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Abstract. We’ve analyzed the Fermi high time resolution GRB lightcurves’ autocorrelation func-
tion looking for gravitational lens effects. The theoretical amplification-time delay function was
applied with a photon countS/N approximation to determine the optimal photon binning. We con-
clude that during the lens signal search among the Fermi datathe usual linearity based techniques
(e.g. matched filters, FIR filtering, Bayes blocks, autocorrelation function) are sub-optimal. Only
the short and very bright GRBs can be the plausible candidates of these detection techniques.
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GRAVITATIONAL LENSING

GRBs are located at high-z therefore the probability of the gravitational lensing by a
foreground object is non-negligible. The observed lensed quasar images’ separations are
smaller than the positional resolution of the current gamma-ray detectors, hence during
the search we have to look for the signals imprinted on the lightcurves of the bursts.
The time resolution of gamma-ray instruments is superior inmany aspects to the optical
instruments and thisµs resolution photon data can carry the lensing signal. Here we
are looking for lensing signalwithin a burst, i.e. we try to find the lensing signal in the
lightcurve when there’s a lensing object at redshiftzlens between the event and us. Here
a point mass lens model were used: nevertheless the analysiscould be easily extended
for more structured models too.

Relevant equations for gravitational lensing can be found ine.g. [1, 2]. The lens’

Einstein-radius (in radians) isθE =
√

2Rs
Dsl

DsDl
, while from the lensing equation we know

that β = θ − θ 2
E/θ . HereDs is the luminosity distance between the GRB and the ob-

server,Dsl is the luminosity distance between the GRB and the lens,Dl is the luminosity
distance between the lens and the observer,Rs = 2GMlens/c2 is the Schwarzschild radius
of the lens,θ is the observed angle of the image of the source with respect to the lens
andβ = f θE is the real angle between the source and the lens.

For a point mass lens any point-source will produce exactly two images. Hence the
lens’ l(t) linear response function (Green’s function, convolution function) will consists
of two Dirac deltas with a followingτ time delay andα relative amplitude/amplification:
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FIGURE 1. The theoretical amplification-delay diagram for a point mass lens approximation,f is the
parametric value. For aτ > 6 delay the amplification ratio grows approximately linearly with τ.

FERMI LIGHTCURVES

The Fermi database contains the NaI detectors’ GRB event dataon a photon-by-photon
basis, providing us a powerful tool in the search for a real lensing effect. For our analysis
we used all photons between 18−882keV for each triggered GBM detectors. Eachs(t)
lightcurve was formed with a time resolution of a given∆ bin width. The question is the
optimal∆ value for a lens effect search.

Suppose that we observe a totalNtot photons over a time ofT. For a typical burst
Ntot ≈ 105 andT ≈ 100s, and the average intensity isn0 = N/T ≈ 1 photon/ms. Usually
the signal and the background contains of a comparable number of photons.

Let us consider a toy model, a very short GRB, appearing only in one∆ bin with D
photons. The condition for detection is that the signal should be above the noise, so we
can introduce the signal-to-noise ratio of

S/N =
D−n0∆
√

D+n0∆

On Fig. 2. theS/N is plotted for different∆ bin widths, with typicalNtot values and
with an very optimisticD = 50.

OPTIMAL BINNING

The l(t) linear response function of the lens should be convolved with thes(t) GRB
lightcurve to get the observed data. Denoting the Fourier transform byF , the R(t)
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FIGURE 2. S/N values for different bin widths for a typical Fermi GRB.

autocorrelation of the observed signal becomes :

R(l(t)∗s(t)+n(t)) = R(l(t)∗s(t))+R(n(t))

= F−1(F(l(t)∗s(t))∗F(l(t)∗s(t)))+F−1(N2(ω))

= F−1(L(ω)∗S(ω)∗ L(ω)S(ω))+F−1(N2(ω))

= F−1(L(ω)2S2(ω)+N2(ω))

The optimal binning value would be a filter which optimally filters(L(ω)2S2(ω) and
supresses the noise. Thel(t) consists of two Dirac deltas, thereforeL(ω) will be a
sin/cos shaped filter, non-vanishing over the wholeω. As a supremum condition, we
can assume thatL(ω) is constant: this reduces the optimal binning problem to an optimal
Wiener filtering problem, with solution of

H(ω) =
S2

S2 +N2

The typical Fermi GRB’s power spectrum extends up to a few Hz, above the signal
fades into the noise. Therefore the optimal binning from theS/N point of view gives
us a (relatively) large optimal bin size, above the range of afew 10 ms. This values are
clearly out of the range ofS/N constraints on Fig. 2., hence generally it’s no use using
linear filtering! Only very short (≈ a few ∆) bursts with a veryhigh peak count could
theoretically be used for such filtering during lens searches.

Another observational constraint could be obtained by applying the Fig. 1. relation on
the Fig. 2. curves. On Fig. 3. theτ delay is plotted against the∆ bin size for a typical
zlens= 1 lens with differentMlensmasses. The ultimate constraint for any technique is the
Nyquist-Shannon sampling theorem (the sampling rate is more than twice the signal’s
maximum frequency): any observation should be above this line.



For the Fermi observations the practical lower limit for∆ is around 1ms, because
below this value the detector’s dead time and pile up will be aproblem. Even our
(slightly) optimistic toy model gives a lower limit ofM = 100M⊙ for ∆ ≈ 1ms and
M = 106M⊙ for ∆ ≈ 6ms bin width. These values refine our previous statement: not
only the short and bright GRBs are the only plausible candidates but even for a such a
burst the measurable lens masses will be limited above≈ 100M⊙.
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FIGURE 3. The time delay and the bins size diagram for our toy model withzlens= 1. Real observations
should be above the sampling theorem’s limit.

SUMMARY

We’ve found that linear filtering techniques are sub-optimal during the search for gravi-
tational lens effects in the Fermi GRB data. The possible detectable lens masses will be
limited above≈ 100M⊙ for bursts with a typicalz and lightcurve. The typical GRBs’
autocorrelation function with the point-mass lensing effect requires a high quality (S/N)
lightcurve, beyond the realm of current detectors.
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