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ABSTRACT

Context. We present a method for determining the background of the gamma-ray bursts (GRBs) of the Fermi Gamma-ray Burst
Monitor (GBM) using the satellite positional information and a physical model. Since the polynomial fitting method typically used
for GRBs is generally only indicative of the background over relatively short timescales, this method is particularly useful in the cases
of long GRBs or those that have autonomous repoint request (ARR) and a background with much variability on short timescales.
Aims. Modern space instruments, like Fermi, have some specific motion to survey the sky and catch gamma-ray bursts in the most
effective way. However, GBM bursts sometimes have highly varying backgrounds (with or without ARR), and modelling them with a
polynomial function of time is not efficient — one needs more complex, Fermi-specific methods. This article presents a new direction
dependent background fitting method and shows how it can be used for filtering the lightcurves.

Methods. First, we investigate how the celestial position of the satellite may have influence on the background and define three
underlying variables with physical meaning: celestial distance of the burst and the detector’s orientation, the contribution of the Sun
and the contribution of the Earth. Then, we use multi-dimensional general least square fitting and Akaike model selection criterion
for the background fitting of the GBM lightcurves. Eight bursts are presented as examples, of which we computed the duration using
background fitted cumulative lightcurves.

Results. We give a direction dependent background fitting (DDBF) method for separating the motion effects from the real data and
calculate the duration (Tyg, Ts, and confidence intervals) of the nine example bursts, from which two resulted an ARR. We also
summarize the features of our method and compare it qualitatively with the official GBM Catalogue.

Conclusions. Our background filtering method uses a model based on the physical information of the satellite position. Therefore,
it has many advantages compared to previous methods. It can fit long background intervals, remove all the features caused by the
rocking behaviour of the satellite, and search for long emissions or not-triggered events. Furthermore, many parts of the fitting have
now been automatised, and the method has been shown to work for both Sky Survey mode and ARR mode data. Future work will

provide a burst catalogue with DDBF.
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1. Introduction

NASA’s Fermi Gamma-ray Space Telescope has an orbit of
altitude ~ 565 km and period of ~96 minutes. It carries two
main instruments on board. The Large Area Telescope’s (LAT)
energy range (20 MeV — 300 GeV) overlaps the energy range of
the Gamma-ray Burst Monitor (GBM, 8 keV — 40 MeV). GBM
consists of two types of detectors: 12 Sodium Iodide (Nal) and
2 Bismuth Germanate-Oxide (BGO) detectors (Meegan et al.
2009).

The primary observation mode of Fermi is sky-survey mode.
This enables the LAT to monitor the sky systematically, whilst
maintaining an uniform exposure. In this mode, the entire sky
is observed for ~ 30 minutes per 2 orbits. If a sufficiently bright
GRB is detected by GBM, an autonomous repoint request (ARR)
may be issued. This will cause the satellite to slew, so that the
burst’s coordinates (calculated by the GBM) stay within the field
of view of the LAT for ~ 2 hours (Fitzpatrick et al. 2011). How-
ever, this repositioning right after the trigger results in rapid and
high background rate variations of the GBM lightcurves — some-
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times even during the burst, which is the most important time
of the observation. Therefore, it is crucial to have a filtering
method, which is capable of correcting for the background vari-
ations caused by the ARR.

To date, GBM has triggered on 1000 GRBs (GCN 2013),
(Fermi-Timeline-Posting 2013). Only a small fraction (~70
GRBs) resulted an ARR (Paciesas 2013). The relatively low rate
of ARR’s is due to the GBM trigger that has to meet certain cri-
teria (such as high peak flux) before an ARR occurs. When we
started to analyse GRBs detected by GBM, we found that several
non-ARR bursts have a background variation of the same order
of magnitude as the burst itself. As we will show, one can find
connection between these background rates and the actual posi-
tion and orientation of the satellite. Therefore it is necessary to
use the directional information to filter the background not only
for ARR but also for many non-ARR cases.

Here, we present the effect of the slew and how it is repre-
sented in the measured data of the GBM. We summarize why
the usual background subtraction methods are inefficient in most
cases, especially for the long bursts, as seen in Sec. 2. Then, we
introduce variables based on the position of the satellite related
to the Earth and the Sun (Sec. 3) and use them with the time
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variable to fit a general multi-dimensional linear function to the
background (Sec. 4). Our method is called direction dependent
background fitting (DDBF).

We also present examples where we compute the duration
(Typ and Tsp) from our background-filtered lightcurves and show
that the DDBF method can be used for both the Sky Survey and
ARR observations (Sec. 5). Confidence levels and a comparison
to the GBM catalogue are given in Sec. 6.

2. Difficulties with the Fermi background
2.1. Lightcurves with unpredictably varying background
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Fig. 1. Lightcurve of the Fermi burst 091030.613 measured by the
3rd GBM-detector without any background filtering with 1-second bins.
The grey line is a fitted polynomial function of time of order 3 for the
ranges of [-200:-20] and [38:200] seconds, which does not seem to be a
correct model for this whole background. Reduced chi-square statistics
are given in the top right corner (Szécsi et al. 2012a).

The lightcurve for GBM trigger 091030.613 is shown in
Fig. 1 in the energy range ~ 11-980 ke V. This burst did not result
in an ARR (GCN 2013). We decided to use the sum of the chan-
nels except for the highest and lowest, where the detector’s effi-
ciency drops, so the signal is statistically stronger. Since we are
only interested in the duration information of the bursts, we use
the high time resolution data (CTIME, see Sec. 3 for the detailed
description) and sum of the channels. We note that, however, the
analysis can be done using either different channels or the high
spectral resolution data files (CSPEC), so spectral information
can be obtained (see Szécsi et al. 2012b).

In Fig. 1, the burst is clearly visible above the background,
but the background is varying so rapidly and to such an extent
that one can question the usefulness of fitting and subtracting
a simple polynomial function of order 3 (grey line in Fig. 1).
This situation is typical in the case of Fermi, as can be seen in
the examples in Sec. 5.2. Especially when a long burst occurs,
the background rate can change too quickly for analyses with-
out some knowledge about the satellite position and the gamma
sources on the sky. In the following, we are investigating for
possible background sources. We will see that one can find a
correspondence between the gamma background and the celes-
tial orientation of the satellite. Furthermore, both the Sun and the
Earth limb have a contribution, given that they move in and out
of the field of view because of the rocking motion of the satel-
lite. Based on these physical conditions, we are constructing a
background model and a fitting algorithm, both of which give us
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a more effective method for filtering the motion effects. Since
the method is based on the actual directional information of the
satellite, it is possible to analyse bursts for which an ARR was
issued.

2.2. Previous methods

In the BATSE era, it was sufficient to fit a low-order poly-
nomial in the function of time for most cases. It was because
BATSE has had a fixed orientation and has not been able to
change it during a burst. As a result, sources moving in and out
of the field of view could not play an important role on a shorter
timescale, and all the backgrounds could be subtracted by fitting
a time-dependent low-order (up to 3) polynomial (Koshut et al.
1996; Sakamoto et al. 2008; Varga et al. 2005).

In the Fermi era, this situation has however fundamentally
changed. To present this on our example above, we fitted a sim-
ple 3rd-order polynomial function of time shown with a grey
line in Fig. 1. The fitting was done by using only a selected
short time interval around the burst, which is a common method
of the BATSE era. This fit may be sufficient around the burst
prompt emission, but is sufficient only there. It is clear that the
background cannot be well modelled with this simple function
over a long timescale. Moreover, an incidental longtime emis-
sion would be overlooked.

