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Abstract. We've analyzed the Fermi high time resolution GRB light@g'vautocorrelation func-
tion looking for gravitational lens effects. The theoratiamplification-time delay function was
applied with a photon cour8/N approximation to determine the optimal photon binning. \&le-c
clude that during the lens signal search among the Fermitdatasual linearity based techniques
(e.g. matched filters, FIR filtering, Bayes blocks, autoelation function) are sub-optimal. Only
the short and very bright GRBs can be the plausible candiddtihese detection techniques.
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GRAVITATIONAL LENSING

GRBs are located at high-z therefore the probability of thevitaional lensing by a
foreground object is non-negligible. The observed lensedgr images’ separations are
smaller than the positional resolution of the current garnayadetectors, hence during
the search we have to look for the signals imprinted on thetdigrves of the bursts.
The time resolution of gamma-ray instruments is superionamy aspects to the optical
instruments and thigis resolution photon data can carry the lensing signal. Here w
are looking for lensing signatithin a burst, i.e. we try to find the lensing signal in the
lightcurve when there’s a lensing object at redshifts between the event and us. Here
a point mass lens model were used: nevertheless the anedyddsbe easily extended
for more structured models too.

Relevant equations for gravitational lensing can be found.g [1, 2]. The lens’

Einstein-radius (in radians) & = , /2RS%, while from the lensing equation we know

thatB =0 — 9,%/6. HereDs is the luminosity distance between the GRB and the ob-
serverDyg is the luminosity distance between the GRB and the IBpg the luminosity
distance between the lens and the obseRget, ZGM|ens/c2 is the Schwarzschild radius
of the lens,0 is the observed angle of the image of the source with respebetlens
andp = f 6 is the real angle between the source and the lens.

For a point mass lens any point-source will produce exaettyimages. Hence the
lens’| (t) linear response function (Green’s function, convolutiondtion) will consists
of two Dirac deltas with a following time delay andr relative amplitude/amplification:
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FIGURE 1. The theoretical amplification-delay diagram for a point skens approximationt, is the
parametric value. For a> 6 delay the amplification ratio grows approximately lingawith T.

FERMI LIGHTCURVES

The Fermi database contains the Nal detectors’ GRB evenbdaagphoton-by-photon
basis, providing us a powerful tool in the search for a reaileg effect. For our analysis
we used all photons between 1882keV for each triggered GBM detectors. Ead)
lightcurve was formed with a time resolution of a giv&in width. The question is the
optimalA value for a lens effect search.

Suppose that we observe a tokg: photons over a time of . For a typical burst
Neot =~ 10° andT ~ 100s, and the average intensityis= N/T ~ 1 photon/ms. Usually
the signal and the background contains of a comparable nuohip&otons.

Let us consider a toy model, a very short GRB, appearing onlywevobin with D
photons. The condition for detection is that the signal fthbe above the noise, so we
can introduce the signal-to-noise ratio of

D —ngA
vD+ngA

On Fig. 2. theS/N is plotted for differentA bin widths, with typicalNo: values and
with an very optimistidD = 50.

S/N =

OPTIMAL BINNING

Thel(t) linear response function of the lens should be convolved thie s(t) GRB
lightcurve to get the observed data. Denoting the Four@msfiorm byF, the R(t)
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FIGURE 2. S/N values for different bin widths for a typical Fermi GRB.

autocorrelation of the observed signal becomes :

R(I(t)xs(t)+n(t)) = R((t)*s(t))+R(n(t))
= FHF(I) +st) F(I(t) +s(t))) +FH(N*(w))
= FH(L(w)'S(w)" L(w )S(w))+F*1(N2(w))
= FH{L(w)?*S(w) +N*(w))

The optimal binning value would be a filter which optimallytéils (L (w)? S?(w) and
supresses the noise. Th@) consists of two Dirac deltas, therefokgw) will be a
sin/cos shaped filter, non-vanishing over the whaleAs a supremum condition, we
can assume that w) is constant: this reduces the optimal binning problem togimal
Wiener filtering problem, with solution of

SZ
S+ N2

The typical Fermi GRB’s power spectrum extends up to a few Hayalihe signal
fades into the noise. Therefore the optimal binning from i point of view gives
us a (relatively) large optimal bin size, above the range feinal10 ms. This values are
clearly out of the range d&/N constraints on Fig. 2., hence generally it's no use using
linear filtering! Only very short£ a fewA) bursts with a veryhigh peak count could
theoretically be used for such filtering during lens seasche

Another observational constraint could be obtained byyapgithe Fig. 1. relation on
the Fig. 2. curves. On Fig. 3. thedelay is plotted against th& bin size for a typical
Zens= 1 lens with differeniVgnsmasses. The ultimate constraint for any technique is the
Nyquist-Shannon sampling theorem (the sampling rate isrti@n twice the signal’'s
maximum frequency): any observation should be above theés i

H(w) =



For the Fermi observations the practical lower limit fois around 1ms, because
below this value the detector’s dead time and pile up will bprablem. Even our
(slightly) optimistic toy model gives a lower limit d¥1 = 100M., for A =~ 1ms and
M = 10°M,, for A ~ 6ms bin width. These values refine our previous statemeit: no
only the short and bright GRBs are the only plausible candsdai even for a such a
burst the measurable lens masses will be limited abo¥80M.
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FIGURE 3. The time delay and the bins size diagram for our toy model ndtli— 1. Real observations
should be above the sampling theorem’s limit.

SUMMARY

We've found that linear filtering techniques are sub-opticaing the search for gravi-
tational lens effects in the Fermi GRB data. The possiblectigée lens masses will be
limited above~ 100M., for bursts with a typicak and lightcurve. The typical GRBS’
autocorrelation function with the point-mass lensing&ffequires a high quality§/N)
lightcurve, beyond the realm of current detectors.
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