are not efficient for most cases of the ARR, so we developed a new technique
based on the motion and orientation of the satellite. The DDBF considers the position of the burst, the Sun and
the Earth as well. Based on these position information, we computed three physically meaningful underlying
variables, and fitted a 4 dimensional hypersurface on the background. Singular value decomposition and
Akaike information criterion was used to reduce the number of free parameters. Further research may be

required to find a more suitable model dimension reducing criterion.

e T e A T The DDBF method has the advantage of considering only variables with physical meanings and furthermore,

Ao | X2 % "X X X x 1 (4) it fits well the whole 2000 sec CTIME data as opposed to the currently used methods. This features are
necessary when analyzing long GRBs and precursors, where motion effects influence the background rate

\xz(\}) a$? 23 a2 Al a1 ) sometimes in a very extreme way. Therefore, not only Sky Survey, but ARR mode GRB’s can be analyzed,

For calculating the pseudoinverse of the design matrix A we used Singular Value Decomposition (SVD):
A =USV!. Using U and V, the pseudoinverse of A can be obtained as

and a possible long emission can be detected.
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