Fitting higher order polynomials of time could be suggested.
We rule out this solution because of two reasons. First, these
fittings show polynomial instabilities in the burst interval, as we
have seen it in our early experiments; namely, we got high or-
der, low amplitude oscillations of these fittings during the in-
terval of the burst. Second, we wanted to take into considera-
tion that the main cause of the complicated background is well
known (namely the rocking motion of the satellite). Indeed, we
use physically defined underlying variables, as we will show
in Sec. 4, and with them, we fit higher order multidimensional
functions. As a conclusion, time-dependent polynomial fittings
may have been sufficient for the BATSE data but Fermi-data can-
not be analysed that way due to the rapid motion of the satellite:
we need a Fermi specific method.

Such a method was presented by Fitzpatrick et al. (2011).
They estimated the background successfully with the rates from
adjacent days, when the satellite was at the same geographical
coordinates. This solution is only applicable when the satellite
is in Sky Survey Mode and cannot be used if an ARR occurred.
If an ARR is accepted, this technique cannot be employed.

3. Investigation of possible background sources
3.1. Orientation of Nal detectors

As we mentioned above, Fermi uses a complex algorithm to
optimize the observation of the Gamma-Ray Sky. In Sky Sur-
vey Mode, the satellite rocks around the zenith within +50°, and
the pointing alternates between the northern and southern hemi-
spheres each orbit (Meegan et al. 2009; Fitzpatrick et al. 2011).

The set-up of the instruments on-board is well known from
the literature (Meegan et al. 2009). The 12 Nal detectors are
placed in such a way that the entire unocculted sky is observable
with them at the same time, as seen in Fig. 2. Fermi has a proper
coordinate system, whose Z axis is given by the LAT main axis.
From now on, we only analyse the data of the Nal detectors; the
BGO detectors will be considered in a future work.
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Fig. 2. Setup of the 12 Nal detectors of GBM given in the Spacecraft
Coordinates (see Meegan et al. 2009). The zenith angle of the detectors
in degrees is marked. This design is built in order to cover the whole
visible part of the sky with the GBM. (The figure is based on Table 1.
of Meegan et al. (2009). Notations ’a’ and ’b’ mean the 10th and 11th
Nal detectors, respectively.)

The Fermi data set is available from the web for the GBM’s
12 Nal detectors'. The positional information of the spacecraft is
contained in the LAT data (called Spacecraft Data?). The GBM
data, which we use in our analysis (called CTIME), are available
at 8 energy channels with 0.064-second and 0.256-second reso-
lution (for triggered and non-triggered mode, respectively). The
position data is available in 30-second resolution.
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Fig. 3.  Orientation of the 12 Nal detectors on the sky (in the second
equatorial system), during the pre- and post-1000 seconds around the
burst 091030.613. To show the direction with time, we marked the
starting points of every line with a small star. The Sun’s position is
marked with big sphere. The burst position is marked with diamond.

The 30-second Spacecraft Data were evenly proportioned to
0.256-second and 0.064-second bins using linear interpolation,
to correspond to the CTIME data of non-triggered and triggered
mode, respectively. We created a 3D-plot from this data using
the known orientation of the 12 Nal detectors given in the Space-
craft coordinate system. Fig. 3 shows the detectors’ orientation
(path) on the sky during the pre- and post-1000 seconds around
the trigger of 091030.613 (lightcurve was shown in Fig. 1).

The catalogue location for the GRB is shown with a diamond
(@ = 260.72°, 6 = 22.67°, see Paciesas et al. (2012)). Since
we wanted to know the position of the detectors on the sky, we

' The High Energy Astrophysics Science Archive Research Center

(HEASARC): legacy.gsfc.nasa.gov
2 LAT Photon, Event, and Spacecraft Data
http://Fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi

Query:

needed to transform the proper coordinate system of the Fermi
shown in Fig. 2 to the general (second) equatorial system, since
the burst’s position was given in the latter. In addition, we plot
the celestial angle between the 3rd detector (black line in Fig. 3)
and the burst 091030.613 (marked with a diamond in Fig. 3)
against time in Fig. 4.
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Fig. 4. The celestial distance of the 3rd GBM detector and the Fermi-
burst 091030.613 as a function of time. It is worth comparing this figure
to Fig. 1.

At this point, we have to mention the effect of the Nal detec-
tors’ characteristics. Figure 12 from Meegan et al. (2009) shows
the angular dependence of a Nal detector effective area: The an-
gular response for the flat crystal is approximately cosine. For
this reason, we define our first underlying variable as the cosine
of the celestial angle between the detector and the burst (as it is
shown in Fig. 4). We will find further underlying variables in
Secs. 3.2 and 3.3.

However, the Nal characteristics are also energy dependent:
The dependence of the transmissivity on the angle of incidence
is more important at higher than at lower energies. Furthermore,
a detector has two small sensitivity peaks around -150 and 150
degrees, which means that they can detect photons coming under
the plane of the crystal. We consider these features by allowing
higher orders when performing the fits seen in Sec. 4.

If we compare Fig. 4 to Fig. 1, it is clear that the unpre-
dictable variation in the background is connected to the orien-
tation of the detector in question. We can also examine other
bursts (see Sec. 5.2. for more examples). However, we cannot
state a clear relation between the angle and the lightcurve.

3.2. Earth

The satellite’s Z axis (the direction of the LAT) is pointing
to the opposite direction of the Earth, when it is possible. Due to
the rocking behavior, GBM detectors’ orientation are, however,
towards the Earth-limb from time to time.

The Earth-limb is notable from the board of Fermi. At an al-
titude of ~ 565 km, it corresponds to an aperture of ~ 134° when
fully in the FoV. Therefore, we have to consider the effect of
the Earth-limb when analysing the data of the GBM detectors.
There are terrestrial gamma-ray flashes (brief bursts of gamma-
radiation that are thought to be associated with lightning in the
upper atmosphere); furthermore, gamma-rays of the GRB’s scat-
ter on the atmosphere. The main contributor in our background
model is the latter. Terrestrial gamma-ray flashes have a duration
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of only tens of milliseconds (Briggs et al. 2010) and are too short
to have a significant effect.

We presume therefore that the detected background also de-
pends on how much sky the Earth-limb shields from the detec-
tor’s FoV. To measure this, we define the Earth-occulted sky rate
as the rate of the Earth-covered sky correlated to the size of the
FoV. As Fermi has a proper motion, the Earth-occulted sky rate
is a function of time, satellite position, and orientation. Based
on spherical geometrical computations given in Appendix A, we
can get the Earth-occulted sky rate as a function of the aperture
of the Earth-limb and the maximum altitude of the Earth seen
from the Fermi. The Earth-occulted sky rate is plotted in Fig. 5
as a function of time.

0.3 T T T T T T T T T
0.25
2
o
> 0.2
[
kS
£ 015
3
@
£ 0.1 r
@
L
0.05
0 1 1
-1000 -800 -600 -400 -200 O 200 400 600 800 1000
time
Fig. 5.  The Earth-occulted sky rate for the 3rd GBM detector as a

function of time during the GRB 091030.613. (The Earth-occulted sky
rate is zero, if the Earth-limb is out of the FoV.)

We can see the same effect like above: There is some notice-
able connection between the lightcurve in Fig. 1 and the Earth-
occulted sky rate in Fig. 5.

3.3. Sun

One of the main contributors of the gamma-ray sky is the
Sun. Flares and other eruptive solar events produce gamma rays
in addition to those created by cosmic rays striking the Sun’s gas.
If we are looking for a complete model of the background, we
need to consider the contribution of the Sun as well.

The Sun’s position is known from ephemeris tables for the
day of the burst. We do not need more precise data than one
day, because the time interval around the burst is only 2000 s in
our analysis, and the position of the Sun does not change signif-
icantly during that time.

We compute the celestial distance (i.e. the angle) between
the detector’s direction and the Sun’s position. This parameter is
shown in Fig. 6. The Sun’s position is also shown in the Fig. 3
with a yellow circle.

Comparing Fig. 1 to Fig. 6, one can see a connection be-
tween them. It is interesting to take notice of the fact that when
the Sun’s angle is larger then 90° (the cosine is lower that 0)
around 600 sec, the background rate in Fig. 1 drops. It shows a
further correspondence of the background and the direction of
the satellite towards to the Sun.

Article number, page 4 of 16

0.8 ]

0.6 | ]

04} 1

0.2 r 1

0

02 4

_04 1 1 1 1 1 1 1 1 1
-1000 -800 -600 -400 -200 O 200 400 600 800 1000

time

cosine of celestial angle between detector and Sun

Fig. 6. The celestial distance of the 3rd GBM detector and the Sun as
a function of time during the GRB 091030.613. The dashed line shows
the 0 level (under this the Sun and the detector close in an angle larger
than 90°). It is worth comparing this figure to Fig. 1.

3.4. Other gamma sources

It is known today that the gamma-ray sky is not dark (Ack-
ermann et al. 2012). Apart from the gamma-ray bursts, the ter-
restrial flashes, and the Sun’s activity, there are also additional
gamma-ray sources. Some examples include the gamma-rays
produced when cosmic rays collide with gas in the Milky Way
and the contribution from individual galactic sources, such as
pulsars and other transient sources. As an extragalactic counter-
part, we see collective radiation from galaxies that we are not
detecting directly and gamma-rays from jets of active galaxies.

All this gamma-background has to be paid respect to. Rather
than consider each contributing source individually, we intro-
duce them into our model by allowing higher order terms when
constructing the basis function of the general least square prob-
lem in Secs. 4.1 and 4.2. Furthermore, we use the method of
singular value decomposition and Akaike model selection de-
scribed in Secs. 4.3 and 4.4 for choosing the contributing ones,
since the net effect of all these sources is hard to compute at
every second.

4. Background subtraction

In Sec. 3, we have found three variables, which contribute to
the variation in the background (see Figs. 4, 5 and 6). They may
help extend the polynomials of time that are only usable in some
short intervals around the bursts. These three variables contain
physical information of the background, because they are sug-
gested by the actual position and orientation of the satellite.

However, we cannot quantify the contribution from the var-
ious sources at any given time. As we know that they have an
influence on the background, we can fit a theoretical function of
these physical underlying variables. Therefore, we fit and sub-
tract the background using the three defined variables (burst po-
sition, Sun, and Earth) and the time variable, on a higher degree.

At this point, the following question may arise: why is the
burst location needed? If a curve contains no burst for sure, there
is no sense of using the burst position as an underlying variable.
In that case, we would probably need to use only the Sun and
the Earth (maybe implement the position of some other gamma-
sources as well).
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The reason why we use the burst position when there is a
burst in the data is that the burst itself is a gamma source. Of
course, it does not produce gamma photons at a constant level,
but transiently. It is possible, nevertheless, that a not yet iden-
tified long emission would be enhanced (or weakened) because
the satellite moved toward (or away of) the burst. To analyse (or
sometimes even detect) emission coming from the astrophysical
source outside of the main burst interval, it is needed to identify
the fluctuations of the background rate caused by the change in
the distance between the detector and the burst.

Next, we summarize the method of general least square for
multidimensional fits, the algorithm of singular value decompo-
sition, its numerical solution, and the Akaike model selection
criterion for choosing the best model. Since we use underlying
variables, which are calculated based on the actual direction and
orientation of the satellite, we call this method direction depen-
dent background fitting (DDBF).

4.1. General Least Square

For simplifying the explanation, we will use the following
notation:

y;=counts per bin;
xP=celestial distance between burst and detector orientation
(Fig. 4);
xl(.z) =celestial distance between Sun and detector orientation
(Fig. 6);
xl(.3)=rate of the Earth-uncovered sky (Fig. 5);

4)_

X, =time.

We have a set of datapoints (x;, y;), where the components of x;
are x; = (xgl),xl(.z),xf?),x?)), whilei=1...N.

We use the general least square method (Press et al. 1992) for
a multidimensional fit (since x; has more than one component).
The theoretical value of y(x;) can be expressed with functions of

x;, known as the basis functions X (x;):
(H

where the weights a; are the model parameters that we need to
estimate from the data (k = 1...M). Note that the basis functions
Xi(x;) can be nonlinear functions of x; (this is why the method
is called generalized), but the model depends only linearly on its
parameters dy.

The maximum likelihood estimate of the model parameters
ay is obtained by minimizing the quantity

y(x;) = I arXi(x;),

@)

2
yi — L ar Xi(x;)
(o] ’

X2:Zﬁl(

which is known as the chi-square statistics or chi-square func-
tion.

One can write the chi-square function in a matrix equation
form as well. For that, it is useful for defining the design matrix
A (Nx M, N > M) of the fitting problem. Since the measured
values of the dependent variable do not enter the design matrix,
we may also define the vector b. The components of A and b are
defined to be the following:

X&) i

A,‘j .
g g

3

From now, we set o; =constant.

In terms of the design matrix A and the vector b, the chi-
square function can be written as
X' =(A-a-by, )
and we need an a that minimizes this function, so the derivatives
of x? with respect of the components of [a];, = a; are zeros. That
leads us to the equation for a:
a=(ATA)'ATD, ®)
where A” means the transpose of A, and the expression
(ATA)'AT are called generalized inverse or pseudoinverse of
A. The best technique of computing pseudoinverse is based
on singular value decomposition (SVD), which we describe in
Sec. 4.3. We first specify the general method written above for
the case of the Fermi GBM lightcurves in the following section.

4.2. Multidimensional fit

Equation (1) describes a hypersurface, and it is a generaliza-
tion of fitting a straight line to the data. Very simple backgrounds

may be fitted well with first degree hypersurface (hyperplane) of

the four variables described as x; = (xﬁl), xgz), *® x§4)):

i

(1

2
y(x;) = ay - x; @

i

ST}

+ay-x" +az-x (6)

where the basis functions are X;(x;) = xl(.l), respectively, and the
design matrix simply consists of the components of x; with A;; =
X

" For the most complicated Fermi backgrounds, higher de-
gree of the variables are needed, however. One can illustrate
the lightcurve data y; and the fitted hypersurface y(x;) using the
two variables xgl) and x§3), which are both of 3rd degree on a 3D

plot, as seen in Fig. 7. The design matrix of this problem is

xél) (x(l))Z x(g) (_xg))Z xél) . _xg) 1
1 1 1
A= xz) (x2>)2 xz) (xz))z x2)~x2) 1 @)
1 1 3 3 1 3
xg\]) (xgv))Z xg\l) (xgv))Z x;\]) . x;\’) 1
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Fig. 7.  The 2-dimensional hypersurface of a 3rd degree fitting to a
1)

Fermi lightcurve is shown. The fitted variables (x;’, xl(.3)) are along
the horizontal axes, while vertical axis represents the counts of the
lightcurve y; (shown by the black curve on the fitted grey plane).

Since we would like to have a method for all the cases of
Fermi-bursts (whether it is simple, complicated, non-ARR, or
ARR), we define our model to be comprehensive. Let us have
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y(x;) as the function of x; = (xl(.l), xl@, sz)’ xl(.4)) of order 3, so the

basis functions X;(x;) (and columns of the design matrix) consist
of every possible products of the components X0 up to order 3.

That means that we have M = k., = 35 basis functions and
ai, ay...ass as free parameters. We are sure that we do not need
so many free parameters to describe a simple background, and
although a complicated or ARR background may require more
free parameters, 35 is too much in every practical case. There-
fore, we decrease the number of free parameters using SVD in

the next section.

4.3. Singular Value Decomposition

In Sec. 4.1, we showed that the least square problem can be
solved by computing the pseudoinverse of the design matrix A.
For this purpose, we used Singular Value Decomposition (SVD),
since SVD is robust and very stable numerically (Long 2005)
(Press et al. 1992).

The SVD takes an N X M matrix A and factors it into
A = USV’. In this expression, U and V are N x N and M x M
orthogonal matrices, respectively, and S is an N X M diagonal
matrix. The columns of U and V are the eigenvectors of AA”
and AT A, respectively. Furthermore, S contains the square roots
of the eigenvalues of AAT and AT A (both have the same eigen-
values, but different eigenvectors). These eigenvalues (diagonal
elements in S) are called the singular values, s;.

In overdetermined cases (N > M), the last N — M singular
values, however, are zeros, so we may consider only U as an
N X M matrix, V as an M X M matrix, and S as M X M (it is
called economic SVD).

If U and V enter the SVD decomposition of A as described
above, one can show easily (using the orthogonalithy of U and
V) that the pseudoinverse of A can be obtained as

pinv(A) = (ATA)'AT = v§~'U". ®)

SVD is implemented in several numerical software. In our
work, we used Octave’s SVD function®, known as the svd, and
pseudoinversion function, known as the pinv (Long 2005).

Computing the pseudoinverse, we need the reciprocal of the
singular values in the diagonals of S7!, and there is a problem
with this. The size of a singular value tells you exactly how
much influence the corresponding rows and columns of U and V
have over the original matrix A. We can find the exact value of
A by multiplying USV”. If we, however, remove (for example)
the last columns of U and V and the final singular value, we are
removing the least important data. If we then multiplied these
simpler matrices, we would only get an approximation to A but
one which still contains all but the most insignificant informa-
tion. This means that SVD allows us to identify linear combi-
nations of variables that do not contribute much to reducing the
chi-square function of our data set.

The singular values are usually arranged in the order of size
with the first being the largest and most significant. The cor-
responding columns of U and V are therefore also arranged in
importance. If a singular value is tiny, very little of the corre-
sponding rows and columns get added into the matrix A when
it is reconstructed by SVD. If we compute the pseudoinverse of
A, the reciprocals of the tiny and not important singular values
will be unreasonably huge and enhance the numerical roundoff
errors as well.

This problem can be solved defining a limit value, below
which reciprocals of singular values are set to zero. It means

3 GNU Octave: http://www.gnu.org/software/octave/
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that the resulted matrix is an approximation of the real pseu-
doinverse, but we only omit information of the less interest.

With equation (1), we can define models of any number of
variables and of arbitrary degree. In our case, we define models
with four underlying variables of degree 3. Therefore, we have
M = 35 free fitting parameters, as described above in Sec. 4.2.
We do not know how many and which ones of these parameters
have real importance in the variation in the background, but SVD
can give us the answer trivially: Pseudoinverse should be done
by omitting the singular values which do not contribute so much.

The only question that remains is where this limit should be
when singular values are not so important. We find an answer to
that question in Sec. 4.4 using model selection criteria.

4.4. Model selection

Model selection is usually based on some information crite-
rion. We use the Akaike information criterion (AIC) method to
distinguish between different models to the data (Akaike 1974).
However, we note here that AIC has to be used with caution,
especially in the most complicated cases of backgrounds (see
examples in Sec. 5.2).

We first assume that we have M models so that the kth model
has k free parameters (k = 1...M). When the deviations of the
observed values from the model are normally and independently
distributed, every model has a value AIC so that

RS S

AIC, = N - log +2-k, 9)

where RS S is the residual sum of squares from the estimated
model (RSS = Zﬁ\i | Wi — y(x;, k))z), N is the sample size, and k is
the number of free parameters to be estimated. The first term of
equation (9) measures the goodness of fit (discrepancy between
observed values and the values expected under the model in
question), the second term penalizes the free parameters. Given
any two estimated models, the model with the lower value of
AIC; is the one to be preferred. Given many models, the one
with lowest AIC; will be the best choice: It has as many free
parameters as needed but not more. Note that we do not use AIC
for deciding how good the fit is but only for choosing one model
over the another. The goodness of fit is given by the chi-square
statistics defined by equation (2).

So far, we defined a complex model with 35 free parame-
ters and, therefore, the design matrix A has 35 singular values
(see Sec. 4.2). However, we know that we can omit some of the
tiny singular values when computing the pseudoinverse of A —
the ones, which are not necessary to the best fit of the gamma
background. Thus, we take a loop over the pseudoinverse op-
eration and decrease the omitted number (that is, increase the
used number) of singular values in every step. Furthermore, we
also compute the AIC; in every step with k being the number of
singular values not omitted. In that way, the number of singular
values, which minimize the AIC; as a function of k£ will be the
best choice when calculating the pseudoinverse, so we get the
most useful estimation of the model parameters a (let us remem-
ber that singular values are sorted in decreasing order, so the last
and not important ones will be penalized by the second term of
AIC).

At this point, we return to the Fermi’s GRB 091030.613
presented in Sec. 2 and 3 and follow the method of general
least square, as described above. We compute AIC; for every
k = 1...35. This function is shown in Fig. 8.
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Fig. 8. The Akaike Information Criterion for model selection. Model
with 14 singular values is selected. (First and last five singular values
are usually too high, so we do not show them.)

Based on the Akaike information criterion, the model with
14 singular values is the best choice. We present the result of the
fitting with this model in Sec. 5.

4.5. Features of DDBF

One cornerstone of the fitting algorithm DDBF described
above is the definition of the boundaries that decide the interval
of the burst and the intervals of the background. In this work, we
follow the common method of using user-selected time intervals
(Paciesas et al. 2012).

Unlike in Paciesas et al. (2012), usage of the position data
gives us the possibility of fitting the whole background of the
CTIME file instead of selecting two or three small fractions
around the burst. This notable feature has two important con-
sequences.

First, the user has to select only the two boundaries before
and after the burst; the other boundaries of the background in-
tervals are inherently at the beginning and at end of the CTIME
datafile. This reduces the error factor put into the DDBF method
by the user compared to the method of Paciesas et al. (2012).

Second, one can easily detect a possible long emission com-
ing from the astrophysical source. Since this emission has noth-
ing to do with the direction and orientation of the satellite, the
signal consequently has to be present in the lightcurve after the
background filtering. (The opposite is also true: a signal after the
burst could be considered a long emission when the user defines
two short background intervals, although it was caused by the
motion of the satellite. One example for this case is presented in
Sec.5.2.2.)

In the case of the GRB 091030.613, we used a burst-interval
between —20 and 38 seconds before and after the burst, respec-
tively (see Sec. 5, Figure 9). This means that the data of this time
interval were omitted when fitting to the background. Other than
that, the whole CTIME lightcurve were fitted.

It is one of our future plans to create a self-consistent
method, which can automatically define these intervals based
on a self-consistent iteration algorithm, so the user’s presence
would be unnecessary and the method would be totally auto-
matic.

5. Results
5.1. Direction dependent fit and Ty for GRB 091030.613

In this section, we present the result of the DDBF for the
GRB 091030.613 (the one that we showed in Fig. 1 and noted
that there are difficulties with its background fitting).
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F'],«WMM
900 WWWW“W%
Fig. 9. Fitted background of theﬁrlnithcurve of the Fermi burst

091030.613 measured by the 3rd GBM detector. Fitting was done by
DDBF method (Szécsi et al. 2012a,c), using 14 non-zero singular val-
ues according to AIC. Reduced chi-square statistics is shown in the top
right corner.

The DDBF method is a good alternative for the polynomial
fitting of time for two reasons. First, the background model con-
sists of astrometric computations of astrophysical objects, and
the fitting variables have physical meanings. This property is
missing when one uses simple polynomial fitting of time; how-
ever, Fermi’s complex motion prefers to have a more detailed
model for the background sources.

Second, using the polynomial fitting of time, one has to de-
fine two short time intervals before and after the burst, which
can be well described by a polynomial function (see Sec. 4.5).
Usually, these intervals have to be short enough and defined pre-
cisely to get a correct fit. DDBF can fit all the 2000-sec data of
the CTIME (and CSPEC) files. Therefore, we are also able to
study long emissions or precursors.

Fig. 10 shows the cumulative lightcurve from which we com-
puted the durations (Szécsi et al. 2012b). Horizontal lines were
computed by averaging the cumulated background levels before
and after the burst: These are the levels of 0% and 100% of total
cumulated counts.

We note that these levels were selected by the user for the
Fermi GBM Catalogue. Since they only fitted some short in-
tervals around the burst using time-dependent polynomials, this
step could not been automatised (Paciesas et al. 2012). With
DDBF, however, we fit all the 2000 seconds of the CTIME file
(except for the burst in the middle) using direction dependent un-
derlying variables. Our method gives us cumulative lightcurves,
where the resulting levels are tightly distributed around a con-
stant value, and therefore, the automation (calculating the aver-
age of the levels) is possible.

Between the levels of 0% and 100%, 19 equally heightened
points mark every 5% of their cumulated counts (the first and
last are fixed where the lightcurves step over and below the lev-
els before and after). Tyy is computed by subtracting the value
corresponding to 5% from the value corresponding to 95%.
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Fig. 10. Cumulative lightcurve of the Fermi burst 091030.613 by the
3rd GBM detector. Horizontal lines are drawn at 0% and 100% of total

cumulated counts; dots mark every 5%. (Model with 14 singular values
was selected, as seen in Fig. 8.)

The Fermi GBM Catalogue reports Tgi'=19.200+0.871 secs.

Our result is T90=22.609ti?53é8 seconds. We always give confi-
dence intervals instead of error bars with the Tyq values, since
the DDBF method is complicated: The error estimation needs
further considerations. See Sec. 6 for details.

This result does not depend on the spectrum or the detec-
tor response matrix, because we summed up the channels of the
CTIME files. However, the DDBF can be used for every channel
separately (as it was done in Szécsi et al. (2012b)) and can also
be used with CSPEC data to obtain spectral information.

5.2. Examples

We began with the observation that many of Fermi bursts
(even in non-ARR cases) have a varying background corre-
sponding to the actual direction of the satellite. Thus, our idea
was to use this directional information in the filtering algorithm.
We created a method, which is able to separate this background
from the lightcurves. Now, we want to demonstrate the effec-
tiveness of our method, so we present examples here, with each
having an extreme background.

These examples were purposely chosen to demonstrate how
powerful DDBF can be and to give an overall impression about
the cases for which it can be used in and the advantages and
the difficulties it carries. Two of the examples below are ARR
bursts (Secs. 5.2.5 and 5.2.7). In general, we would like to draw
attention to the connection between the direction dependent un-
derlying variables and the variability features of the lightcurve:
the correlation between them are undeniable in every single case
(even in no-ARR cases).

In each example, we present figures of the original
lightcurves for one of the triggered detectors, summarizing the
counts of the effective range of channels of CTIME file. On
these lightcurves, we plot the fitted theoretical background with
a solid line and the reduced chi-square statistics in the top right
corner. Then, we show the absolute value of the direction de-
pendent underlying variables (in one graph), and the AIC; as a
function of used singular values.

As a final result, we show the cumulative lightcurves, which
we used to compute the Tog values. We also give the preliminary
T, from the gamma-ray coordinates network (GCN 2013), and
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the T§3' from the catalogue computed and published by the GBM
team (Paciesas et al. 2012). We give confidence intervals of the
computed Tgps (and Tsos as well). The description of how these
confidence intervals were computed is in Sec. 6.

It is important to note, however, that only long GRBs were
analysed here. The reason of this is that short bursts usually are
not influenced by the fast motions of the satellite. During one
short burst, the background does not change so much that DDBF
should be used. Furthermore, short bursts are better analysed
using the time tagged events (TTE) data type instead of CTIME
(and CSPEC), and therefore, they are not presented here.

Since we want to present how effective our method is, we
show the detector having the highest background variability
without filtering in every case. However, it is possible to com-
bine the same analysis for a number of bright detectors for each
burst to reduce the error. It will be a part of a future work to cre-
ate a catalogue of the durations of the Fermi bursts using DDBF,
in which we will use more than one detector’s data. Here, we
present the method with only one triggered detector for each
case.

5.2.1. GRB 090102.122

GRB 090102.122 is an example where no fast motion was
carried out, and therefore, no high background rate variation is
taken place. This burst had no ARR. The lightcurve is simple in
the sense that a time dependent polynomial function could possi-
bly be used to fit it properly. However, we present DDBF results
only to show that the method works in these simple cases as well.
The AIC chose 9 singular values, and one can see in the informa-
tion criterion plot that more values than this are punished by the
AIC: Too many free parameters would cause the fitted curve to
have unnecessary loops fitted to the noise of the background.
The Fermi catalogue reports Tg3'=26.624+0.810 sec (Paciesas
et al. 2012). Detector ’a’ was analysed here.

Around -150secs in the lightcurve, there is a peak, which
cannot be explained by the physical underlying variables. This
causes a little hump in the cumulative lightcurve in Fig. 12.
(Furthermore, the same peak can be seen in the lightcurves of
the other triggered detector.) It is out of the scope of this ar-
ticle to decide whether it is a pre-burst or another instrumen-
tal effect, however, we emphasize again that DDBF can also
be used for finding pre-bursts or long emissions. We measured

T9()=29.756t%?;1§ seconds.

5.2.2. GRB 090113.778

The Fermi catalogue reports Tg'=17.408+3.238 sec (Pa-
ciesas et al. 2012) and this is a no-ARR case. Detector’0’ was
analysed here (Szécsi et al. 2012c). This lightcurve in Fig. 23
has some extra counts around 400 and 600 seconds. Both of
them can be explained with the variation in the underlying vari-
ables: Around 400 sec, the Earth limb was out of the FoV and
then it came back and peaked at 600 sec until the Sun’s posi-
tion changed significantly. Both of these could cause the extra
counts. The best chosen model with 12 singular values could fit
these peaks (see the big and small loops in the fitted lightcurve
at 400 and 600 sec). Since the underlying variables are based
on the motion of the satellite, it follows that these two peaks are
probably not astrophysical effects. They do not come from the
GRB but from the combined effect of the background sources in
the surroundings: the Earth and the Sun. It is important to note
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Fig. 11. Top: Lightcurve of the Fermi GRB 090102.122 as mea-
sured by the triggered GBM detector ’a’ and the fitted background with
a grey line. Burst interval (secs): [-5:35]. Bottom left: Underlying vari-
ables (absolute values). See Sec. 3. Bottom right: Akaike Information
Criterion. See Sec. 4.4.
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Fig. 12. Cumulative lightcurve of GRB 090102.122. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

that a statement like that could not be made using the traditional
method of polynomial fitting of time.

After the background subtraction, the cumulative lightcurve
(Fig. 14) is noisy because this burst was not so intense with only
~ 1800 counts, while other examples have 10000-20000 counts.

Our result is T90:19.679+é%§?3 sec.

5.2.3. GRB 090618.353

The Fermi catalogue reports Tgi'=112.386+1.086 sec (Pa-
ciesas et al. 2012). No ARR was taken

The data from detector *7” were analysed here. Nevertheless,
we should note that detector ’4’ has so many counts that almost
any kind of background model seems to be good enough to com-
pute Top when using detector ’4’. We still choose to present de-
tector ’7’ here, because we can show our method working in a
more complicated case.

18290
000 800 600 400 200 0 200 400 600 800 1000 5 10 15 20 25 30

time #of used singular values

Fig. 13. Top: Lightcurve of the Fermi GRB 090113.778 as measured
by the triggered GBM detector 0’ and the fitted background with a grey
line. Burst interval: [-20:40]. Bottom left: Underlying variables (abso-
lute values). See Sec. 3. Bottom right: Akaike Information Criterion.
See Sec. 4.4.
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Fig. 14. Cumulative lightcurve of GRB 090113.778. Horizontal lines

are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

Now we may be used to the fact that quickly varying un-
derlying variables (which correspond to fast motion of the satel-
lite) cause a quick change in the lightcurve background at the
same time. This burst had no ARR, but the satellite started
to rotate according to the fast change of the underlying vari-
ables after the trigger. At this point, the lightcurve is changing
more quickly than before. The fitted grey line (chi-square statis-
tics are 1.009) pursue this change, and results in a duration of

Too=103.338"2532 seconds.

5.2.4. GRB 090828.099

GRB 090828.099 was detected by the GBM on 28 August
2009 at 02:22:48.20 UT (GCN 2013, 9844). The first GBM cat-
alogue reported Tg{'=68.417+3.167 sec (Paciesas et al. 2012).
This is a non—ARR case. The data from detector’5’ was anal-
ysed here.
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Fig. 15. Top: Lightcurve of the Fermi GRB 090618.353 as measured
by the triggered GBM detector *7’ and the fitted background with a grey
line. Burst interval: [-20:130]. Bottom left: Underlying variables (ab-
solute values). See Sec. 3. Bottom right: Akaike Information Criterion.
See Sec. 4.4.
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Fig. 16. Cumulative lightcurve of GRB 090618.353. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

The AIC gives us the model with 7 singular values. This is
also a simple background. Only the first 300-400 sec are influ-
enced by the fast motion, but DDBF could filter this effect. The

duration computed with the DDBF is Top=63.608" 157 seconds.

5.2.5. GRB 091024.372 and .380

This case deserves attention because an ARR was caused by
this burst. The GBM was triggered twice on GRB 091024: the
first time at 08:55:58.47 UT (GRB 091024.372) and the second
time at 09:06:29.36 UT (GRB 091024.380). The GCN 10114 re-
ports: ’This burst was detected by Swift and the Fermi Gamma-
ray Burst Monitor with a first emission interval lasting ~50 sec
and a second emission interval starting ~630 sec after trigger and
lasting more than 400 sec. The spacecraft performed a repoint-
ing maneuver for this burst which resulted in pointed observation
for 5 hours starting ~350 sec after [the second] trigger.” (GCN
2013, 10114)
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Fig. 17. Top: Lightcurve of the Fermi GRB 090828.099 as measured
by the triggered GBM detector ’5’ and the fitted background with a grey
line. Burst interval: [-10:80]. Bottom left: Underlying variables (abso-
lute values). See Sec. 3. Bottom right: Akaike Information Criterion.
See Sec. 4.4.
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Fig. 18. Cumulative lightcurve of GRB 090828.099. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

Additionally, Gruber et al. (2011) performed a detailed anal-
ysis of this burst and its optical afterglow. Here, we show DDBF
duration results separately for the two triggers. Further investi-
gation is needed to analyse the total ~1020 seconds of this ex-
treme long burst as a whole with DDBF. This will be provided
in a future work.

Figure 19 shows the CTIME data of the first trigger (.372)
using the triggered detector ’8’. The second burst episode after
630 sec can also be recognized in the lightcurve by the naked
eye (however, the satellite changed its position at the time of this
second trigger, so this emission looks less intensive here in de-
tector ’8”). On the other hand, one can notice that the underlying
variables do not show any variability at this time interval. Qual-
itatively this means that something is happening there which is
not coming from our modelled sources (Earth or Sun). This can
be shown more quantitatively, if one considers that another local
minimum can be seen at 15 which are close to the global mini-
mum at 20, which AIC determines for this fit. Here the models
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with too many free parameters considered the second burst as
a background noise and tried to filter it with these polynomial
loops. Indeed, the fitted curve shows several loops, especially at
the interval of the second burst.

We can draw two lessons from all of this. First, one has to
use AIC with caution. Sometimes, the preferred singular value
is not the one AIC gives, if there is another one close enough.
In the case of the first emission (.372), there are no loops on the
fitted curve, when one uses only 15 singular values (the second
local minimum of the AIC). Fortunately, the final Tg, result does
not change much (less than 1% in this case). Second, one needs
to pay more attention to too many singular values (we would
say more than 20, based on our other examples), especially if
there is an additional local minimum in AIC close to the chosen
one. This can mean that something is happening that cannot be
well modelled and may be an astrophysical process. We already
mentioned that DDBF can be used to detect long emissions: This
is clearly such a case. Our final result for the first emission (.372)

is Tgg=100.013*79% seconds.

The second burst emission is after 630 sec in Fig. 19. As
we already mentioned, this second emission resulted a second
trigger from the GBM (.380), which is shown in Fig. 21 using
the data of the triggered detector *9’. Here, the first trigger is
visible at -630 sec. However, it is less intensive, since detector
"9’ was not triggered with the first emission.

This second burst was so long (GBM Catalogue reported
Tg‘(’)’=450.569 sec (Paciesas et al. 2012)) that we needed to re-
consider the best model given by AIC. The minimum of AIC as
a function of the used singular values is at 11, but this model has
a large polynomial loop in the burst interval and is, therefore,
useless. Although this is understandable, longer burst intervals
lead to shorter fitted backgrounds (and thus, a large amount of
information can be lost), it implies that the information criterion
has to be used with caution, especially in extreme cases. In this
case, we chose the model with 7 singular values. This model fits
the background considerably well according to our experience,
and is supported by the information criterion: The smallest local
minimum is at 7.

The ARR was issued at 09:12:14.28 UT, ~970 sec after the
first trigger (.372) and ~350 sec after the second trigger (.380)
(Gruber et al. 2011). A small change in the underlying variables
at 350 sec in Fig. 21 can be seen, but the ARR slew was not too
large, since the source was already at 15 degrees from the LAT
boresight. Nonetheless, the effect of the ARR is represented by
the fitted model, as seen by the small knot of the grey line at 350-
400 sec in Fig.21. As for the cumulative lightcurve in Fig. 22,
the first emission at -630 sec is present with a non-significant
sign, otherwise our result of Toy=461.371*3%373 seconds agrees
with the GBM Catalogue. '

5.2.6. GRB 100130.777

The Fermi GRB 100130B was detected by the GBM on 10
January 2010 at 18:38:35.46 UT. The GBM GRB Catalogue pre-
sented Tg?)t =86,018+6,988 sec (Paciesas et al. 2012). We analyse
the data of triggered Nal detector ’8” using DDBF.

Although the background does not change extremely during
the ~ 80 sec of the burst, it is a good example to present the con-
tribution of the celestial position of the satellite to the actual level
of the background. If one takes a look at Fig. 23, one can see that
the variation in the lightcurve has a connection to the variation
in the underlying variables.
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Fig. 19. Top: Lightcurve of the Fermi GRB 091024.372 as measured
by the triggered GBM detector ’8’ and the fitted background with a grey
line. Burst interval: [-19:119]. Bottom left: Underlying variables (ab-
solute values). See Sec. 3. Bottom right: Akaike Information Criterion.
See Sec. 4.4.
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Fig. 20. Cumulative lightcurve of GRB 091024.372. Horizontal lines

are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

AIC gives us a best model of 17 singular values. After
the background subtraction, the cumulative lightcurve (Fig. 24)

gives us Tog=87.725*3311 sec. For error estimation, see Sec. 6.

5.2.7. GRB 100414.097

This GRB also had an ARR event. Quoting the GCN
report 10595: At 02:20:21.99 UT on 14 April 2010, the
Fermi Gamma-Ray Burst Monitor triggered and located GRB
100414A. The Fermi Observatory executed a maneuver follow-
ing this trigger and tracked the burst location for the next 5 hours,
subject to Earth-angle constraints.” (GCN 2013, 10595)

In this case, we chose to analyse a non-triggered detector
(detector °5’). Because this burst was so intensive and bright,
the triggered detectors show totally negligible background rate
variations compared to the brightness of the burst. Since we want
to demonstrate that our method works in very complicated cases
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Fig. 21. Top: Lightcurve of the Fermi GRB 091024.380 as mea-
sured by the triggered GBM detector 9’ and the fitted background with
a grey line. Burst interval: [-200:600]. Bottom left: Underlying vari-
ables (absolute values). See Sec. 3. Bottom right: Akaike Information
Criterion, the smallest local minimum of 7 singular values is used here.
See Sec. 4.4.
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Fig. 22. Cumulative lightcurve of GRB 091024.380. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

as well, we analyse a lower signal-to-noise detector. Evidently,
DDBEF can also fit the data of the bright triggered detectors well.

The GBM  Catalogue reports a  duration of
Toy =26.497+2.073 sec. According to the GCN 10594
and 10610, this burst also triggered the LAT and the Suzaku
Wide-band All-sky Monitor (WAM) (GCN 2013, 10594,10610).

As we already mentioned above, singular values that are too
high (>20) deserve attention. In this case, the AIC chose 21
singular values. This 21 singular value model describes the
background well. The only exception is the extra count rate
around 600 sec, which is also clearly noticeable in the cumu-
lative lightcurve. More detailed analysis of the spectral features
of this event are needed to determine if this event is caused by
the burst or not. Given that there were additional observations by
the LAT and by the Suzaku WAM which do not report long emis-
sion, we expect that this was a local event at the GBM caused by
cosmic rays or another possible transient source, which could
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Fig. 23. Top: Lightcurve of the Fermi GRB 100130.777 as measured
by the triggered GBM detector ’8’ and the fitted background with a grey
line. Burst interval: [-30:90]. Bottom left: Underlying variables (abso-
lute values). See Sec. 3. Bottom right: Akaike Information Criterion.
See Sec. 4.4.
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Fig. 24. Cumulative lightcurve of GRB 100130.777. Horizontal lines
are drawn at 0% and 100% of total cumulated counts; dots mark every
5%.

be filtered by using different energy channels. Our result is

Top=22.195"41% sec.

6. Confidence intervals

The DDBF method described above is too complicated to
give a simple expression for the error of Tyy using general rules
of error propagation. We therefore decided to give confidence
intervals corresponding to 68% (approximately 1o level). For
this, we use Monte Carlo (MC) simulations. We simulate the
data with Poisson noise: Assuming that counts are given by a
Poisson process, we exchange our input data to one coming from
a random Poisson distribution. In the case of a Poisson distribu-
tion, which is parametrised by the mean rate (1), the expected
value is given by 1. We therefore replace each datapoint with a
value drawn from a Poisson distribution with a mean equal to the
datapoint in question.
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Table 1. Final Tyy and Ts, results.

| Burst [ sing.v. | Too(s) | Conf. int. (s) \ Teo () [ Tso(s) | Conf. int. (s) | TS (s) |

090102.122 9 29.756 +2.971 —1.198 26.624+0.810 10.859 | +0.531 | -0.556 9.728+0.572

090113.778 12 19.679 | +10.883 | —6.421 17.408+3.238 6.408 +0.498 | —0.344 6.141+1.446

090618.353 15 103.338 | +3.842 —6.725 | 112.386+1.086 22.827 | +2.201 | -1.530 23.808+0.572
090828.099 7 63.608 +1.467 —-1.652 68.417+£3.167 11.100 | +0.198 | —0.194 10.752+0.320
091024.372 26 100.013 | +7.908 -4.156 93.954+5.221 41.896 | +2.987 | —1.731 39.937+1.056
091024.380 7 461.371 | +48.575 | =71.535 | 450.569+2.360 || 283.202 | +7.360 | —65.306 | 100.610+0.923
091030.613 14 22.609 | +13.518 | —-4.522 19.200+0.871 10.770 | +0.388 | —0.424 9.472+0.345

100414.097 21 22.195 +2.149 -1.421 26.497+2.073 11.468 | +0.549 | —0.906 13.248+0.272
100130.777 17 87.725 +5.311 -4911 86.018+6.988 30.829 | +1.317 | —1.928 34.049+1.493

Notes. Final Ty and Ts, results, confidence intervals (see Sec. 6 and Szécsi et al. (2012c)), and the number of singular values (Sec. 4.3) found
with Akaike Information Criterion (Sec. 4.4) for the bursts analysed in this paper (Sec. 5). We also show the duration value of Tg?" and T¢ of the

GBM Catalogue (Paciesas et al. 2012) for comparison (Sec. 6.1).

DDBF was repeated for 1000 MC simulated data. The dis-
tribution of the Poisson-modified Tgy and Tso values are shown
in Fig. 27 and Fig. 28 for GRB 091030.613, respectively.

Fig. 27 shows two significant peaks around 22 and 47 sec-
onds. The first peak at 22 seconds corresponds to the mea-
sured Tgy value. However, the measured Tqy value is system-
atically longer in some cases of the Poisson noise simulation,
because this burst has a little pulse around 47 seconds (see
Figs. 9 and 10), and Ty is sensitive for this kind of uncertainties.
In Fig. 28., there is, however, no sign of this second peak: Ts is
more robust and less likely to be influenced by these fluctuations
(Szécsi et al. 2012c¢).

Final results of Tops and Tsos with confidence intervals are
given in Table 1 for the bursts mentioned in Sec. 5.2.

6.1. Comparison with the Fermi GBM Catalogue

In Table 1, we also show the T¢'s and T¢i's of the Fermi

GBM Catalogue (Paciesas et al. 2012) for comparison.

At this point, we need to give some notes about the differ-
ences between the method of the Catalogue and DDBF. First of
all, we only used one detector when we measured the duration,
whilst the Catalogue used the sum of the brightest detectors.

On the other hand, there are further differences between the
Catalogue’s method and the DDBF. As we mentioned in Sec. 5,
our method solved the problem of automatizing the identification
of the 0% and 100% levels of cumulated counts, so the user do
not need to define them by hand. This disposes of one possible
error source.

Additionally, using direction dependent variables produced
the possibility of fitting the whole CTIME background (only the
burst has to be taken off in the middle). This reduces the error
of the user selected background intervals and, on the other hand,
makes the automatic detection of a long emission possible. See
Sec. 4.5. for more details.

With respect to the error estimation of the Catalogue, they
followed the method developed for the BATSE data by Koshut
et al. (1996), which uses the variance of the 0% and 100% levels
of cumulated counts as a basis for the error estimates (Paciesas
et al. 2012). We decided to avoid this method (as we avoid the
use of time-dependent polynomial methods developed for the
BATSE, as seen in Sec. 2), and give an alternative solution with
Monte Carlo simulation of the data in Sec. 6. This choice is
based on our belief that the DDBF is too complicated, and using

the error estimation of Koshut et al. (1996) would underestimate
the real error of our method.

Furthermore, we give different higher and lower confi-
dence intervals. In our experience, many bursts show different
amounts of uncertainties at the starting point than at the fin-
ishing point. One demonstrative example is the Tgy value of
GRB 091030.613: the MC modified distribution in Fig. 27 is
clearly not symmetric. Therefore, it would be an oversimplifica-
tion to give only one value as an error bar or confidence interval.
For more examples, see Szécsi et al. (2012c).

Given all of these facts, it follows that a comparison with the
Fermi GBM Catalogue data is not meaningful in a quantitative
sense at the moment. It is currently under way to process all
Fermi bursts with DDBF and publish an alternative catalogue,
in which we will use the combined data of the detectors. Un-
fortunately, we cannot say anything about the robustness of our
method until we finish processing a significant number of bursts.
Once it is done, we will provide an overall statistical comparison
between the two dataset together with our catalogue.

7. Summary and conclusion

Since the commonly used background filtering methods are
not efficient for many cases of the Fermi, we developed a new
technique based on the motion and orientation of the satel-
lite known as the the Direction Dependent Background Fitting
(DDBF) method.

The DDBF technique considers the position of the burst, the
Sun and the Earth. Based on this information on position, we
computed physically meaningful underlying variables and fitted
a four dimensional hypersurface on the background. Singular
value decomposition and Akaike information criterion were used
to reduce the number of free parameters. More research may
be required to find a more suitable model dimension reducing
criterion.

The background model was subtracted from the measured
data, resulting in background-free lightcurves. These lightcurves
can be used to perform statistical surveys. We showed the effi-
ciency of our DDBF method computing durations of some very
complicated cases. We also calculated confidence intervals for
our duration values corresponding to 1o level.

We summarized some of the main differences between
DDBF and the background estimation method of the GBM Cat-
alogue and decided not to give a quantitative comparison at this
point. Our plan is to process the combined data of the detectors
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Fig. 25. Top: Lightcurve of the Fermi GRB 100414.097 as mea-
sured by the non-triggered GBM detector 5’ and the fitted background
with a grey line. Burst interval: [-20:30]. Bottom Ieft: Underlying vari-
ables (absolute values). See Sec. 3. Bottom right: Akaike Information
Criterion. See Sec. 4.4.
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with DDBF for every Fermi burst and produce an alternative cat-
alogue. This future work will also contain the statistically rele-
vant comparison of the official GBM Catalogue and the DDFB
Catalogue which has yet to come.

The DDBF method has the advantage of considering only
variables with physical meanings and it fits all the 2000 sec
CTIME data well as opposed to the currently used method.
These features are indeed necessary when analysing long GRBs,
where motion effects can influence the background rate in a very
extreme way. Therefore, not only Sky Survey but also ARR
mode GRB’s can be analysed, and possible long emission can
be detected.

Furthermore, there seems to be no reason why DDBF could
not be used for other sources than GRBs. The method only con-
siders the background levels before and after the event; there-
fore, the event itself has no influence to the resulted background
model, even if it is very bright. Nevertheless, the duration can
play a role in its applicability. Events that are comparably long
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Fig. 27. Distibution of the Tqy obtained from the MC simulated data
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Fig. 28. Distibution of the Ts, obtained from the MC simulated data
for the Fermi burst 091030.613 (Szécsi et al. 2012c).

to the 2000 sec data file could be problematic. The DDBF is not
necessary for short events, as the effects of the motion of the
spacecraft are negligible: One may use the time dependent poly-
nomial fitting for short GRBs. However, DDBEF is able to dis-
cover long emissions or prebursts, as we have shown in Sec. 5.2.
Therefore, DDBF could be used to verify the final result in the
case of short bursts as well.

In summary, celestial position plays an important role in the
Fermi data set. If one wants to filter the background more ef-
ficiently and in a physically more comprehensible way, one has
to use this information. Utilizing this principle, we have created
the DDBF method. In future work, DDBF will be used to create
a catalogue of the durations of the Fermi GBM GRBs.
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Appendix A: Earth in the FoV

In Sec. 3.2, we defined one of the underlying variables as
the Earth-occulted sky rate —i.e., the Earth-uncovered sky corre-
lated to the size of the detector’s Field of View (FoV). Here, we
present the computations.

Let us have R as the radius of Earth and # as the altitude of
the satellite. (The actual & during the burst is known from the
LAT spacecraft data file.) The aperture o of the cone constituted
by the Earth-limb seen from the board of satellite is

o = asin (A1)

R+h

Angular dependence of the detector effective area is assumed

to be constant, so the FoV of one GBM detector is 27 sterad.

However, more precise calculations could be done knowing the
real characteristics (Meegan et al. 2009).

When the Earth-limb is totally in the FoV, the Earth-covered

area is computed by integrating on a spherical surface as follows,

21 o
Qioral(0) = f f sinfdfd¢ =2n(1 —coso). (A2)
0o Jo

Eqn. (A.2) means the solid angle of a cone of aperture o

If only a fraction of the Earth-limb is in the FoV, then Q =
Q(o, p) is smaller then Q,,,,; and is a function of the maximum
altitude of the Earth-limb p as well. In this case, we have to
separate the area in the FoV to two parts, which are marked with
light grey and dark grey on Fig. A.1.

We can calculate the dark grey surface the same way as
above. Using 27—2x, instead of 2x when integrating with respect
to ¢, we find that

Qiarkgrey (0, p) = 2(m — k) (1 = cos ), (A.3)

a cone with
radius of o

Fig. A.1. Earth limb seen onboard from the Fermi. Detector can only
see the coloured parts above the solid horizontal black line.

where « is a function of p and o It is easy to see that the light
grey triangle in Fig. A.1 is a spherical triangle, since its every
side is a geodetic curve. Therefore, « can be calculated from the
Napiers pentagon:

(A4
tan o

tan (p — a’))

K= acos(

Then, we calculate the light grey surface. The area of a
spherical triangle is given by the Girard formule:
Qlightgrey(0-9 p) = —m+2k+24, (A.S5)
where A = acos (cos (p — o) - sin k) from the Napiers pentagon.

Thus, the surface above the black line is the sum of the light
grey and dark grey parts:

t —
Q7P(o,p) = 2 [JT — acos (M)] (1 -coso)
tan o
tan o
t —
+2acos (cos (o — o) - sinacos M)A.6)
tan o

Eqn. (A.6) has to be modified a little bit when p < o In this
case, the horizontal solid black line is over the half of the circle,
and the light grey triangle has to be subtracted from the integral
calculated from (A.2) with 2« instead of 27:

Q<% (o,p) =2 [acos (M)} [1 -coso]+m
ano

—2acos (—tan (- '0))

tan o

tan (0 — p) ))

(A.7)
tan o

—2acos (cos (o —p) - sinacos (

We plot equation (A.6) and (A.7) as a function of p for
o = m/3, as seen in Fig. A.2. Equations. (A.6) and (A.7) give
us equation (A.2), when p = 20, and have no meaning when
p < o or p > 20. Therefore, we define an underlying variable
x¥ (called the Earth-occulted sky rate, see Sec. 3.2 and 4.1) the
following way:
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Note that we divided by 27 because we assumed that FoV
of the detector is 27 sterad. In that way, we get the rate of the
Earth-limb to the FoV. We computed expression (A.8) for every
second of the lightcurve and use it as an underlying variable in
Sec. 3.2.

Article number, page 16 of 16



